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“We prove’ two ﬁ:eorems about: box produm The first theorem says that the box product of
countable sg donormal. i.e. any two disjoint closed sets one of which is countable can

patate 8. The second theorem says that assuming CH a certain uncountable
box prodi ct is normal ’(1.e._j<m1 D,<.,, X where each X, is a compact metric space).

| AMS Subj. Class. (1980): Primary 54B10, 54D15, 54D18; Secondary 03E0S, 54D20,
54D30

box-product  continuum hypothesis ~ normal  paracompact  pseudonormal

For X, topological spaces the box product, [l.<., X, is the topology on the
carygsigqﬂproduct g'enerated by sets of the form [].<., U, where each U, is open
in X,.. For general background see van Douwen [1].

Theorem 1. Suppose for each n, X, is countable and normal. Then [« X, is
pseudonormal.

Van Douwen [1] shows that this theorem extends to box products of arbitrarily
many spaces (Claim 2, 11.1). This theorem is ilso true if the X, are only assumed
to be compact (Claim 1, 11.1); but it is falsc if the X,, are only assumed tc be
metric spaces (12.1). For any Hausdorff space X the following lemma is true.

Lemma 1. For any countable, closed K < X, the following are equivalent .
(A) For every apen V 2X there exists an open U such that K c U ccl(U) s V.
(B) For every open (in X) cover of K there is an oper: (in X) locally finite {in X)
refinement cqvering K.

This is due to Kunen. The proof appears in van Douwen [1, Claim 3, 11.1].
Kunen use it to. show thai the product of a compact space and a pseucdonormal
space is pseudonormal Note that in genera! the product of pseudonormal spaces
~ need not.be pseudonormal, e.g. the rational points on the line x = --y cannot be
separated from the irrationals on this line in the square of the Sorgenfrey line.
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Suppose x, € X,, and let:

E= {y el Xa:3nVm>n y(m)==x,.,;}.
We begin by showing thai E satisfies Lemma I(A) for K F and thus Lemma
1(B). We use this to show that every countable closed F¢ -..«Xn.;has the !
paracompactnesslike property expressed in Lemma. 1(B).

Lemma 2. For all open V = E, there exists an open U such that Ec U ccl{iU)g V.

Proof. Assume X, ={x{:i<w} and E ={y €]],,,, Xm: for ali but finitely many
n,y(n)=x5}. Let <t be awellorderingofl“ of order type o such thatforallp,q e E
if for all n whenever p(n)=x{ and q(n)=x; we have i<}, thenpsq FarpeE‘
let lp\ be the order type of p with respect to <1, Let U} be an open nelghborhood
of xi in X, such that for all i <k, x{'€cl(U%). For each p € E choose U, an open
neighborhood of p so that:
() U, =[l,<, U" and c{(U,) =[], U V.
(2) If j<k<|p|,and p(n)=x], then Uz n U, =0.
(3) If g <ap, then for all n,
(@) if p(n)ecl(Ug), then Up " U4 =0,
(b) if ptin)e Uy, then U, c Uy
To pick these U, first satisfy (1) and (2) ((2) can be done since x; écl(U )). Then
refine them to satisfy (3) by induction on <.

Claim. M Upere Up) =Uper cl(U,).

This, of course, proves the lemma. Suppose x € |_, e cl(U,). Foreachn if x(n) = x,
choose UU" open in X, with xgke U", U" ¢ U}, and for all peE if |pl<k and
x €cl(UT), then U" nel(Uy) =@. We will show that:

Mu'alJUu,=9

new PEE

This shows x & cl{_J,ce U,). Given p € E define q € E as follows. Suppose x(n)=x}
and p(r. =x. If f=k let gn)=x(n). If j <k let q(n\ p(n). Thai is, q is the
smaller of rhr. two. dice p is eventually equal to xg so is q. Also, ¢ =p. Since
x€ci{{y) wer: eists an n such that x(n)e& cl(Uq) ani suppose x(r)=x} and
q(n) = x;. Sirce qg(n) # x(n) (since g(n) e U3) it follows that f <k and pin) =q(n).
Sinceq=p, U, c Uy, by (3 b). If lq| <k, then by the definitionof U™, U" n U =8,
On the other hand, if |gi=k, then by (2). U AU} =8 and by definition of U",

U" ¢ U Ineither case /" m Uy =P andso U U} =@ and therefore [T, .. U™~
,=9¢
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ey It tollows from Lemma 1 and Lemma 2 that E saisfies the paracompactness-like
y sed in Lemma I(B) We will show that every countable closed

this property. It is casy to see that for any closed sei C, CNE
rty (i.e. add 0.« X, —C to any open cover of C ~E). For
x~y iff dAn Vm >nx(m)=y(m). And let [x]={y|x ~y}.
c | ¢ uutable ‘and % is an open cover of F. By a

A ind hxeF an open box U.=Tl.., Ut withxe U,
reﬁnmg Y such that for all x,y €F if x#y, then there are infinitely many n such
that cl(U3) A cl(U?3) =P. For each x € F let ¥, = {U,: y €[x]nF} and Vi, =Y.

Claim. {Vi.y: x € F} is locally finite.

Let yeOscu X, For x€F, let G, ={n<wl|y(n)ec(U;)}. If G,, and G,, are
finite, *hen xo~x;. So except for one equivalence cless it is easy to build a
neighborhood of y disjoint from all U,.

Now for each x € F let #, be a locally finite refinement of ¥, covering F n{x].
Then & =|_J#;. x.e F} is a locally finite refinement of « covering F. [

1do not know if it is consistent with ZXC that:
aaQ

n<w

is normal (where Q is the space of rational numbers), or if its nonnormality is
consistent.

‘The next theorem gencralizes the theorem of Rudin [3] and its generalization
in Kunen {2].

Given X, for a <w) the box product, <w; —[J,<.., Xa i3 the topology on the
cariesian produce generated by sets of the form [.<., Us wiere each U, is open
in X, and for all but countably many a, U, = X..

Thecrem 2. Assume the continuum hypothesis, If for each a, X, is a compact
Hausdorff space of weight <c, then <w, -[3,,<m X Is paracompact.

Proof. A: before, for x, y €[].<,, Xa deﬁ.., x ~y iff {o: x(a) # y(a)} is finite, and
define [x]={y|x ~y}. We use <w;—V,<o, X. (the pinched product) to denote the
space of equivalence classes witt it2 topology given by the quotieat map o
(o(x) =[x1). For any basic open set U =[], ., Ua the countable set {a <<w, |U, #
Al 15 catlvd B support of U.

Lemma 3. <w1—Va<au, X. is a P-space (i.c. the countable intersection of open sets
is open).

Proof. Suppose o(x)ea(U") for n <« where U" =] ., U" are basic open sets.
Let {a: m <o} cover the support of each U” Let Va, =( Im<a Ua, for each n and



for a & {am: m <w}let V, =X,. Then

stweo( Il v,)gm;(tj"). o

a<w, n<ew

Since the weight of <w;—Va<w, X« is w1 we have unmediately that <m1
Va<o, X is paracompact (see Kunen [2, Lemma 1. 3]) ’

Lemma 4. o is a closed, continuous map.

Proof. o is continuous by definition. Suppose K is a closed subset of <w; -~
Da<w, X and aix) ¢ o (K).

Claim. For every F ¢[w,]"” there exists a basic open set Up | P UL with
xeUp, UsK=@,and forall a € F, UL = X,. -

Proof. Let z =x|{w1—F). For any ye[],.r X. we know that yuz&K (since
o(x)€o(K)). For eachsuch y let U, =[], .., UX be abasicopen set withy uz € U,
and U, ~ K =. By the compactness of []_ . X., there are yo, ¥1, Y2, - « « » Va1 Sch
that {[1,.,UY:i<n} covers [I,.rX. Define UL =X, for acF and Uf =
Mi<a UL otherwise. O

Now we continue proving the lemma.

We seek an a < w; such *hat for every F ¢[a]™, there is a Ur with the support
of Ur contained in a and disjciat irom F. Such an a can be gotten by a Lowenheim~
Skolem argument. Let « be a large envugh regular cardinal such that H,, the sets
hereditarily of cardinality less than «, contains <w;—{J,<., Xo. Let (34, &) be a
countable elementary substructure of (if,,e) with x, K, and <wi— Da.:..., X,
clements of M.

Although M is not transitive it can be seen that for any X e M if ME“X is
countable”, then X is contained in M (w is contained in M and if Mk
“fiw =" X then X ={f(n): n <w}g M).

Let o =M nw,. Working in M, for each Fe[a]™ find UreM wiih x e Up,
Ur n K =0, and F disjoini from the support of I/, Let F, for » <« be an increasing
sequence of ﬁnite subsets of @ such that & = _J,<. F. New for every p <w; let
Vs ={aer, Uk, For 8 <« this is a finite intersection and for B=a, Va =X since
thhe support of U, is contained in M. Let V =[], Vj, then clearly x ¢ ¥,

Claim. a{V)no(K)=.

Proof Suppose yo~ v, you V. and y, € K. Choose r <- @ such that:

[

B<o yig,#vidcF..
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:Then by deﬁmmn of V, yo« Uf,, and by the definition of Up,,, ¥1€ Uk, contradicting
ythe fact that Us.nK=0. O

~ Since x and K were arbitrary we have that o is a closed map; thus proving
Lemma4. O

Lemma §. Foreachx €[], <., Xa[*] isLt‘ﬁdelof (as a subspace of <w1—3 ..., X.).

Proof. Let ¥ be an open cover by basic open boxes of [x]. As before let (M, ¢)
be a countable clementary substructure of (H,, £) such that x and % are elements
of M and let a =M Nnw,. 1 claim that % AM covers [x]. Given any y ~x, let
z=ylauxl (v —a). Since zeM there exists V € % nM such that z € V. Since
the support of V is contained in «, we have thaty ¢ V. [

Lemma 4, Lemmsa 5 and the paraconipactness of <w{-V,<,, Xo imply that
<wy—Oa<w, X. is paracompact (see Kunen {2, Lemma 1.4]).

Remarks. Theorem 2 cannot be extended to <wi~Ja<a, Xa, since if X, is the
two element space. this product is 22 with the G;-topology, which is not normal
(see van Douwen [1]).

Kunen has noted that the existence of an w;-scale in @® implies that <w;—
Va<w, Xa is paracompact where each X, is a compact metric srace (and therefere

01~y <w, X, is paracompact). However, I do not know whether MA is enough
to imply <wi—[Ja<w, X is normal wuere the X, are cormpact metric spaces.

Of course, Leminas 4 ard 5 can be proven without using the L.owenheim-Skolem
Theorem. In Lemma 4 all that is needed is an @ <w, such that for every Fe[a]™"
the support of Ur is contained in a. For Lemma 5 find &« <, and % < U countable
such that for every V € & the support of V is contained in a and for every y ~x
if for every B =a y(B) = x(B), then ihere exists V € F such thatye V.
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