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Borel hierarchies

These are lecture notes from a course I gave in the spring semester of
2014ﬂ The following results are new:

° It is consistent that the Borel subsets of the plane are not con-
tained in any bounded level of the o-algebra generated by the abstract
rectangles.

e 5.12] It is consistent that for some k every family of size x of sets of
reals is included in a countably generated o-algebra but not necessarily
at a bounded level.

° If 2<¢ = ¢ and there is a Borel universal map, then there is a map
H : 2% x 2¥ — 2% such that for every kK < ¢ and G : kK X K — K there
are x, € 2¥ for a < k such that for all o, 5,7y < k  G(o,B) = 7 iff
H(zq,x5) = .

° CH implies that for any ag with 3 < oy < w; there are Xy, X; C 2¢
with ord(Xy) = ap = ord(X;) and ord(Xo U X;) = ap + 1.

Also the proof of Theorem is new. I have omitted some of the results
proved in lecture but only when the proof I gave is identical to that found in
the literature.
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1 Classical Results

This section contains the Theorem of Lebesgue which uses universal sets and
a diagonal argument to show that the length of the Borel hierarchy is as long
as possible, w;. We also give some results of Bing, Beldsoe, and Mauldin and
of Rectaw which I think of as generalizations of Lebesgue’s Theorem.

First we review some standard terminology and results. The Baire space
isw’ ={r|2:w—=w}wherew = {0,1,2,...}. Fors c v =, ,w" a
finite sequence define a basic clopen set:

[s] ={r ew” : sCux}

The Baire space is homeomorphic to the irrationals and is a zero dimensional
Polish space, i.e., completely metrizable separable with a clopen basis. One
complete metric is d(x,y) = % where n is the least with x [ n #£ y | n.

The Cantor space 2 C w* is homeomorphic to the middle thirds set

{Z 22(n) cwe2¥}

3

The Borel hierarchy is described as follows:
open =X! =G
closed =119 = F

IT) = G5 = countable intersections of open sets
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39 = F, = countable unions of closed sets
39 = G5, = countable unions of G sets
2o ={UncoAn : A e, }

I ={ Mpew An © A€ X2, }

Gsoy Goosy ooy Fosy Fosg - ..

The Borel sets are the smallest o-algebra containing the open sets. In a
metric space F' C G (IIY C II9), ie., every closed set is the countable
intersection of open sets.E| It follows that in a metric space for 1 < o < f3
that
0 0 0 0 _ def AO
S ULl C© Epnlly = “YA5

Example 1.1 (Willard 1971 [25]) There are nice spaces in which closed sets
are Gss but not Gs.

proof:

Suppose (X, 7) is a space for which closed sets are G5 and Gs, # Gs.
Fix A € G5, \Gs. Let 14 be the smallest topology containing 7 and the
complement of A, ~ A =%/ X\ A. Then the closed sets of 74 are a subset of
G(;J(TA) but not of G(;(TA).

U € 74 iff there are V,W € 7 with U = (VN ~ A)UW. A is closed in 74
but is not the countable intersection of 74 open sets, else

A=(Van~ A UW,

n<w

But then A =
O

W,, but A is not Gj.

n<w

The equation

)

shows by induction that
e X0 is closed under finite intersections and

e II? is closed under finite unions.

2If C' is closed, then C' = (), U, where U, = {z : 3y € C d(z,y) < 1}.
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Another easy proposition is that for f : X — Y a continuous map:
o If AcX(Y), then f71(A) € TV (X).
o If AcII2(Y), then f~(A) € I’(X).

Note that 2 is naturally homeomorphic to 2¢ x 2* via the map x — (y, 2)
where y(n) = z(2n) and z(n) = z(2n + 1). We use = = (y, z) to denote the
pairing map. Similarly (2¥)* is homeomorphic to 2¥ via = (z, : n < w)
where z,(m) = z({n,m)) and (n,m) = 2"(2m+1) — 1 is a bijection between
w X w and w.

Theorem 1.2 (Lebesque 1905 see [16] Thm 2.5) For every countable a > 0
Ta(27) # I (2%).
This follows from the existence of universal sets and a diagonal argument.

Universal Sets Lemma. For every countable o > 0 there exists U C 2% x 2%
which is X0 and universal for X -sets, i.e., for every V. C 2% which is X2
there exists x € 2° such that V = U, =%/ {y : (x,y) € U}.
proof:

Note that U € X0 implies U, € X2 for all # € 2¥. To see this let
f 29 — 2% x 2¥ be defined by f(y) = (z,y), then U, = f~Y(U).

Case a = 1.
Let {C), : n < w} list all clopen subsets of 2¥. Define

(x,y) € U iff In (z(n) =1 and y € C,,).

Note that U =, _,({z : z(n) = 1} x C,).

n<w(

Case o > 1.
Let {a, : n < w} list with infinitely many repetitions the nonzero ele-
ments of a. Let U*" be a universal ggn set. Define U by

(z,y) € U iff 3n (2, y) ¢ U™
Note that ~ U is a universal ljgn set. For each fixed n the set
{(z.y) : (zn,y) €U™}
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is ggn because it is the preimage of U%* under a continuous map, namely

(z,y) > (z,,y). Hence it is easy to verify that U is a universal X2 set.
a

The Diagonal Argument. Suppose U C 2 X 2* is a universal X9 set. Let
D={ze2¥: (z,2) ¢ U}

Then D is II% because it is the continuous preimage of ~ U under the map
z +— (z,z). However D # U, for any x € 2 so D is not X0.

This proves Theorem [I.2]
O

Define ord(X) to the least ordinal such that X2 (X) = Borel(X). Hence
ord(2¥) = wy.

Corollary 1.3 If X is any topological space which contains a homeomorphic
copy of 2¢, then ord(X) = wy. More generally, if Y C X is subspace, then
ord(Y) < ord(X).

proof:
IfY C X, then
S(Y) = {BNY : Be X))
and
Borel(Y) ={BNY : B € Borel(X)}.
O

Suppose H C P(Y) define 3, (#H) as follows:
Yo(H) ={~A : AcH} and for a >0

SaH)={{J ~4: 4, € | Zs(H)}
n<w B<a
We let Borel(H) be the o-algebra generated by H and let ord(H) be the least
a with ¥, (H) = Borel(H).

Theorem 1.4 (Bing, Bledsoe, Mauldin [2] also [16] Thm 3.2 [15] Thm 18)
Suppose H C P(2¥) is a countable family such that Borel(2¥) C Borel(H).
Then ord(H) = wy, i.e., the o-algebra generated by H has wi many levels.
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To prove this theorem we will need the following two lemmas. Given a
countable H C P(2¥) let

F={CxA:CC2 isclopenand A€ H} C P(2¥ x 2¥).

Lemma 1.5 (Universal sets) For each o with 1 < oo < wy there exists a set
U € 3, (F) which is universal for ¥,(H) sets, i.e., for every A € E,(H),
there ezists x € 2% such that A = {y : (z,y) € U}.

proof:
For a =1: Let H={A4, :n € w} let

U= |J{z:z(n) =1} x (2\ 4,).

new

For a« > 1: Let © — (x, : n € w) be a nice recursive coding taking
2 — (2¥)¥. Let B, for n € w be cofinal in «, and U,, € ¥z, (F) be universal
for ¥, (H) sets. Define U, by (z,y) € U, iff (z,,y) € U,. It is easy to check
that U] is also ¥g, (F) and universal for ¥z (). But now taking

U= Je\U))

new

gives us a set in X, (F) which is universal for ¥, (#) sets.
O

Lemma 1.6 (Diagonalization) Suppose that every clopen set is in Borel(H).
Then for every B € Borel(F ) the set {z : (z,z) € B} is in Borel(H).

proof:
For B =C x A where A € H and C' C 2% is clopen, note that

{z:(z,z) e B} =CnNA.

Since by assumption C' €Borel(H), we have the lemma for elements of F.
To do Borel(F) is an easy induction.
O

Now we give a proof of Theorem [1.4] Suppose Borel(H) = £,(H). By
Lemma [L.5| there exist U in Borel(F) which is universal for X,(#) and hence
Borel(H). By Lemma (1.6 the set

D={x:(z,z) ¢ U}
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is in Borel(H). But this means that for some z that D = {y : (z,y) € U}.
But then x € D iff = ¢ D.
O

Theorem 1.7 (Rectaw 1993 see [16] Thm 3.5 [15] Thm 17) If X is a second
countable space and X can be mapped continuously onto any space containing
2%, then ord(X) = w;.

proof:

By going to a subspace of X we may that there is an f : X — 2“ which
is one-to-one, onto, and continuous. Let C be a countable open basis for X
containing the pre-images under f of the clopen subsets of 2. Let

H=1{f(C): Cec).

Since it is clear that H contains all clopen sets, by Theorem , the ord(H) =
wi. But the map f takes the Borel hierarchy of X directly over to the
hierarchy on Borel(H), so ord(X) = w;.

O

Remark 1.8 Recltaw’s result is also true, ord(X) = wy, if we only assume
that there is a Borel map onto map f: X — 2“.

To see this let C be a countable open basis for X and let B be the pre-
images under f of the clopen subsets of 2. Let G =CUB and H = {f(C) :
C' € G}. Then ord(H) = w; by Theorem [1.4 And so ord(G) = w;. This
means that ord(X) = w;, since Borel(G) = Borel(X) and X%(X) C %,(G)
implies ord(G) < ord(X). To see this note that if a = ord(X), then

Borel(G) = Borel(X) = (X)) C £,(G) C Borel(G).

An extension of Reclaw’s result to Souslin (operation A) sets appears in
Miller [14].

Remark 1.9 [t is relatively consistent to have X, Y C2¥ and f : X — Y
continuous, one-to-one, and onto such that ord(X) = 2 and ord(Y") = 3.

proof:
To see this note that it is relatively consistent to have a ()-set H of size
wy which is concentrated on a countable set E (Fleissner and Miller [4]).
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Let Y = HUFE ={y, : @« < wy} and H = {z, : @ < w1} be one-to-one
enumerations. Put X = {(z,,9.) : @« < w;} and let f be projection onto the
second coordinate, i.e., f({x,y)) =y. X is a @-set so has order 2 and it easy
to check that Y has order 3.
O

In the iterated Sack real model the continuum is wy and for every X C 2¢
of size wy there is a continuous onto map f : X — 2% (see Miller [12]) and
hence ord(X) = w;. So in the Sacks real model every set of reals of size
continuum has order wj.

Corollary 1.10 If X is separable, metric, but not zero-dimensional, then
ord(X) = wy.

proof:

Suppose ord(X) < w;. Let d be any metric on X and x € X arbitrary.
There must be arbitrarily small ¢ > 0 such that there is no y € X with
d(xz,y) = e. Otherwise the map y — d(z,y) has a nontrivial interval in its
image.

O

Any zero-dimensional separable metric space is homeomorphic to a sub-

space of 2¥. See Kechris [6] page 38.

2 The w;-Borel hierarchy

Define the levels of the wi-Borel hierarchy of subsets of 2¢ as follows:
1. ¥§ = IIj = clopen subsets of 2¢
2. 3% = A{Upeu, A5 = (Ag: f <wi) € (TL,)'}
3. I ={2“\A : Ae X’}
4. 11, = Uﬂ<a Iy 3, =Usen 25
The length of this hierarchy is the smallest o > 1 such that
I, =37

Theorem 2.1 (Miller [18]) (MA,, ) IT}, # 3, for every a < ws.
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We prove this using the following two lemmas. A well-known consequence
of MA,,, is that every subset () C 2% of size w; is a Q-set, i.e., for every subset
X C @ there is a Gs set G C 2¥ with GNQ = X (see Fleissner and Miller

HD).

Lemma 2.2 Suppose there exists a (Q)-set of size wy. Then there exists an
onto map F : 2° — 2 such for every subbasic clopen set C' C 2! the set
F~YC) is either G5 or F,.

proof:

Fix Q@ = {uq, €2° : a <w} aQ-set. Let G C 2% x 2¥ be a universal
Gy set, i.e., G is Gs and for every Gs set H C 2“ there exists x € 2* with
G, = H. Define F as follows, given x € 2% let

F(z)(a) =1iff uy € G,
If C' is a subbasic clopen set, then for some v and it =0 or 7 = 1

Cos = {p €2 : pla) =i},

Then for i =1
FHCu) ={z : u, € G,}

which is a G set. Since C,, ¢ is the complement of C,, ; we have that F~(C, )
is an F,-set

Finally, we note that since () is a Q-set, i.e., every subset is a relative Gg,
it follows that F' is onto.
O

The next Lemma is true without any additional assumptions beyond ZFC.
Its proof is a generalization of Lebesgue’s 1905 proof (see Kechris [6] p.168)
for the standard Borel hierarchy.

Lemma 2.3 For any o with 0 < o < wy there exists a X7, set U C 2¥t x 2¢
which s uniwversal for 37 subsets of 2“, i.e., for any Q) C 2¥ which is X},
there exists p € 2%t with U, = Q. Similarly, there is a universal 1T, set.

proof:
The proof is by induction on «. Note that the complement of a universal
3% set is a universal I -set.



For o« = 1, ¥7 is just the open sets. There is a universal open set
V C2¥ x 2% Put

U=A{(p,z) €2 x2* : (plw,x)eV}

For o such that 2 < o < wy proceed as follows. Let (6 < a: 8 < wy)
have the property that for every v < a there are w; many dg > ~. It follows
that for every 3, set @ C 2 there is (Qp € 11§, : f < w;) with

Q=J s
B<wi

By induction, there are Ug C 2¢' x 2 universal H;ﬂ sets. Let a : wy xw; — wq
be a bijection. For each [ define

g1 2% X 2 = 20 x 2% (p,x) — (¢, 7)
where ¢(a) = p(a(B, «)). Put
U= " (Us)
B<wy

then U will be a universal X7 set.
O
Now we prove Theorem [2.1} Suppose for contradiction, that every w;-
Borel set is 3¥ for some fixed o < wq. Let U C 2“* x 2% be a universal X7,
and define
V={(z,y) €2*x2¥ : (F(z),y) € U}.

Then V' is an wy-Borel set (although not necessarily at the 3¥) because the
preimage of any clopen box C' x D is wi-Borel by Lemma [2.2] Define

D={x:(z,z) ¢ V}.

But then D is w;-Borel but not ¥%. We see this by the usual diagonal
argument that if D = U,, then since F' is onto there would be x € 2% such
that F'(z) = p but then

reDiff (F(x),z)¢ Uitz ¢ U, iff x ¢ D.
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Remark 2.4 In the Cohen real model this hierarchy has order either wy + 1
or wi + 2, I am not sure which.

Remark 2.5 Note that in the proof V. C 2% x 2¥ is a X3, -set, since the
preimage of a clopen set under F is AS. Hence for levels a > w the set V is
a X7, set which is universal for 37 sets.

Remark 2.6 Our result easily generalizes to show that MA implies that for
any k a cardinal with w < k < [2¥| the k-Borel hierarchy has length k.
This implies that assuming MA for any k1 < ko there are ko-Borel sets
which are not ky-Borell| It is also true for the Cohen real model that for
w < Ky < kg < |2 that there are ko-Borel sets which are not k1-Borel.

Proposition 2.7 ([I8]) If P(2¥) = wy-Borel, then P(2¥) = X for some
o < wsy.

proof:
Suppose not and let P, for a < wy be pairwise disjoint homeomorphic
copies of 2. For each « let A, C P, be such that A, ¢ ¥*. Then

A:def U A,
a<w?2

is not wy-Borel.
O

Steprans [23] showed that it is relatively consistent with ZFC that
IT; = 3% = P(2¥) and I} # X3
and the continuum is 8,,,. Carlson [3] showed:

Theorem 2.8 (Carlson) If every subset of 2* is wi-Borel, then the cofinality
of the continuum must be wy.

proof:

Let B, C 2 for @ < ¢ list all (ordinary) Borel sets. Let X, € [2¥]¥
for @ < ¢ be a family of pairwise disjoint infinite countable sets. For each
a choose Z, C X, such that Bz N X, # Z, for every f < a < ¢. Put

3Since ko-Borel sets at level /@f or higher cannot be k1-Borel.
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Z = U,<c Zo. We claim that if cof(¢) > w; then Z is not w;-Borel. This will
follow easily from the following

Claim. For any C' C 2* an w;-Borel set, there are (ordinary) Borel sets C,
for a@ < wy such that for any x € 2¢ there is a closed unbounded ) C w; such
that for every a € Q (z € C iff z € C,).

proof:

We code wq-Borel sets with well-founded trees. For T' C w;® a well-
founded tree let T be the rank zero or terminal nodes of T. To simplify
matters assume that for every s € T\T* all immediate extensions of s, i.e.,
s a, are in T. Let C be the clopen subsets of 2*. Given ¢ : T* — C define
H(s,(T,c)) C 2 for s € T by the rank of s.

o H(s,(T,c)) =c(s) for s € T* and otherwise
e H(s, (T, c)) = ﬂa<w1 ~ H(s a,(T,c))

Now let C'= H((), (T,c)). For any a < wy let T, = a~“NT, ¢, = ¢ | TS,
and C, = H((),(T,,cs)). Since « is countable C, is an ordinary Borel set.
Consider any z € 2¥. Let x be a large enough regular cardinal. Construct a
continuous w; chain M, =X H, of countable elementary substructures satis-

fying:
1. (T,c) € My and = € M,,
2. M, € Moy

3. M=, M, for A\ < w; limit.

a<<

Then automatically @@ = {MgNw; : f < wy} will be a closed unbounded set.
Now if & = Mp Nw;. Since (T, ¢) and z are both in My it is easy to see by
induction on rank that for any s € T, that

x € H(s,(Ty,co)) iff x € H(s, (T,c)).

This proves the Claim.

To prove the Theorem suppose for contradiction that Z = C where C' is
wy-Borel and let (C,, : @ < wy) be given by the Claim. If the cofinality of ¢ is
greater w; then for some 5 < ¢ we have that {C, : a <w;} C{B, : a < p}.
But Zs # XN C, for every a < w; which is a contradiction.

O
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3 The order of a separable metric space

Theorem 3.1 (Miller [9] Thm 22) It is relatively consistent with ZFC' that
ord(X) = wy for all uncountable X C 2%,

It also consistent with any cardinal arithmetic that for every o with 2 <
a < wj there is an uncountable X C 2 with ord(X) = . One can also have
model where these orders are precisely the interval [ag + 1, w;].

The model for this theorem is the wy finite support iteration of the direct
sum P of II,-forcings for a < wy.

Definition 3.2 Nice « tree. For2 < a < w; we define T C w<* to be a nice
a-tree iff

1. 1t is well-founded tree of rank «, i.e., rankr(()) = «
2. for any s € T with rankr(s) > 0 we have that s"n € T for alln < w
3. if rankr(s) = B+ 1, then rankr(s"n) = for alln

4. if rankr(s) = X a limit ordinal, then for any 5 < X\ there are at most
finitely many n with rankr(s™n) < f.

Definition 3.3 Fiz a nice a-tree T, let T™ be the terminal nodes of T, i.e.,
those of rank zero, and let T = T\T*. 1,-forcing is the poset P, defined as
follows: p € P, iff there are finite pg C T* x 2<% and p; C T" x 2¥ such that
p = poUp1 and py is the graph of a partial function and they are consistent.
Consistency means that

o if (s,x),(s"n,y) € p1 then x #y and
o if (s,z) € p1 and (s"n,t) € po, then z & [t].

We think of our conditions as attaching elements of 2“ to nodes of the
tree T subject to the condition that no x is attached to immediately adjacent
nodes, i.e., s and s"n are immediately adjacent. We think of (s"n,t) € pg
(or equivalently po(s"n) = ¢ since it is a partial function) as attaching all
elements of the clopen set [t] = {x € 2¥ : t C x} to the terminal node
snel™.

Lemma 3.4 For any countable ordinal o, Il,,-forcing P,, has the count-
able chain condition.
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proof:

Suppose A is uncountable antichain. Since there are only countably many
different py without loss we may assume that there exists r such that py = r
for all p € A. Consequently for p,q € A the only thing that can keep p U ¢
from being a condition is that there must be an x € 2¥ and an s,s"n € T*
such that

(s,x),(s"n,x) € pUq.

But now for each p € A let H, : X — [T]<“ be the finite partial function
defined by

Hy(z)={seT":(s,z) €}
where X = {z:3s € T" (s,x) € p1}. Then {H, : p € A} is an uncountable
antichain in the order of finite partial functions from 2 to [T]<“. But this
is impossible.
O

It is easy to see that it has property K, in fact, it is o-centered, so ccc
productive. It follows that the direct sum

P =def Z{[P’a+1 c 2<a<w}

also has the countable chain condition.

To obtain our model for Theorem [B.1] start with a countable transitive
model of ZFC, M, and do a finite support iteration of IP of length wy, denoted
P~2. We let P* be the iteration of P up to length «.

Fix T a nice a-tree for some a. Given G P,-generic over M, for each
s € T define US C 2¢. For s € T* define UY = [t] if there exists p € G such
that po(s) = t. Note that by genericity such a ¢ will always exist, i.e., for any
q there exists p < ¢ such that s is in the domain of p. For s € T define

vé =) ~Ug,

n<w

Note that U is a TI-set where a = rankp(s).

Lemma 3.5 For anyx € 2 N M and s € Tt and G P,-generic over M

reUC iffIpe G (s,2) €p
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proof:
To simplify notation write (s,z) € G instead of {(s,z)} € G or there
exists p € G with (s, x) € p.
Fix z and s. It is easy to see that the following sets are dense:
(if rankr(s) =1) D={p e P, : (s,z) €por In,t po(s"n) =t and x € [t]}
(if rankp(s) > 1) E={pe P, : (s,z) €por In(s'n,x) € p}
By definition z € UY iff z ¢ UE, for all n.
If ranky(s) > 1, then by induction:
x ¢ UE, for all niff (s"n,z) ¢ G for all n
Since E is dense:
(s"n,z) ¢ G for all n iff (s,z) € G.
If ranky(s) = 1, then
x ¢ UE, for all n iff for all p € G if po(s™n) =t then x ¢ [t].
Since D is dense:
for all p € G if po(s"n) =t then = ¢ [t] iff (s,2) € G.
O

Definition 3.6 Canonical names. For any poset P the canonical names

CN(P) for an element of 2¥ are defined as follows. T € CN(P) iff there
exists (A2 AL n <w) such that A2 U AL C P is a mazimal antichain and

r={(p,(n,7)) : n<w,i<2, andp € A }.

Definition 3.7 Nice conditions. Let T, for 2 < a < w;y be the nice a-trees
used to define I1,-forcing P,. P For p € P* we say the p is nice iff p(0) € P
and for all v with 0 < v < a p(7y) is a name for a finite set po U p; where

po: |J Ha+1}xTh,) —»2

2<a<wy

1s a finite partial map and

p < U {a+1} x (T, x CN(P,))

2<a<wy

is finite. For every T in the range of p there is a t, € 2<% such that p |
v It C 7 and for all o, s,n,7,0,7

1. if (o, (s, 7)), (a0, (sn,0)) € py thent, Lt,
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2. if (a, (s,7)) € p1 and po(c, sn) =1 € 29, then t, L r.

The nice conditions are dense so from now on we will assume all conditions
are nice.

Definition 3.8 Rank. Given H C 2¥, nice p € P*, and 7 € CN(P*) define
rank(p, H) and rank(r, H,p) by induction on c.

1. For P, (I1,-forcing), if p = poUps € P, then

rank(p, H) = max{rankr, (s) : Jx € 2°\H (s,x) € p1}

2. ForpeP=>{Pot1 : 2<a<uw}

rank(p, H) = max{rank(p., H) : o < w;}

3. For ~ a limit ordinal and p € PY

rank(p, H) = max{rank(p | 8, H) : B <~}

4. Form € CN(PY) and p € P7, rank(r, H,p) is the least 5 such that for
every n < w

Q=" {qe P : qLporrank(q, H) < B} decides “r(n) =0".
By which we mean
{reP” : d3ge@Q r<qand(qlFr(n)=0o0rqlr(n)=1)}
is dense in P7.
5. For p e P'x P Ny(7) ={7 : Ja<w; Is €2 (a, (s,7) € p(7)}

rank(p, H) = max{rank(p | v, H), rank(t, H,p [ v) : T € Ny(7)}.

A set of conditions @) decides 0 iff for every generic G thereisa g € QNG
which forces 6 or forces —6.

Lemma 3.9 (ccc) For any countable P C P7 and countable N C CN(P7)
there is a countable H C 2¥ such that rank(p, H) = 0 for every p € P and
rank(T, H,1) = 0 for every 7 € Q.
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proof:

Let P7, P,Q € N < H, where N is a countable elementary substructure
of the hereditarily of cardinality less than x sets for some sufficiently large
regular k. Take H = N'N2%. Then for any p € N NP7 and 7 € N’ N CN(P?)
we have that rank(p, H) = 0 and rank(7, H,1) = 0.

O

Definition 3.10 |- | abbreviations for rank. For the next two lemmas (meet
and mnk we will fix a countable H C 2 and use the abbreviations:

p| = rank(p, H) —and |7|(p) = rank(r, H,p).

Lemma 3.11 (Meet lemma) If G is P*-generic over M and (¢; € G : i < N)
is a finite set with |q;| < B, then there exists ¢ € G with |q| <  and q < ¢;
foralli < N.

proof:

Case v = 0 hence P’ = P. Let ¢ = |J,_ y ¢;- By definition of generic filter
dp € G with p < ¢; each i« < N. Hence p < ¢ and so ¢ € G.

Case « a limit ordinal. There exists oy < o with supp(¢;) C g fori < N.
By induction hypothesis there is g [ ap € G,, With ¢ [ ag < ¢; | o for each
i < N and |q [ ag| < B. Let ¢ | [, @) be identically 1.

Case a + 1 successor. Suppose ¢; € Go11 = G, * G* which is P,x ]fD—
generic. Let I' C G, be finite so that |r| < 8 for all » € I and for any
T1, T2, 5, if (s,71),(sn,72) € ;- y ¢:(a) then there exists r € I' such that
rlkm # 7 and similarly, if (s,7) € U,y ¢:() and p(sn) = t for some i,
then there exists r» € I' such that r -t € 7. By inductive hypothesis there is
glaeG,with |g]a|<fandg|a<gqg [afori<Nandgq|a<rfor
each r € I'. Then (¢ | o, U,y ¢i()) satisfies the Lemma.

O

Lemma 3.12 (Rank Lemma for P*) For every B > 1 and p € P* there
exists p € P* compatible with p, |p| < 8, and for every q € P* with |q| < 5,
if ¢, p compatible, then q,p compatible.

proof:
The nontrivial case for this is P*T! = P x P.

Assume py € P*, |po| < B, po H—“CO’Q 2% closed nonempty” and for every
G P*-generic over M with py € G for every s € 2<% if M[G] | [s)NC =0
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then there is ¢ € G with |¢| < [ such that ¢ IF[s]N C= 0. We prove the
following two Claims.

Claim 1. For all G P*generic over M with py € G for every s € 2<% if

M[G] E [s]NC # () then there is p € G with |p| < 8 such that p IF[s]N 5‘75 0.
proof:

Let p; € G with p; < py and p; IF[s]N 5’7& (). Define
Dy, ={peP* : Ipy p<ps<piandp<p}

where p, is the condition with |ps| < S given by the induction hypothesis of
the Rank Lemma. D,, is dense beneath p; and so it meets G. Hence there
exists po with pso, po both in G. Apply the Meet Lemma to get p € G with
Ip| < B and p < py and p < py. To see that p works let Gy be P generic with
p € Gy. Suppose for contradiction that in M[Gy] that [s] N C = (). Then
since pg € Gy we have by assumption that for some ¢ € G with |¢| < [ that
q IF[s]n (O)’: (). Since py € Gy it is compatible with ¢. But by the definition of
Py as witness to Meet Lemma for p,, it follows that ¢ and py are compatible.

But they are not compatible since ps < p; and p; IF[s]N 57& 0.
O

Claim 2. Let po -4z is the lexicographically least element of é’ Then | T
| < B
proof:

Let G be P*-generic over M with py € G. Fix any N < w and let
x | N =s. Hence [s]| N C # (). Furthermore, if n; for i < k lists all n < N
with s(n) = 1 then [t;] N C = @ where t;(n;) =0 and ¢; | n; = s | n;. By
Claim 1, there is p; € G with |p;| < 8 such that p; IF[s]N 5’7& () and by
assumption ¢; € G for i < k with |¢;| < 8 such that ¢; IF[t;]N 5’: (. By the
Meet Lemma there is p € G with |p| < § which extends p; and ¢; for ¢ < k.

Then p I+ z€ [s]. Since N and G were arbitrary | | < 5.
a

Given 7 a P*-name for an element of 2¥, G P%-generic over M, and p € P
(not necessarily in G) let C(7,p) C 2 be the following closed set in M[G]:

C(r.p) = {K+ : 3¢ € G lgl < B, |#](q) < B, and pUq Irr € K3}
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By pUq IF8 we mean that they are compatible and r 16 for every r < p, q.
Here K C 2% x 2% is the standard universal closed set and K, is the cross
section.

Given any p € P let pg = p be given by the inductive hypothesis for the

Rank Lemma and 7 a name for an element of 2¢. Let CO’ be a name for the
closed set C'(7,p). Then

Claim 3. py, é’ satisfy the assumption of Claim 1 and 2, namely

(a) po IF (i*g 2¢ is closed and nonempty

(b) for any G P“-generic over M with py € G for any s € 2<¥ then if
[s]NC = () in M[G], then there is ¢ € G with |g| < [ such that

q IF[s]n é’: 0.

proof:

We verify (b) first. Suppose [s] N C' =) in M[G]. By compactness there
are finitely many ¢;, 7; for i < k with ¢; € G, |¢:| < 5, |7|(¢:) < B, each ¢
compatible with p, pU¢; IFT € K., and

ﬂKnﬂ[s]:@

i<k

We claim that for some N < w for all (x; € [r¢ | N]:i < k) that

7

meiﬂ[s]:@

i<k

Otherwise for each N choose () € [77 | N]: i < k) and yn € [s]();-, Konn
[s]. But by compactness a subsequence of the yV converges to some y € [s]
and we get (y,7¢) € K for each i < k.

Let s; = 7¢. By the Meet Lemma and the definition of |7;|(¢;) < 3 there
is a ¢ € G with |q| < § such that g IFr; | N = s; for all i < k. It follows that
q IF[s]n C=0.

To prove (a) that C' is nonempty, suppose for contradiction that for some
G P*-generic over M with pg € G we have that C' is empty. Then apply part
(b) for s = () the empty sequence. Then there is ¢ € G with |¢| < § and
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g C= 0. But py = p so since p, q are compatible, p, ¢ are compatible. But
this is impossible because p -7 €' so it cannot be empty.
O

Before getting to the proof of the Rank Lemma for P**! we note some
properties of the universal TI{ set K C 2¥ x 2¥. First of all it is easier to
think in terms of its complement U =~ K which is universal for open sets.
Let {s,, : n <w} = 2<% be a recursive listing and put

ye U, iff In (x(n) =1and s, Cy)

For each n < w there is a recursive level preserving map f : (2¥)* — 2¢
such that for any sequence (z; € 2 : i < n) if f(x; € 2¥ : i < n) = y then
Uy = Ni<nUy, and hence K, = U;<, K,,. Simply define f(Z) =y by

yim)=1iff Vi<n3Il <m (z;(I) =1and s; C s,)

Note also that (2¢)" is natural homeomorphic to 2 via a recursive join
operator and we use 7 to denote this element of 2v.

So given p € Pt = Pox fD and > 1 welet p=(p [ a,p(a)). We may
assume that p(a) = pp U p; where po : T* — 2= is a finite partial map and
p1 is a finite subset of T° x A/ where A are P® names for elements of 2* and
T* are the terminal nodes of 7" and 7° are the nonterminal nonroot nodes.
In addition we may assume for each (s,7) € p; there is a t € 2<“ such that
p lFt C 7 and the ¢ witness that p; is a condition, namely

o if (s,7),(sn, ) € p; then t; L o
e if (s,7) € py and po(sn) =r then t L r

We write p; = pi(T) where 7 is an n-tuple list all 7 mentioned in p;. To get
p for the Rank Lemma for P*! let

—

ﬁ —def (p f047 Po Upl(ﬁem) )

where 7, is a P“ name for the lexicographically least element of 5‘ (pl o).
By the claims [p| < 8. Note that C' C [],_,[t:] and so Tie, € [],,.[ti]
and so p and p are compatible. Finally we need to show that if |¢| <

and p, ¢ incompatible, then p, ¢ incompatible. Suppose p, ¢ incompatible. If
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p | a, q | a incompatible we are done by inductive choice of p/[\oc. So we
may assume that they are compatible but

plaUqlalkpla) L q(a)

Let g() = goUgqy where the names occurring in ¢; have rank < [ with respect
to ¢ [ @. Now we detail how the incompatibility p(a) L ¢(a) translates into
closed sets. We may construct X a finite set of names for elements of 2¢ such
that

e |p|(q | a) < pforeach p e X
e if (s,7;) € p1 and go(sn) = r, then for some p € ¥
={7 : mell}
e if (s,0) € ¢1 and po(sn) = r, then some p € ¥ is name such that for

any generic G
Koo — 0 if 0% ¢ [r]
7" 71 (2¥)"  otherwise

o if ((s,0) € ¢ and (sn,7;) € p1) or ((sn,0) € ¢1 and (s,7;) € p1), then
some p € X is name such that for any generic G
Ko ={7: ;= 0"}

We assume that all p in ¥ arise from the above requirements and let ¥ =
{pi : i < N}. Then we have that

(plaUqla)lFp(a) Lg(a) iff (plaUqla)lFfe |J K,

<N
Letting p = f(p) we get that |p|(¢ [ o) < 8 and
(plaUqla)lkfe e C(Fp| U ”
<N
It follows that p, ¢ are incompatible and the Rank-Lemma successor case is
proved.
O

Here is the main point of the Rank Lemma:
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Proposition 3.13 Suppose 7 € CN(P*?) with |7|(1) =0, p € P“?, and B(v)
a ljg-set coded in the ground model M such that p IF-B(7). If p is given by
the Rank Lemma (p compatible with p, |p| < B, and for every q € P“* with
lq| < B, if q,p compatible, then q,p compatible), then pI-B(T).

proof:

Case = 0. This is true by the definition of |7|(1) = 0.

Case 3 > 0. Let B(v) = A, ., Bn(v) where B,(v) Xj for some 3, < 3.
If for contradiction p does not force B(7), then there exists ¢ < p and n < w
such that ¢ IF=B,. By induction there exists ¢ compatible with ¢, |¢| < 3,
and ¢ IF—B,. Since q extends p it follows that ¢,p are compatible. Since
|G| < B < B we have that ¢ is compatible with p. This is a contradiction
since p IFB,, (7).
O

Proposition 3.14 Suppose G P“'-generic over M. Then for any Y € M
and o <wM if M EEY C 2% and |Y| = wy, then

M[G] EVa<wVWV eX) VNY AU NY.

Here UOC(’:?> is the generic IIY set added by the first coordinate’s I1,-forcing,
namely
Uh ={w €270 M = 3p € G (o, ({),2)) € p(0)}:

proof:
Let V be a universal 3?-set coded in M. Suppose

po Py eY (yeV;iffy e USY)

Using ccc Lemma [3.9| choose H C 2¢ countable so that |p| = rank(p H) =0
and |7| = rank(r, H,1) = 0. Takeany y € Y\ H. Let p;(0) = p(0)U(cv, (), v))
and py | [1,ws) = po | [1,ws), Note that py IFy € U§g> and hence p; IFy € V.
Now B(v) =%/ y € V, is a XY, predicate coded in M. Let B(v) = \/,_ Bn(v)
where B, (v) is a EI%” predicate with 3, < 8. Find p < p; and n < w such
that p IFB, (7). By Proposition there is a condition p compatible with
p such that p IFB,(7) and rank(p, H) < 3, < . By using the meet Lemma
3.11) we may assume p < po. Hence it follows p lFyy € Uffg). But by the

definition of rank since y ¢ H, there is some sufficiently large m < w such
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that 7(0) = p(0) U («a, ((m),y)) is consistent. Letting r [ [1,ws) = p [ [1,ws)
leads to a contradiction:
rIFB,(T)

rlE(\/ Bu(7)) iff y € USY,

n<w

G
riky ¢ Uaf<)>

O

Claim. M[G] VY € [2¥]*t ord(Y) = w;.
This follows from two standard facts:
1. VZ € P(w)ME 3oy < wd Z € M[Gy,)

2. VG (P“2)M generic over M Voo < w)! IH (P2)MGe0l generic over
M|G,] such that M[G] = M[G,,][H].

This concludes the proof of Theorem [3.1]

4 The sigma-algebra of abstract rectangles

Theorem 4.1 (Rao 1968 [21)], Kunen [7]) Assume the continuum hypothesis
then every subset of the plane is in the o-algebra generated by the abstract
rectangles. In fact, at level two.

proof:
It is enough to see that P(w; X wy) =c{A X B : A, B Cw}, i.e. every
subset of wy X wy is in the o-algebra generated by the abstract rectangles.

Definition 4.2 e R={AxB: A BCuw}
e X(R)=1I(R) =R

,(R) ={w1 X wi\P : PeX,(R)}

ZQ(R> = {Un<w P, Py e U6<a Hﬁ(R)}
o{AXx B : A, BCw}=0R=U,0 Za(R)=Uscp, Ha(R)

23



e bool(R) = smallest family containing R and closed under finite union
and complementation

Note that bool(R) C ¥;(R) NII1(R). Also ¥,(R) for a > 0 is closed

under countable union and finite intersection.
Lemma 4.3 For f :2¥ — 2, the graph(f) e IIL({Ax B : A, B C 2¥}).

proof:
For any s € 2<% let D, = f~!([s]). Then the following are equivalent for
any x,y € 2%:

o flz)=y
o Vs(s C f(x) iff s Cy)
o Vs(z € A, iff y € [s]

b (x,y) € ﬂse2<w<Ds X [3]) U (N Dyx ~ [3])

|

Note that the Lemma is also true for any partial function f : D — 2¢ for
some D C 2“. Since if f D f is total, then

A

graph(f) = graph(f) N (D x 2¥) € II;(R).

Now we prove Theorem that P(w; X wy) = Xa(R). Suppose A is a
subset of w; X wy with the property that 8 < « for every (o, ) € A. Let
fn 1 w1 — wq be partial functions for n < w so that for any a < w,

{6+ () € Ay ={fula) : n<w}.

It follows that A =, _,, graph(f,) is X2(R). Now any subset of wy x wy can
be written as a union A U B where B has the property that a < 8 for any
(v, B) € B. By symmetry B € ¥5(R) and so (AU B) € ¥5(R).

O

Theorem 4.4 (Kunen [7] 1968) Assume Martin’s axiom, then every subset
of the plane s in the o-algebra generated by the abstract rectangles at level
two. In the Cohen real model or the random real model the well-ordering on
the continuum is not in the o-algebra generated by the abstract rectangles.
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Theorem 4.5 (Rothberger [22] 1952) Suppose that 2¥ = wq and 2“* = w,,
then the o-algebra generated by the abstract rectangles in the plane is not the
power set of the plane.

proof:

Let H, for a < X, list all countable subsets of P(wy). Let ocH, be
the o-algebra generated by H,. Note that |0 H,| < [2¥| = ws since H, is
countable. For each f < wy choose X, C w; with X, ¢ Ua@% ocH,. Let

X = Uy, 10} % X5 )
Claim. X ¢ o{Ax B : ACwyand B Cuw}.
Suppose for contradiction that
X eX,({A, x B, Cwy xwy @ n<w}).
It is easy to see that the cross sections satisfy:
VB <ws Xg€X,({Bn : n<w}).

But if Hy, = {B, : n < w} where oy < wg,, then Xg, ¢ 0H,,, which is a
contradiction.
O

Note Rothberger states this result in more generality, this is the simplest
case.

Theorem 4.6 (Bing, Bledsoe, Mauldin [2] 197}) If every subset of the plane
15 in the o-algebra generated by the abstract rectangles, then for some count-
able o every subset of the plane is in the o-algebra generated by the abstract
rectangles by level .

proof:
This is more general:

Claim. For any cardinal k if c{A x B : A, B C k} = P(k X k), then there
exists a < wy such that TI,({Ax B : A,B C k}) =P(k X K).

Suppose not. Take P, C k for a < w; pairwise disjoint and cardinality
k. For each o« < wy take A, C P, x P, such that

Ay ¢ TL({Ax B : A, BCr)).
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Let A = {J,,, Aa- Note that for any a < w; (Pa x F,) € II;. It follows
that if A € II,,,, then for any a < w; A, = AN (P, x P,) € Il,,, which is a
contradiction.

O

Theorem 4.7 (Miller [9][]) If every subset of a separable metric space X is
Borel in X, then for some countable o every subset of X is 3° in X.

For the proof, we will need the following two Lemmas.

Lemma 4.8 Suppose there exists X C 2¥, X = {x, : o < Kk}, and there
exists o < wy such that for every v < k every Y C{zp: 8 <~} is Y in X.
Then

Y {AXxB : A BCk}=P(kXkK).

proof:

Consider any A C k X & such that f < «a for any («a,5) € A. Let
X ={z, : a<r}andlet V C 2% x 2* be a universal X2-set. For each
a < K choose y, € 2¢ distinct such that

Vo <k (a,8) € Aiff (yo,25) € Viff x5 € V.

Define F': k x k = X x Y by F(a, 8) = (x4,ys). Note that I is a rectangle
preserving bijection such that F'(A) =V N (X x Y). Note that

VeX{C,x D, : n<w}
where C,,, D,, are clopen subsets of 2“. It follows that
AeX0({a:y, € Cu} x {B:25 € Dy}).

By a symmetrical argument we can handle any B C k X k where 8 > « for
any (o, 5) € B, and hence any set of the form AU B.
O

41 proved this on the plane trip back to Berkeley from the January 1977 AMS-ASL
meeting in St. Louis. It was so cold that year the AMS vowed never to have their January
meetings anywhere but warm places. It was late at night; the plane was pretty much
empty and was delayed due to excessive ice on the wings, so they opened up the bar cart
as we sat on the tarmac.
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Lemma 4.9 If X C 2% every subset of X is Borel in X, w < k = |X]|, and
0c{AXB : AxBCuw XKk} =P(w; X k), then ord(X) < w;.

proof:

Every rectangle A x B C X x X is Borel in X x X, so every subset
of X x X is Borel in X. If ord(X) = wy, then for every @ < w; choose
H, C X such that H, ¢ X%(X). Choose z, € X for a < w; distinct. Let
H = yco{2a} X Ho. If His X2 in X x X, then H, is X7 in X for all
« < wi. This is a contradiction.

a
Proof of Theorem [4.7t
Let X = {x, : a < k} and prove the Theorem by induction on .

Case. k = w;. We are done by Lemma [4.9 and Theorem [4.1] since

EQ{A x B : A,B Cuwp X wl} :P<u}1 X wl).

Case. cof(rk) = w. Let X =, X, pairwise disjoint and each |X,| < k.
By induction ord(X,) < w; for each n < w. Choose countable « so that
ord(X,) < a and each X,, is 2° in X. For any A C X we have that AN X,
is 30 in X andso XNA=U,.,ANX, is X in X.

Case. cof(k) > wy. Define X, = {23 : f < a}. Note that ord(X,) for a < x
is a nondecreasing function and so there is a 8 < w; such that ord(X,) < 8
all & < k. Similarly there is a countable v > [ such that every X, is ;3 in
X. To see this note that for a < 3, if X, is X9 in Xz and Xz is X9 in X, then
X, is gg in X. It follows that every Y C X with Y C X, for some o < & is
%9 and so by Lemma we have that X, {Ax B : A,BC k}=P(k X K).
Hence we are done by Lemma 4.9}

Case. cof(k) = w;. Let K, for a < wy be a cofinal in k increasing sequence.

Claim. There exists ap < wy such that X, is I, in X for all o < wy.
pf: Let Q@ = {(, B) : a <w; and f < Ko} C wy X k. Then its complement
~ @ ={(a,B) : ka < [} has countable cross sections, so there exists partial
functions f, : Kk — wy for n < w such that for any g < &

{a:(,0) e~ QF = {fulF) : n < w}
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equivalently

~ Q= | J graph(f,).

n<w

Similar to the proof of Theorem [.1] we get that
~QeX({AXxB:ACuw,BCk}.

And therefor @ € [I,({A x B : A C wy, B C k}. Now since every rectangle
in X x X is Borel in X x X we get that {(z,,25) : 8 < Ko} is Borel in
X x X Ifitis IIY in X x X, then so are all its cross sections and so we are
done.

Claim. Suppose ord(X,,) = [, which is countable by induction, then
SUDq<y, Ba < wi. pf: Suppose not and choose a; < wy for 0 < i < wy
strictly increasing, so that 8,, > ap and S,,,, > B, +w. For each i < w;
let Y; = X, ,\X,,. The Y; are pairwise disjoint, ord(Y;) = f;41, and Y; is
07, . in X. Choose A; C'Y; which is not I, in Y;. But then A = {J,_,, Ai
is not Borel in X, since A; = ANY;.

It follows from the second Claim and Lemmas [4.8 and 4.9| that ord(X) <
wi. This proves Theorem [4.7]
O

Theorem 4.10 ([9]) For any countable « it is consistent to have a separable
metric space X in which every subset is Borel and the order of X is .
Furthermore in this model for successor &« = ag+ 1 > 3 for any Z C 2% if
every subset of is X% in Z, then Z is countable.

We just prove this for countable successor ordinals g + 1 greater than
two. For limit a see [9)].

Definition 4.11 P(7,Y, X). Fiz countable ay > 2. This forcing is similar
to Myy1 forcing (Definition . Assume Y C X C 2%, Recall that defini-
tion uses a nice ag + 1 tree T which will remain fixed throughout the proof.
We denote terminal nodes of T by T* and interior nodes T° = T\ ({{) }UT™).
Then p € P(T,Y, X) iff p = po U p1 finite with py : T* — 2<¥ finite partial
and finite p; C T° x X subject to the consistency demands:

o if (n),x) €py, thenz ¢ Y

28



o if (s,z) € p1 and (sn,y) € p1, then x #y

e if (s,x) € p1 and po(sn) =r, then = ¢ [r]

Note that we only attach elements of X to the interior nodes of T', we do
not attach any reals to the top node () of T, and we only attach reals from
X\Y to the rank ag nodes of T, i.e., those of the form (n). We remark
that P(T,0,2“) is the same as the direct sum of countably many copies of
I1,,-forcing. We could think of the first condition as equivalent to putting
all ((),y) for y € Y into py.

Definition 4.12 US. Similar to before for a generic G a P(T,Y, X)-filter,
define US C 2% for s € T. For s € T* define US = [r] iff po(s) = r for some
p € G. Forse T\T* define US =, _, ~ UG

n<w sn”

Lemma 4.13 For G any generic P(T,Y, X)-filter:
1. Forany s €T° and x € X x € US iff {(s,2)} € G.
2. Ug NX=Y.

proof:
For any s € T° and x € X define D,, C Py, 1(Y, X) by p € Ds, iff

o (s,x)epor
e In<w (sn,z) € py or
e Jr € 2<% py(sn)=r and x € [r].

Then D, is dense. Note for n < w and y € Y you can never add ((n),y)
however you will be add ((n,m),y) for some sufficiently large m.

(1) Suppose z € UE = (,., ~ US, then x ¢ US for all n. Hence by
induction for all n for all p € G ((sn,z) ¢ p or « ¢ [po(sn)]) if ranky(s) = 1.
Since Dy, is dense we have that {(s,z)} € G.

Conversely, suppose {(s,z)} € G. Then for every n < w and p € G
(sn,x) & p or x & [po(sn)]) if ranky(s) = 1. So by induction z ¢ US for all
n and by definition of UY we have that x € US.

(2) Suppose y € Y. Fix n. By the definition of P(7,Y, X) ((n),y) is not
in any condition. Hence for any p there exists m sufficiently large so that
pU{((n,m),y)} is consistent. It follows that y ¢ U((T;L) and so y € Ug.
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Conversely, suppose x € X\Y. Then {p : In ((n),z) € p} is dense, so
T € U(Cfb) for some n and hence y ¢ Ug.
O

Let M be a countable standard model of ZFC+GCH. Fix X =2“N M
(or any uncountable subset of 2 in M) and T a nice ag + 1-tree in M. We
will iterate P(T,Y,, X) for a.ws with finite support, diagonalizing to get all
Y C X. An explicit description of this model is as follows.

Let P = P(T,0, X).

Inductively assume that P* C ¥5,P(T, 0, X) (the direct sum). Suppose

Y is a nice P*-name for a subset of X i.e., there exists (A% : x € X) where
AS C P is countable and

Vo= {(p,Z) : x€ X and p € AJ}.

Then p € P*Tiff p [ a € P, p(a) € P(T,0, X), and if p(a) = po U py, then
whenever ((n),z) € p; for some n < w and x € X, then

plalx gﬁ}ga

or equivalently (p [ «) L ¢ for all ¢ € A2.
For A < wy a limit ordinal

P*={p : Ya< X p|a&P"and supp(p) is finite }}.

where supp(p) =%/ {a < A : p(a) # 1} is the support of p. Note that
for any o < wy, Xg<oP(T, 0, X) has cardinality w;. It also has ccc (in fact
property K). Note that p,q € P* are compatible iff pUqg € P* iff pUq €
Y5<oP(T,0, X). For a < wy we may regard

P*={peP*” : pJ|a,wy) =1}.

By a standard dovetailing argument in M we may choose the sequence of
names }3(1 so that for any G P“2-generic over M for any Y C X in M[G]
there is an o < wd! such that Y¢ =Y.

By Lemma we have that in M[G] every subset of X is 39 ., in X.
Recall that P* = P(T,0, X). Let U(Cé) be the generic II), -set added by P’
(Any of the other U(%) would do as well.) We will show that there is no

Yo set V C 2¢ in M[G] such that U N X =V N X.
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Given H C X define
rank(p, H) = max{rankr(s) : 3z € X\H Ja < ws (s,2) € p(a)}.

Working in M suppose we are given I' € P“? countable and 7 a nice P2
for an element of 2¢. Then by the ccc we can find a countable H C X and
countable K C wy with the following properties:

1. rank(p, H) =0 for allp e T’

2.Vn €w {p e P : supp(p) C K and rank(p, H) = 0} decide]
“r(n) =0".

3. Ve € HVa € K {p € P* : supp(p) C K and rank(p, H) = 0} decides
o GYQ”.
The analogue of the meet lemma for this forcing is trivial.

Lemma 4.14 Meet Lemma. For any p,q € P“? we have:
p and q are compatible iff pU q € P*2.
The union is defined by (pU q)(a) =% p(a) U q(a) for each a < ws.

proof:

Prove by induction that (pUgq) | @ € P* and extends both p [ a and
qa.
O

The union operation preserves rank and support.

Lemma 4.15 Rank Lemma for H, K. Assume H,K satisfy condition 3
above, i.e., Vx € HVa € K {p € P* : supp(p) C K and rank(p, H) = 0}

decides “x E}?a 7. Suppose p € P2 and 1 < B < «ag. Then there exists p
compatible with p, rank(p, H) < B, supp(p) C K, and for any q € P*? with
rank(q, H) < B and supp(q) C K, (p Lg=p L q).

proof:

Extend p to p so that for any a, s, x, X if (s,2) € p(a) and ranky(s) = A
is a limit ordinal, then for every i < w with ranky(si) < -+ 1 < A there
exists j with (sij,x) € p(a). The definition of nice tree tells us there are at
most finitely many such .

Let G be P“2-generic with p € G. Choose I' C G finite so that

SRecall that a set conditions @ decides a sentence 6 iff every generic filter contains a
condition in @) which forces either 8 or its negation.
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(a) Vq € I' rank(q, H) = 0 and supp(q) C K

(b) if ((n),z) € p(a) for some o € K and x € H, then there exists g € T
such that ¢ | a lFz ¢V..

Note that in (b) it must be that p [ « IFx ¢}3a
Working in M define p as follows: for a € K

ple) = Ja(a) : ¢ €TIU{(s,2) € pr(a) : ranke(s) < 8 or 2 € H}Uf()

and p(a) =1 for a ¢ K.

We prove that p < ¢ for each ¢ € ' and ranky(p) < 8. Note that
B < ap = ranky((n)) so we have retained no conditions of the form ((n),x)
forz ¢ H,ie., if (n),x) €p,thena € K andx € H. Sop [ a < q | a for

some ¢ € I' such that ¢ [ a lFx ¢}3a and so p | alFx ¢}3a This shows that
p is a condition.

We check that it satisfies the Lemma. Since p < p and p,p are both
in G, we have that p and p are compatible. Suppose rank(q, H) <  and
supp(q) € K. We need to show that p L ¢ — p L ¢. Assume p L g, hence
pUq is not a condition so there must be a € supp(p) N supp(q) (so o € K)

(pUgq) [ a € P but p(a) Ug(a) ¢ P(T, }j’a, X). Therefor at least one of the
following cases occurs:

Case 1. For some s € T* we have po(a)(s) # qo(a)(s).
But po(a)(s) = po(a)(s), so p(a) L g(a).
Case 2. For some s,7,n with s € 7% and sn € T* and = € X:
(po(c)(sn) =1 or go(a)(sn) =r) and (s,z) € p1(a) Uq(a), but x € [r].
In this case, ranky(s) = 1 < 8 and hence (s,x) € pi(«) if (s,z) € p1(a). So
if go(a)(sn) = r, then p(a) L g(a). The other possibility is that py(sn) = r
and (s,z) € ¢1(«). Then since pg(sn) = po(sn), we also have p(a) L g(«).
Case 3. For some s,sn € T’ and x € X  (s,2), (sn,z) € p1(a) Uqi(a).

In this case, if x € H, then (s, ), (sn,z) € p1(a) Uq (a) and so p(a) L g(a).
Suppose x ¢ H, then one of the following occurs:

1. (sn,z) € p1(a) and (s,2) € q1()
2. (s,z) € p1(a) and (sn,x) € ¢1(@)
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For (1) since rank(q, H) < [ we have that ranky(sn) < rankr(s) < § and
so by the definition of p we have that (sn,z) € pi(a) so p(a) L ¢(«). For
(2) we have that ranky(sn) < 8 because rank(q, H) < . If ranky(s) < 3,
then (s,z) € pi(a) so p(a) L g(a). Finally we have the possibility that
ranky(s) = A > [ alimit ordinal. In this case we choose p(«) so that for some
m we have that (snm,x) € p1(«). Since rankr(snm) < 8, (snm,z) € pi(«a),
and therefor p(a) L g(a).

O

Lemma 4.16 Suppose 7 a nice P2 for an element of 2 and H C X and
K C wy are countable satisfying

1.Vnew {peP : supp(p) C K, rank(p, H) = 0} decides“r(n) =0".

2.Vx € HVa € K {p € P* : supp(p) C K, rank(p, H) = 0} decides
“r EYOVa ”

Suppose B(v) is a ;% predicate for 1 < B < ag with parameters from M
and p € P2 satisfies: plEB(7). Then there exists p compatible with p,
rank(p, H) < 8, supp(p) C K, and p IFB(T).

Case = 1.

Suppose R C 2<“ isin M and plFan € w R(7 | n). Find ¢ < p, n € w,
t € 2" such that R(t) and ¢ IF7 | n = £. Take G P“2-generic with ¢ € G. By
(1) we can choose finite I' C G such that

for all m < n thereisar € I' r IF“r(m) = t(n)” and

supp(r) C K and rank(r, H) =0 for all r € T
Then p = [T satisfies the Lemma.

Case 8 < aq a limit ordinal.

Suppose p - “In € w B, (7)” where for each n B, (v) is a I} predicate
coded in M with £, < . Extend p by ¢ < p such that for some k ¢ I+
“By(7)”. Since Iy predicates are 33 and ;41 < 3, we have by induction
p compatible with ¢ (hence p) with rank(p, H) < fr+1 < 3, supp(p) C K,
and p - “B(1)”.

Case 1 < 41 < ag a successor ordinal.

Suppose p lF “In € w B(n,7)” where B(n,v) is a 1:[% predicate coded
in M. We may extend p to py < p so that for some n py IFB(n, 7). By the
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Rank Lemma since § < ag there is some py compatible with py such that
rank(po, H) < B, supp(py) € K, and for any ¢ € P> with rank(q, H) < 8
and supp(q) C K, (po L ¢ = po L q). But then py IFB(n, 7). Because if not,
by inductive hypothesis there would be ¢ compatible with pg, rank(q, H) < £,
supp(q) C K, and ¢ IF=B(n, 7). But such a ¢ is incompatible with py which
is a contradiction.

O

Lemma 4.17 Suppose X = {xy :a <wi} and Z = {2z, : a < wi} C 2% be
an arbitrary set of reals in M. For any G P“2-generic over M, then

(UG % 2) 0 (7 70) = @ <} £V 0 {(rza) © @ <)
for any V. C 2 x 2 a X9 -set coded in M|G]

proof:

Recall that U, 8) is one of the “generic” II? , sets determined by the
first coordinate, i.e., for z € X we have that = € U(%) iff ((0),z) € p1(0) for
some p € G.

Work in M. Let V' C 2¢ x (2¥ x 2¥) be a universal 3 -set. For contra-
diction, suppose there exists ¢ € P“? and 7 is a nice name for an element of
2¢ such that

qIFVa < wy (24 E(}(o) iff (7, (2o, 24) € V).

Choose H C X, K C wy countable such that rank(q, H) = 0, supp(q) C K,
and satisfying the conditions of Lemma for 7.
Fix any o € wy with 2, ¢ H and define the X predicate B(v) by

B(v) = (v, (a,24)) € V.

Let p < g be defined by only adding ((0), z,) to the first coordinate of ¢, i.e.,
p(0) = q(0) U ((0),z4) and p | [1,ws) = q | [1,ws). This is possible because
¢(0) cannot mention z, because rank(q, H) = 0. Note that p IFB(7). By
Lemma there is a p compatible with p such that rank(p, H) < ag and
p IFB(71). By replacing p by pUp we may assume p < p. Since rank(p, H) < ag
we have that ((0),x,) is not in p;(0). It follows by taking a large enough &
that p1(0) U {((0,k),x4)} is consistent, i.e., an element of P(T,0, X). If we
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define r by 7(0) = p(0) U {((0,k),z4)} and r [ [1,ws) = p | [1,w2) we get a
contradiction: r I-“z, E(}(O) ifft B(r)”, rIFB(7), and r IFz, E(O](O,k).
O

Finally we prove Theorem[4.10] Lemma [£.13|shows that ord(X) < ag+1
and Lemma shows that ord(X) > ag. Given any Z C 2“ of size w; in
MI|G] there will be § < wy with Z € M|[Gs]. We can assume unbounded
many Yj code the empty set, so by replacing M by the ground model M[G}]
and forcing with P“2) Lemma m shows that ord(Z) > «y.
a

Theorem 4.18 ([9/) For any countable o > 2 it is consistent that every
subset of the plane is in the o-algebra generated by the abstract rectangles at
level a but for every B < a not every subset is at level (3.

proof:

We sketch the proof only for the case of a countable successor a = ap+1 >
3. Start with a countable transitive model M of ZFC+2% = 2t = w,. Let
X =2YN M. Hence | X| = ws. Do a finite support iteration (as in the proof

of Theorem 4.10)) of length w, of P(T, }3’&, X) for a < wy making sure to have
names for all potential subsets of X of size < w;. It follows from Lemma
that P(way X we) = Bpgt1({A X B : A, B C wy}.

It also follows by a similar proof to Theorem that in M[G] there is
no Z C 2¢ with |Z| = w; such that every subset of Z is £% in Z. So we are
done by the following:

Lemma 4.19 (Bing, Bledsoe, Mauldin [2]) Suppose o < wq, w < K, |2%| = ¢,
and P(k x ¢) = ,({Ax B : ACRK, BCc}. Then there exists Z C 2%
with |Z| = k and every subset of Z is X° in Z.

proof:
Let Y, C k for a < ¢ list all subsets of k. Define

Y ={(B,a): €Yy, a<c}

Let {A, x By, : n < w} be rectangles with Y € ¥,({A4, X B,, : n < w}). Take
Y 1 Kk — 2¥ to be the Marczewski characteristic function:

Y(a)(n)=1iff a € A,.

Then Z = {¢(a) : a < k} has the required property. Note that the cross
sections of a 30-set are 3.
O
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5 Universal functions

Theorem 5.1 (Larson, Miller, Steprans, Weiss [20]) Suppose 2<¢ = ¢ then
the following are equivalent:

(1) There is a Borel universal function, i.e, a Borel function F : 29 x2¥ —
2¥ such that for every abstract G : 2¥ x 2 — 2% there are h : 2¥ — 2% and
k2 — 2% such that for every x,y € 2* G(z,y) = F(h(x), k(y)).

(2) Every subset of the plane is in the o-algebra generated by the abstract
rectangles.

Furthermore the universal function has level o iff every subset of the plane
1s in the o-algebra generated by the abstract rectangles at level .

Theorem 5.2 ([20]) If 2<% = &, then there is an abstract universal function
F:kxXkKk—K.

Theorem 5.3 ([20]) It is relatively consistent with ZFC, that there is no
abstract universal function F :¢ X ¢ — c.

Theorem 5.4 ([20)]) There does not exist a Borel function F : 2¥ x 2% — 2¥
such that for every Borel G : 2% x 2 — 2 there are h, k : 2° — 2“ such that
k is Borel and for every x,y € 2¥

G(z,y) = F(h(x), k(y))

The following two theorems are proved just like Theorems 8 and 9 of
Bing, Bledsoe, and Mauldin [2] who only stated it for the square case, e.g.,
K X K.

Theorem 5.5 (Bing, Bledsoe, and Mauldin Theorem 8 for k = \)
1. The following are equivalent:

(a) B, ({AXx B: AC kK, BCA}) =Pk x\)

(b) for every A € [P(N)]* there is B € [P(A)]* and o < wy such that
AC 20(B)

(c) for every A € [P(k)]* there is B € [P(k)]* and o < w; such that
A C Zi(B)

2. Suppose o < wy, then the following are equivalent:
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(a) Z°({Ax B: ACk,BCA})=P(rk x\).
(b) for every A € [P(\)]* there is B € [P(\)]“ such that A C X2(B)
(c) for every A € [P(k)]* there is B € [P(k)]* such that A C X9 (B)

Theorem 5.6 (Bing, Bledsoe, and Mauldin Theorem 9 for k = X\) The fol-
lowing are equivalent:

1.3 ({AXxB:ACkK BCA}) =P(kx\)

2. for every A € [P(N)]* there is B € [P(N\)]Y and o« < wy such that
A C Zo(B)

3. there is a < wy such that for every A € [P(X)]"® there is B € [P(\)]Y
such that A C X2(B)

4. there exists a < wy such that L ({AX B : AC k,BCA}) =P(rkx\).

Definition 5.7 X C 2¥ is a strong Q.-set iff
letting By =%/ {X NC : C C 2% clopen } then

o P(X) =X (Bo) (o-algebra generated by By ) and

e VB D By countable ord(B) = «, i.e. « is the least ordinal such that
X0 (B) = X}, (B).

The above definition is the one we use to verify the existence of a strong
Qa-set in a generic extension. When we force a generic ITY set it is not X9
even when we add sets from the ground model as new “clopen” sets.

Theorem 5.8 The following are equivalent for a cardinal k such that 2" = ¢
and o < wy:

1. there exists a strong QQ,-set of cardinality k

2. « 18 the smallest ordinal such that

{AXxB:ACk,BCc})="P(rk x¢)

3. there is a Qu-set of size Kk but no Qg-set of size k for any B < o
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4. « is the minimal ordinal for which there is a countable B C P(k) with

50(8) = P(x)

proof:

Assume (1). First note that X,{Ax B : A C k, B C ¢} = P(x x ¢}. This
is proved just like Lemma . Namely, let {z5: 8 < k} C 2 be a Q,-set.

Fix U C 2* x 2¥ a universal X set. Then for any subset C C k X ¢
choose {yg € 2¥ : § < ¢} so that for each v < k and § < ¢, (z,,y3) € U iff
(7,8) € C. Since U is X2 in the clopen rectangles in 2% x 2. it follows that
C is XY in the abstract rectangles on k X ¢.

Now suppose for contraction that for some 8 < «

Ys{AXx B :ACk,BCc}=P(kXc}

Let C' C k x ¢ be such that the cross sections of C' list P(k). Suppose C' €
E%({An x Ap : n,m < w}). Consider the Marczewski characteristic function
of the sequence of sets A, i.e., f : ¢ — 2 defined by f(B)(n) =1iff 5 € A,.
We can assume that the A,, separate points (by adding a countable sequence
of sets if necessary) so that f is a 1-1 function. Let z5 = f(/5). The function
f maps the abstract sets A,, into relatively clopen sets in Z = {2, : v < c}.
It follows that {z, : v < k} is a Qs-set for some § < f < a which contradicts
the definition of “strong” @),-set.
The proof of (2) implies (1) is virtually the same. The fact that

S{AXxB:ACkK,BCc})="P(k xc)

via the Marczewski function gives us a (),-set of cardinality x. The mini-
mality of a gives us that there is no ()g-set of size k for any 8 < a.

(3) and (4) are equivalent by using the Marczewski characteristic function.

(1) implies (3): Let {z., : v < k} be a strong @,-set and suppose {y, :
v < Kk} is a Qg-set for some § < a. For any clopen set C' C 2¢ let C" = {z, :
Yo € C}, then B = By U {C’ : C clopen } has order < § contradicting the
definition of strong @),-set.

(3) implies (1): Any Q,-set of size k must be strong, otherwise by using
the Marczewski characteristic function we could produce for some 5 < « a
() s-set of cardinality x.

O
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Theorem 5.9 [t is consistent that for every countable o > 2 there is a strong
Qo -set.

proof:

This holds in a model mentioned in [9] see Theorem 55 and 52. Theorem
55 [9] states that it is consistent that for every countable o« > 2 there is
a QQu-set. The proof is similar to Theorem 52 in that these sets are all of
different cardinality. By an analogous argument to Theorem [4.10} in fact,
those (Q,-sets are strong (),-sets.
O

Theorem 5.10 Remark 4.6 [20]. It is consistent that the Borel subsets of
the plane are not contained in any bounded level of the o-algebra generated by
the abstract rectangles. The proof of Theorem[5.1] shows that in this situation,
there does not exist a Borel function

F:29 x2Y —2¢

such that for every Borel H : 2% x 2¥ — 2% there exist functions g and h
from 2¥ to 2¥ such that

H(z,y) = F(g(z), h(y))

for all z,y € 2¥. Hence, if we drop the condition that k is Borel in Theorem
it is consistent that there be no such Borel F.

We show that:

Theorem 5.11 If for unboundedly many o < wy there is a strong Q),-set,
then there is no countable oy such that

Borel(2¥ x 2¥) C ¥,,({Ax B : A, B C 2*}).

proof:
Let U C 2 x 2¥ be a universal X3 ,,-set and X a strong Qqyt1-set.
Choose A, x B,, C2¥ x 2 forn <w so that U € ¥.,({A, x B,, : n <w}).

Define
H={XNC : Cclopen C2°}U{B,NX:n<w}.

Claim. ord(#) < ag, so X is not a strong Qa,+1-set.
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proof:

For any Y C X there exists z € 2¥ such that U, N X =Y, because U is
a universal X, 1-set and X is a (Qu,+1-set. But any cross section of set in
Yoo {An X B, © n<w})isasetin X,,({B, : n <w}). It follows that
Y € Xo,(H). Hence P(X) = X,,(H) and so ord(H) < «p.

This proves the Claim and hence the Theorem.
O

The following theorem was proved in May 2017. It answers negatively
the rectangular form of a question asked by Bing, Bledsoe, and Mauldin [2]
in the paragraph just before Theorem 10, namely, in Theorem [5.6| (2,3) can
we replace “A C X9 (B)” with “A C XY (B)”? T want to thank Ashutosh
Kumar for bringing the problem to my attention. I do not know the answer
for the square version of this question.

Theorem 5.12 Suppose for unboundedly many o < wy there exists a strong
Q-set, then there exists an uncountable cardinal k < ¢ such that

1. every family of size Kk of sets of reals is included in a countably generated

o-algebra, VA € [P(c)]* 3B € [P(c)]Y AC X (B).

2. there is a family of size k of sets of reals which is not include in
a bounded level of any countably generated o-algebra. A € [P(c)]"
VB € [P()]Y Va <w; AZX2B).

proof:

Let I' C w; be unbounded so that for every v € I' there exists a strong
Qa-set X, C 2¥. Note that for a < [ elements of I' that | X,| < |Xjs|. Let
Ko = |Xa| and put & = sup,ep ko. Given any family A C P(c) of size &
of write A = |J{A, : @ € T'} where |A,| = k4. By Theorems A, is
included in the o-algebra generated by a countable set B,, i.e., A, C X2(B,).
but then [J{B, : @ € '} is included in a countably generated o-algebra and
hence so is A. This proves item (1).

To prove (2) note that for each a € I' there is A, C P(c) of cardinality
Ko Which is not in any countably generated c-algebra at a level before «,
ie., Ay € X3(B) for any countable B C P(c) and f < . It follows that
A = U,er Ao satisfies (2).

O
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6 Universal Functions of Higher Dimension

The main result of this section is from ([20]). Universal functions F' of higher
dimensions reduce to countably many cases where the only thing that matters
is the arity of the parameter functions, e.g., one of the forms:

G(z,y) = F(h(z), k(y))

G(z,y,2) = F(Mx,y), k(y, 2), Uz, 2))

G(z1, 9, 3, 24) = F(h(x2, 23, 24), k(x1, 23, 24), [(21, T2, 24), (21, T2, x3))

é(:po,...,mn) =F(Zs:s€n+1]")

Furthermore, each of these forms is consistently weaker than the preceding
one.

Definition 6.1 A k-dimensional universal function is a function
Fo(29)F — 2%
such that for every function G : (2¥)% — 2% there is h : 2 — 2% such that
G(z1,29,...,21) = F(h(z1), h(22), ..., h(zk))
for all (z1,1,...,71) € (29)*.

Proposition 6.2 Suppose F(x,y) is a universal function, then F(F(x,y), 2)
is a 3-dimensional universal function. Similarly the existence of a universal
function in dimension 2 is equivalent to the existence of a universal function
i dimension k for any k > 1.

proof:

Given G(z,y,z) define Go(u,z) = G(ug,us,z) using unpairing, u
(ug,ur). By universality of F' there are g, h with Go(u, z) = F(g(u), h(2)).
Again by universality of F’ there are gg, g1 with g({uo, u1)) = F(go(uo), g1(u1))
and hence G(z,y, 2) = F(F(go(x), 91 (y)), h(2)).

To prove a 3-dimensional implies a 2-dimensional use unpairing, i.e., put
2 (u,y) = Fuy,y, us) soif Gz, y) = F(h(z), k(y), j(z z)), then putting h( )=
h(x),7(0)) we have G(x,y) = F(h(x), k(y),7(0)) = F(h(z), k(y))-

O

This proposition is true for either Borel or abstract universal functions,
but note however that the Baire complexity of F'(F(x,y), z) is higher than
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that of F'. The question “Is it consistent that the Borel rank in different
dimensions is different 7”7, is open.

Juris Steprans recently pointed out (Feb 2017) that the obvious attempt
to prove that a 3-dimensional universal function implies the existence of a 2-
dimensional universal function, namely freezing a coordinate, may not work;
i.e., putting F (x,y) = F(x,y, 2z0), because different G might require different
29. However, it almost works. Here is his proof: Suppose F : k3 — & is
universal, i.e., for every G : k* — k there are h,k,j : kK — K such that
G(z,y,2) = F(h(x),k(y),j(2)) for all z,y,z € k. Let A, C & for z € K
partition x into sets of size k. Define F,(x,y) = F(z,y,z). Then we claim
that for some z the map F, restricted to A, x A, is universal for all maps
from A, x A, to k. Suppose not. For each z let G, : A, x A, — k witness that
it is not universal. Take any G : kK X Kk — k which extends all G,. Since F
is universal there are h, k, j with G(z,y) = F(h(z),k(y),j(2)) all z,y, z € k.
Letting zo = j(0) gives us that

GZo(x>y) = G(l‘,y) = F(h(:L’), k(y)’ ZO) = FZo(h(I)v k(y)) for all x,y € Azo

which contradicts the choice of G,.

This argument requires that we restrict to a subset A, of x, we don’t know
if there could be a 3-dimensional universal F' such no F, is 2-dimensional
universal with respect to maps on all of x2.

We may also consider universal functions F' where the parameters func-
tions are functions of more than one variable, for example:

VG Elg,h,k:Vx,y,z G(flf,y, Z) = F(.g(x>y)7h(y72)7k(z7x))

This form easily follows from the existence of a dimension 3 universal. Note
that by using pairing functions we can always combine parameter functions
which have the same sequence of variables. The reader can imagine many
variants. For example,

G(z,y,2) = F(g(z,y), h(y, 2))

G (21,29, 23, 24) = F(g1(21,2), ga(2, 73), 93(73, T4), ga (4, 1))
where we have omitted quantifiers for clarity. These two variants are equiv-
alent to the existence of 2-dimensional universal function. To see this in the
first example put y = 0 and get

G(z,z) = F(g(x,0), (0, 2)).
In the second example put o = 4, = 0 and get

G(r1,73) = F(g1(21,0), 920, 23), g3(3,0), 94(0, 71)).
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More generally, suppose I’ and 2},’s have the property that for every G there
are gi’s such that for all ¥

G(Z) = F(g1(1), ..., gn(Zn)).

Suppose there are two variables  and y from & which do not simultaneously
belong to any #;. Then we get a universal 2-dimensional function simply by
putting all of the other variables equal to zero.

Proposition 6.3 If there is a (3,2)-dimensional universal function, i.e., an
F(x,y, z) such that for every G there is h with

G(z,y,z) = F(h(z,y),h(y, 2),h(z,x)) all z,y, 2z

then for every n > 3 there is a (n,2)-dimensional universal function F, i.e.,
for every G n-ary there is a binary h with

G(z1, 22, ..., 2,) = F((h(x;,25) : 1 <i < j<n)) all .

F s ( g )—ary. Conversely, if there is a (n,2)-dimensional universal func-
tion for some n > 3, then there is a (3,2)-dimensional universal function.
proof:

Consider the case for n = 4.

Suppose that F' is (3,2)-dimensional universal function. Given a 4-ary
function G(z,y, z, w) for each fixed w we get a function h,,(u,v) with

G(z,y,z,w) = F(hy(x,y), ho(y, 2), hw(z, x)) for all z,y, z.

But now considering h(u,v,w) = hy(u,v) we get a function k(s,t) with
h(u,v,w) = F(k(u,v), k(v,w), k(w,u)). Note that
G(z,y, z,w) =

F(E(K(z,y), k(y, w), k(w, 1)),
F(k(y, 2), k(z, w), k(w, y)),
F(k(z2), k(. w), k(w, 2)))
Note that k(s,t) and k(t, s) can be combined by pairing and unpairing into
a single function k;(s,t). From this one can define a (4, 2)-dimensional uni-
versal function.

43



For the converse, if F' is a (4, 2)-dimensional universal function, then for
every GG 3-ary, there exists h binary with

G(z,y,2) = F(h(z,y), h(y, z), h(z, 2), h(x,0), h(y,0), h(z,0)).

But note that, for example, h(z,y) and h(z,0) can be combined into a single
function of hy(x,y). Hence we can get a (3, 2)-dimensional universal function.

O
To state the generalization of these ideas

Definition 6.4 Let U(k, m,n) mean that we have a (m,n)-dimensional uni-
versal function on k. This means for k = :1 there exists F : k* — K

such that for every G : K™ — Kk there is h : k™ — Kk such that
G(xo, 1, .., Tmer) = F (M(zj 1 j € Q) : Q € [m]") for all T € k™.
Then the last two propositions can be generalized to show:

Proposition 6.5 For any infinite cardinal k and positive integer n
1. U(k,n + 1,n) implies Ym > n U(k,m,n).
2. (Am >n U(k,m,n)) implies U(k,n+ 1,n).
3. U(k,n + 1,n) implies U(k,n +2,n+ 1)

We show that U(k,n + 1,n) are the only generalized multi-dimensional
universal functions properties.

Definition 6.6 Suppose ¥ C P({0,1,2,...,n — 1}) = P(n) (the power set
of n). Define U(k,n,X) to mean that there exists F : k* — Kk such that for
every G : K™ — Kk there are hq : klQ = K for Q € ¥ such that

G(zo, 21, ..., 2n_1) = F (hg(z;: € Q) :Q €X) for all T € k".

Proposition 6.7 Let k be an infinite cardinal, n > 2, and X, ¥, 31 subsets

of P(n).
1. If X9 C 3, then U(k,n, %) implies U(k,n,31).
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2. If Qo C Q1 € 3, then U(k,n,X) is equivalent to U(k,n, XU {Qo}).

3. Suppose Y is closed under taking subsets, every k < n is in some el-
ement of ¥, and {0,1,2,...,n — 1} ¢ X. Let k+ 1 be the size of
the smallest subset of {0,1,2,...,n — 1} not in X. Then U(k,n,X) is
equivalent to U(k,k + 1, k).

proof:
(1) This is true because the F which works for ¥, also works for 3
by ignoring the values of hg for @ € £;\Xy. A
(2) This is true because given hg,,hg, we may define a new hg, by
outputting the pairing

hoy(z; 1§ € Q1) = ((hgo(x; : j € Qu), (hg, (z; : j € Qu))

(3) First note that by (2) we may as well assume that ¥ is closed under
taking subsets. If some k does not appear in any element of 3, then U(k,n, X2)
is trivially false. If {0,1,2,...,n—1} isin X, then U(k, n, ¥) is trivially true.

Solet R € {0,1,...n— 1} not in ¥ with |R| = k + 1. By choice of k + 1
all subsets of R of size k are in ¥. By setting x; = 0 for i ¢ R, we see that
Uk, k+1,k) is true.

Now assume U(k,k + 1,k) is true. By Proposition we have that
U(k,n, k) is true and hence if ¥y = [n]* then U(k,n, ) is true. But ¥y C ¥
and so by (1), U(k,n,X) is true.

O

Proposition 6.8 The following are true in ZFC.

1. Ulw,2,1)

<

w17372)

U(k,n+ 1,n) implies U(kT,n+2,n+ 1)

(
(
Ul(r,2,1) implies U(k*,3,2)
(
(

U(wp,n+2,n+ 1) every n > 0.

proof:
For (1) see Theorem[5.2 We prove (2) and leave 3-5 to the reader.
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Suppose that f : w? — w witnesses U(w, 2,1). For any countable ordinal
d>01let 6 ={9; : i <w}. Define

F()((S, n, m) = 5f(n,m)-
Now suppose G : wi — w;. Define

k(6) = sup{G(a, B,7) : o, 8,7y <0} +1

For any v < w; let v* = k(7). Define g : w?* — w by
G((v+ Dy (v + Dins 7)) = Yatnm)-
By the universality property of f there exists h : w — w with
g(n,m) = f(h(n),h(m)) for every n,m € w.
For § < define hy(0,7) = h(k) where § = (v + 1)x. Then we have that

\V/Oé,ﬁ S 7 <uwi G(aaﬁ"Y) - FO(k(’Y)vh1<a77)7h1(577))‘

Define F' as follows:

F(Oz,ﬁ,7,a*,ﬁ*,’y*,nl,ml,ng,mz,n3,m3) =

Fo(v*,n,my)  if o, B <7y
Fo(B*,ne,my) ify<pfanda<p
Fy(a*,ng,ms) if 8,7 < a

Then given G we can find k, hy, hs, hg so that
G(a, B,7)) =
Fla, 8,7, k(a), k(B), k(7),
hl(a77)7h1<677)7 h2(a75>7h2(776)7 h3(ﬂ,0&),h3(7,0&)).
O

The k-Cohen real model is any model of ZFC obtained by forcing with
the poset of finite partial functions from s to 2 over a countable transitive
ground model satisfying ZFC.

Proposition 6.9 In the wy-Cohen real model we have that U(wy,2,1) fails.
Similarly, U(ws,3,2) fails in the ws-Cohen real model. More generally, we
have that U(y,n + 1,n) fails in the k-Cohen real model when k > v > w,,.
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proof:

We show that U(ws,3,2) fails in the ws-Cohen real model, leaving the
rest to the reader.

Let M be a countable transitive model of ZFC and in M define P to be
the poset of finite partial maps from w3 X w3 X w3 into 2. We claim that if
G is P-generic over M, then there is no map F': ws X wy X we — wo which is
(3,2)-universal for maps of the form H : w X wy X wy — 2.

Suppose for contradiction that F' is such a map. By the ccc we may find
Y < wy with FF € M[G | 73]. Hence we may find maps hy : w X w; — ws,
ho 1 w X wy — w3, and hs : wy X wy —> wsy such that

H(n7577> =/ G<n75770 +7) = F(h1<n7ﬁ)7h2(n7 7)7113(677))

for every n < w,f < wy,v < we. By ccc we can choose v; < wy such that
hy € M|G*] where G* is G restricted {(a, 3,p) € w® : p # v + 71}. Define
g:wXw — 2 by

g9(n, @) = G(n,a,70 +m)
Note that we have that F,hy € M[G*], g is Cohen generic over M[G*], and

g(”’ Oé) = F(h1<n7 Oé), hZ(na Yo + 71)7 hg(OZ, Yo + ’71))
Since the extension by g is ccc, we may find oy < w; such that
hy € M[G*][g | (w x ap)] =%/ N.

But this is a contradiction because g¢,, defined by g.,(n) = g(n, ap) is Cohen
generic over N. But F,hy, hy € N and for any 75 < wy the map k defined by

k(n) = F(hi(n, a), ha(n, v + 71),72) for all n < w

is in NV and so can never be equal to ¢,,. Thus hs(ag, 70 + 71) = 72 cannot

be defined.
O

Corollary 6.10 ([20]) Let X, < v < k. In the k-Cohen real model we have
that
U(wn,n+2,n+ 1)+ =U(wy,n+ 1,n) for all n > 0,
and
-U(y,n+1,n) for alln > 0.

Hence, in the Cohen real model for every n > 1 there is a universal function
on w, where the parameter functions have arity n+1 but no universal function
where the parameters functions have arity n.
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7 Model Theoretic Universal

Theorem 7.1 (Remark 7.13 [20].) If 2<° = ¢ and there is a Borel universal
map, i.e. Borel F': 2% X 2% — 2% such that for every G : 2 x 2% — 2% there
is h such that G(x,y) = F(h(x),h(y)) for all x € 2¥, then there is a Borel
map H such that for every cardinal k < ¢ for every G : Kk X kK — Kk there are
Ty € 2¥ for a < K such that for o, 5,7 < Kk

G(O@B) =7 Zﬁ H($a,$5) = Ty

proof:

By Theorems Lemma [4.19, and Theorem there exists a < wy,
Z C 2¢ with |Z| = ¢ and every Y € [Z]<° is X2 in Z. Note that by Lemma
P(exce)=0({A,B: A B Cc}),soif X C Z of size k then every subset
of X?is 30 in X? where ap = a + v.

Let X = {z,: a < k}. Given any map G : k X k — & define

Y, ={(za,25) : G(a, ) =0 and z5(n) = 1}

for each n. Let B,, C 2¥ x 2“ be ggo so that Y,, = B, N (X x X). Define the
Borel map K by K(u,v)(n) = 1iff (u,v) € B,. Note that

G(o, B) =6 iff K(z4,25) = 5.

Let L be Borel and universal for all such maps K, i.e., For all Borel K of
rank less than ag + 1 there is a y such that Yu,v K(u,v) = L(y,u,v). Now
define H((y,u), (y,v)) = (y, L(y,u,v)). Putting &, = (y,x,) we have that
for every a, (3,0

H(iu, @) = &5 iff G(a, B) = 6.

8 Generic Souslin sets

Theorem 8.1 (Marczewski see Miller[17]) If I is a ccc o-ideal in the Borel
sets then the family of I-measurable sets is closed under the Souslin operation.

Theorem 8.2 ([16]/) (CH) For any o with 2 < o < wy there is exists an
uncountable X C 2 such that ord(X) = « and every Souslin set in X is
Borel in X.
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Theorem 8.3 (Miller [10)]) It is consistent to have X C 2% such that every
subset of X is Souslin in X and the Borel order of X is w;.

The set X also has the property that P(X) is not a countably generated
o-algebra.

Theorem 8.4 ([10]) It is relatively consistent with ZFC' that for every subset
A C 2% x 2% there are abstract rectangles By x Cy with

A=J ) B xCpm)

fEwY n<w

but not every subset of 2% x 2% is in the o-algebra generated by the abstract
rectangles.

9 Products and Unions

Theorem 9.1 (Sierpinski 1935) Assume CH. There Luzin sets and Sierpin-
ski sets whose square can be continuously mapped onto 2%.

Corollary 9.2 (CH) For any « with 2 < a < wy there is X C 2 such that
ord(X) = a and ord(X?) = w;

proof:

Let S C 2% be a Sierpinski set whose square continuously maps onto 2.
Let X, have order v (which exists by CH [9]), then the clopen separated
union X = S @ X, has order a and its square has order w; by Reclaw [1.7]

Theorem 9.3 (Miller [13]) (CH) There is an uncountable o-set X C 2¥
which is concentrated on a countable set. (o-set means ord(X) = 2.)

Theorem 9.4 (Fleissner, Miller [4]) It is relatively consistent with ZFC' to
have an uncountable Q)-set which is concentrated on a countable set.

Theorem 9.5 (CH) For any oy with 3 < ag < wy there are Xy, X1 C 2¥
with ord(Xo) = ap = ord(X;) and ord(XoU X;) = o + 1.

proof:
Let T' be a nice ag-tree (see Definition [3.2)).
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Definition 9.6 Define Py byp € Pr iff p: T — 2 is a finite partial function
such that for all s € T® and n < w if s,sn € dom(p) and p(s) = 1, then
p(sn) = 0. Define the rank of p: |p| = max{rankr(s) : s € dom(p)}.

Lemma 9.7 Rank Lemma. For all countable 8 > 1 for all p € Pp there
exists p € Pr compatible with p, |p| < B, and for all ¢ € Pr with |q| < S,
(pLag)—®La)

proof:

As usual L stands for incompatible. First extend p to p* which has the
property that for any s € dom(p) with p(s) = 1 and ranky(s) = A a limit
ordinal greater than 8 and n such that ranky(sn) < 8 there exists m such
that p*(snm) = 1. Note that by the definition of nice tree there are at most
finitely many sn.

Now define p = px | {s € domp* : ranky(s) < #}. Suppose |¢| < 5 and
p L q. So one of the following must be true:

1. There exists s € dom(q) N dom(p) with p(s) # q(s).
2. There exists s € dom(q) and sn € dom(p) with ¢(s) = 1 and p(sn) = 1.
3. There exists s € dom(p) and sn € dom(q) with p(s) = 1 and ¢(sn) = 1.

In the first case since |¢| < § we have that s € dom(p) so p L ¢. In the
second case ranky(sn) < rankr(s) < 3 so again p L ¢. In the third case
rankr(sn) < f so either rankr(s) < 8 (so p L q) or ranky(s) = A > ( a limit
ordinal. By the construction of p* there is some m with p*(snm) = 1. Since
p(snm) =1 and ¢(sn) = 1 it follows that p L gq.

O

Definition 9.8 For G sufficiently Pr-generic, its union, | J G, will be a map
from T into 2. Let g be the restriction of | JG to T*, the terminal nodes of
T. So g:T* — 2 is defined by g(s) =i iff Ip € G with p(s) = i.

Lemma 9.9 Suppose a > 1, B(v) is a X0 predicate on 27" coded in M,

and p € Pr. Ifp ||-B(§), then there exists p compatible with p, |p| < «, and
pIFB(9).
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proof:
Case a = 1. Suppose (B(v) <= dn C,(v)) where C,, are clopen. Take

g < p and n so that ¢ IFC, (5) By extending g we may assume that C,(f)
holds for all f € T* with ¢ | T* C f. Then p =%/ ¢ | T* is as required.
Case a > 1. Suppose (B(v) <= 3n B,(v)) where B, is IIj for

some 3, < a. Let py < p and n < w be such that p, |an(§). Let p; be
obtained from the Rank Lemma for § = 3,. Then it must be that p; H—Bn(é).
Otherwise there exists p, < p; such that py Il—ﬂBn(L(O]). By induction there g

compatible with ps (and hence with p), |¢| < B, and ¢ Il—ﬂBn(g). But by
the Rank Lemma such a ¢ would be compatible with p;, contradiction.
O

Lemma 9.10 If B(v) is a Xy, predicate on 27" coded in M, then there exists
G Pr-generic over M such that B(g) iff G({)) =

proof:

If not, 11+ “B(E]) iff G(()) = 17. Let p = ((),1), so plFG({)) = 1 and
therefor p H—B(g). By the Lemma @ there is ¢ compatible with p, |q| < ag
and ¢ II—B(é). But note that ¢* = ¢ U {({),0)} is a condition because () is

o

not in the domain of ¢ since it has rank ag. But ¢* IF“ G({)) = 0 and B(9)”
which is a contradiction.
(]

Now we prove Theorem [9.5] Let Mz =< H, for § < w; be countable
elementary substructures of H, for some sufficiently large regular x, so that
B < implies Mg < M, and P(w) C U,.,,, Mp. Choose G Pr-generic over
M, with the property that for any B(v) a 39, predicate on 27" for some
a B(ga) iff Go(()) = 0. Let X = {9, € 27" : a < w;} and for i = 0,1
let X; = {g9o : Ga(()) = i}. Define U, C 27" for s € T as follows.
U ={ze2” : z(s)=1}. Fors € T° U, =), ~ Usn. Note that if
ranky(s) = f then U, is IT3. Therefor since Uy N X = X; we have that X,
is a II)  subset of X which by construction is not 3o, Soord(X) > ag+ 1.

DeﬁneforpEIPT[] U{Us :p()—l}UU{N : p(s) = 0}. Note
that [p] is AY .. For any Borel B C 2”" there is an « < wy with B coded
in M,. For all v > a G is Pp-generic over M, and hence

gy€Bifdpe G, plkg, € B.
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Note that by Borel absoluteness g, € B iff M, [g,]| = ¢, € B. Let

Y= {pePr : plF ge B}.
Let X=*={g, : v > a}. Then

x=*nB=Xx>n]J

peEX

Since we add and subtract a countable set from any A? ., set and remain
A? .1, we see that ord(X) < ag + 1.

For any p € P and i = 0,1 we have that [p] N X; is AJ,  since it is either
empty (if p({)) = 1 —1) or equal to [p*| N X; where p* = p\{((),7)}. It follows
that ord(X;) < ap.

To get an example with order exactly ag: Either by modifying the above
construction or using the Luzin set argument from [9] Thm 18, we can get
Y C 2¥ with order exactly «q. Let X;“ =def X, @Y where @ means to take
a clopen separated union. Then ord(X;") = ap and XJ U X;" = X @Y has
order ag + 1.

This proves Theorem [9.5]

Note that in case «ay is a successor order we can use the above proof to get
Zy, Zy such that ord(Zy) = ay, ord(Z;) = ap — 1, and ord(ZyU Z1) = ap + 1.
To see this note that since p(()) = 1 implies p((n)) = 0 for all (n) € dom(p)
we have that ord(X;) < ag — 1. Take Y’ with ord(Y’) = ap — 1 and put
Zo=XodY ®0and Z, = X, @0 @ Y.

10 Invariant Descriptive Set Theory

For p a countable similarity type let X, be the Polish space of p-structures
with universe w. For example if p = {R, f, U, ¢} where R is a binary relation
symbol, f a binary operation symbol, U a unary operation symbol and ¢ a
constant symbols then

X, =279 x W x 2Y X w.

The language Ly, .,(p) is obtained by adding countably infinite conjunctions
and disjunctions to the usual first order logical axioms. For example:

Yy \/ Iz, o, ...y V2(R(2,y) = Vi 2 = 1)

n<w
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which says that for every y there are at most finitely many z with R(z,y).

We consider only formulas with at most finitely many free variables. In-
ductively define ¥, and II, formulas as follows: ¥, = Il formulas are the
ordinary first-order quantifier free finite formulas. For o > 0 a formula ¢(%)
is X, iff there are ¢, (4, 7) each a I, formula and

o) = \/ Fndn(, 7).
n<w
A formula ¢(y) is 11, iff there are ¢, (2, 7) each a ¥, formula and

o) = /\ Vanon (a7

n<w

Theorem 10.1 (Mostowski see Kuratowski [8] page 22?) If 6 is a X, sen-
tence of Ly, o(p), then the set of models of 0 is a X Borel subset of X,,.

proof:
For any n and formula 0(Z) where ¥ = xg,...,2,_1 includes all free
variable of # and any s € w" consider the models of §(s):

(MeX,: MEo(s(0),s(1),...,s(n—1))}

Details left to reader.
O

Theorem 10.2 (Scott 196/ see Barwise [1]) For any countable structure A
in a countable similarity type p, there is a sentence 0 of Ly, .,(p) such that
for any countable p-structure B

A~Biff B0

A subset of X, is invariant iff it is closed under isomorphism. Lopez-
Escobar (1965) showed that invariant Borel subsets of X, are the models of
an L, ,(p)-sentence. Vaught proved a hierarchy version of this:

Theorem 10.3 (Vaught [24]) Any 112 subset of X, which is closed under
isomorphism is the set of models of a I, sentence of Ly, .(p)
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proof:

Let S € w* be the Polish group of bijections of w. It’s action on X, is
isomorphism. For example, given m € S5, and R C w X w a binary relation,
then (w, R) is isomorphic to (w,S) via m where S is defined by R(z,y) iff
S(m(z),m(y)). Sex X X, = X, (7, R) — S is a continuous action.

The following is the Vaught transform: For each n € w and one-to-one
map s : n — w define (A,s) € B* iff there are comeagerly many = € [s]
such that 7~*(A) € B. For n = 0 then B* is the set of all A € X, for which
there are comeagerly many m € S, such that 77'(A) € B (or equivalent
comeagerly many 7 with w(A) € B).

Lemma 10.4 Suppose (B, C X, :n <w) and m < w, then

(N B)™ =B

n<w n<w

proof:
The countable intersection of comeager sets is comeager.
a

Lemma 10.5 Suppose B C X, is Borel and n < w, then for any s : n — w
one-to-one,

(A,s) e B iff —=3tDs (A,t) e (~B)!

where ~ B is the complement of B.

proof:

For any (A,s) the set {mr € S, : 7! € B} is the continuous preimage
of a Borel set and hence is Borel and so has the property of Baire. For a
set with the property of Baire, it either is comeager or its complement is
somewhere comeager.
O

Lemma 10.6 For anyn,aa>1and BC X, a Hg set, there is a 11, formula
6(V) such that for any A € X, and s : n — w one-to-one

(A,s) € B iff (A, s) = 0(s(0),...,s(n—1)).
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proof:
First assume o = 1 and B C X, is clopen. Then for some quantifier-free
finite formula
B={AeX,: AE60(0,1,2,...,m)}

Without loss, we may assume m > n.

Then by definition (A, s) € B iff {w : 77'(A) € B} is comeager in [s].
But since B is clopen, {r : 77 !(A) € B} is comeager in [s] iff 771(A) € B
for all # O s. But now 7 '(A4) € B iff 7~ '(A) E 6(0,1,2,...,m). iff
AEO(r(0),7(1),...,m(m).

Hence we get that (A, s) € B*" iff
(A, s) = VYun,...,vm (D(s,0) = 0(s(0),...,s(n—1),v(n),...,v(m)))

where D is the first-order formula saying that the v; are distinct and
different from all the s(j).

To finish the case of @ = 1 just use that if B is II{ then B = (0,,_, Bm
where each B,, is clopen and B** =, B;» by Lemma [10.4]

m<w m

Now assume o > 1 and B C X, is E% for some f < a. Then ~ B
is 1I% and so by Lemma (s,A) € B™ iff =3t D s (A,t) € (~ B)*!
By induction hypothesis (A,t) € (~ B)*l iff (A,t) | 0,,(t(0),...,t(m)) for
some 15 formula 6,,. And so, (A4,s) € B*" iff
(A, 8) = Yun,...,v;m (D(s,7) = =0(s(0),...,s(n—1),v(n),...,v(m)))
Note that this is a Il formula and so a II, formula. To finish this case
if Bis II), then B = (.., B where B,, is ¥  for some 3, < a. Hence
applying Lemma us the result since the countable conjunction of II,
formulas is a II, formula.
O

Vaught’s Theorem follows immediately from the Lemma for the case
n = 0 and B invariant, i.e., B* = B. It also the case that invariant X° sets
are the models of a ¥, sentence by considering complements.

Theorem 10.7 (Hausdorff Difference Hierarchy) B € AD ., iff there exists
a countable sequence of decreasing 112 sets Bg for 8 <~ such that

5= |J B\Bsn

B even <y

For a proof see Kuratowski [§] page-section 777.
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Theorem 10.8 (Douglas E. Miller [19]) If B is also invariant, then
5= U B\5.
B even <~

proof:

The dual of the Vaught *-transform is B> =~ (~ B*). Equivalently
A € B# iff 1(A) € B for non-meagerly many 7 € S,,. Two other transforms
are

Bt={A:3reS, m(A)e B} and B ={A : Vre S, m(A) € B}.
Note that
1. B-CB*CB~CBf
2. B is invariant iff B~ = B*
3. (Unew B)® = U B2
4. B;NBS C (B, NBy)~
5. (~ B)* =~ B~
6. Bi\B; = Bi N ~ (B}) = BN (~ By)"> C (B1\Br)*

To prove the theorem note that

U  B:\Biy, € JBs\Bsi)” = (| JBs\Bs1)* =B =B
5

even g<y B
where these unions are all taken over even < . Hence if we let
Diffeven(B, : a < y) =%/ U{Ba\8a+1 : even a < v}
Then we conclude that
Diffeven(B., : o < ) C B.

To get the reverse inclusion note that the complement of a difference set
is also a difference set. To see this we may without loss of generality assume
that v is a limit ordinal by padding with the empty set if necessary. Then
~ B =~ (U{Bs\Bss+1 : B even <~} is the union of the following sets:
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X,\By

Bs\Bgs1 for odd 5 < 7

(Na<aBa)\By for limit A < ~
1 ma<'yBa

Let us denote this union as Diffodd(B, : @ < ). Then by the argument
above we get that
Diffodd(B : a < ) C~ B

But since Diffeven(B : a < 7) and Diffodd (B, : a < 7y) are complements, it
follows that B = Diffeven(B : a < 7).
O

Corollary 10.9 If the isomorphism class of a countable structure is A%,
then it must be either 112, X0 or the difference of two invariant 112, sets.

[e%

Theorem 10.10 (Miller [11]) The isomorphism class of a countable model
cannot be properly 3V or properly ¥9. For \ a countable limit ordinal, it
cannot be properly X3 or properly the difference of two I13 sets.

Theorem 10.11 (Miller [11], Hjorth [5]) In all other cases of there are
examples of countable structures whose isomorphism class is properly of that
Borel class.
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