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Borel hierarchies

These are lecture notes from a course I gave in the spring semester of
20141. The following results are new:

• 5.10 It is consistent that the Borel subsets of the plane are not con-
tained in any bounded level of the σ-algebra generated by the abstract
rectangles.

• 5.12 It is consistent that for some κ every family of size κ of sets of
reals is included in a countably generated σ-algebra but not necessarily
at a bounded level.

• 7.1 If 2<c = c and there is a Borel universal map, then there is a map
H : 2ω × 2ω → 2ω such that for every κ < c and G : κ × κ → κ there
are xα ∈ 2ω for α < κ such that for all α, β, γ < κ G(α, β) = γ iff
H(xα, xβ) = xγ.

• 9.5 CH implies that for any α0 with 3 ≤ α0 < ω1 there are X0, X1 ⊆ 2ω

with ord(X0) = α0 = ord(X1) and ord(X0 ∪X1) = α0 + 1.

Also the proof of Theorem 4.18 is new. I have omitted some of the results
proved in lecture but only when the proof I gave is identical to that found in
the literature.
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1 Classical Results

This section contains the Theorem of Lebesgue which uses universal sets and
a diagonal argument to show that the length of the Borel hierarchy is as long
as possible, ω1. We also give some results of Bing, Beldsoe, and Mauldin and
of Rec law which I think of as generalizations of Lebesgue’s Theorem.

First we review some standard terminology and results. The Baire space
is ωω = {x | x : ω → ω} where ω = {0, 1, 2, . . .}. For s ∈ ω<ω =

⋃
n<ω ω

n a
finite sequence define a basic clopen set:

[s] = {x ∈ ωω : s ⊆ x}

The Baire space is homeomorphic to the irrationals and is a zero dimensional
Polish space, i.e., completely metrizable separable with a clopen basis. One
complete metric is d(x, y) = 1

n
where n is the least with x � n 6= y � n.

The Cantor space 2ω ⊆ ωω is homeomorphic to the middle thirds set

{
∞∑
n=0

2x(n)

3
: x ∈ 2ω}

The Borel hierarchy is described as follows:

open = Σ0
1˜ = G

closed = Π0
1˜ = F

Π0
2˜ = Gδ = countable intersections of open sets
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Σ0
2˜ = Fσ = countable unions of closed sets

Σ0
3˜ = Gδσ = countable unions of Gδ sets

Σ0
α˜ = {

⋃
n<ω An : An ∈ Π0

<α˜ }
Π0
α˜ = {

⋂
n<ω An : An ∈ Σ0

<α˜ }
Gδσ, Gδσδ, . . . , Fσδ, Fσδσ . . .

The Borel sets are the smallest σ-algebra containing the open sets. In a
metric space F ⊆ Gδ (Π0

1˜ ⊆ Π0
2˜ ), i.e., every closed set is the countable

intersection of open sets.2 It follows that in a metric space for 1 ≤ α < β
that

Σ0
α˜ ∪Π0

α˜ ⊆ Σ0
β˜ ∩Π0

β˜ = def∆0
β˜

Example 1.1 (Willard 1971 [25]) There are nice spaces in which closed sets
are Gδσ but not Gδ.

proof:
Suppose (X, τ) is a space for which closed sets are Gδ and Gδσ 6= Gδ.

Fix A ∈ Gδσ\Gδ. Let τA be the smallest topology containing τ and the
complement of A, ∼ A =def X\A. Then the closed sets of τA are a subset of
Gδσ(τA) but not of Gδ(τA).

U ∈ τA iff there are V,W ∈ τ with U = (V ∩ ∼ A)∪W . A is closed in τA
but is not the countable intersection of τA open sets, else

A =
⋂
n<ω

(Vn∩ ∼ A) ∪Wn

But then A =
⋂
n<ωWn, but A is not Gδ.

2

The equation ⋃
n

Pn ∩
⋃
m

Qm =
⋃
n,m

Pn ∩Qm

shows by induction that

• Σ0
α˜ is closed under finite intersections and

• Π0
α˜ is closed under finite unions.

2If C is closed, then C =
⋂

n Un where Un = {x : ∃y ∈ C d(x, y) < 1
n}.
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Another easy proposition is that for f : X → Y a continuous map:

• If A ∈ Σ0
α˜ (Y ), then f−1(A) ∈ Σ0

α˜ (X).

• If A ∈ Π0
α˜ (Y ), then f−1(A) ∈ Π0

α˜ (X).

Note that 2ω is naturally homeomorphic to 2ω×2ω via the map x 7→ (y, z)
where y(n) = x(2n) and z(n) = x(2n + 1). We use x = 〈y, z〉 to denote the
pairing map. Similarly (2ω)ω is homeomorphic to 2ω via x = 〈xn : n < ω〉
where xn(m) = x(〈n,m〉) and 〈n,m〉 = 2n(2m+ 1)− 1 is a bijection between
ω × ω and ω.

Theorem 1.2 (Lebesgue 1905 see [16] Thm 2.5) For every countable α > 0

Σ0
α˜ (2ω) 6= Π0

α˜ (2ω).

This follows from the existence of universal sets and a diagonal argument.

Universal Sets Lemma. For every countable α > 0 there exists U ⊆ 2ω×2ω

which is Σ0
α˜ and universal for Σ0

α˜ -sets, i.e., for every V ⊆ 2ω which is Σ0
α˜there exists x ∈ 2ω such that V = Ux =def {y : (x, y) ∈ U}.

proof:
Note that U ∈ Σ0

α˜ implies Ux ∈ Σ0
α˜ for all x ∈ 2ω. To see this let

f : 2ω → 2ω × 2ω be defined by f(y) = (x, y), then Ux = f−1(U).

Case α = 1.
Let {Cn : n < ω} list all clopen subsets of 2ω. Define

(x, y) ∈ U iff ∃n (x(n) = 1 and y ∈ Cn).

Note that U =
⋃
n<ω({x : x(n) = 1} × Cn).

Case α > 1.
Let {αn : n < ω} list with infinitely many repetitions the nonzero ele-

ments of α. Let Uαn be a universal Σ0
α˜ n

set. Define U by

(x, y) ∈ U iff ∃n (xn, y) /∈ Uαn

Note that ∼ Uαn is a universal Π0
α˜ n

set. For each fixed n the set

{(x, y) : (xn, y) ∈ Uαn}
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is Σ0
α˜ n

because it is the preimage of Uαn under a continuous map, namely

(x, y) 7→ (xn, y). Hence it is easy to verify that U is a universal Σ0
α˜ set.

2

The Diagonal Argument. Suppose U ⊆ 2ω×2ω is a universal Σ0
α˜ set. Let

D = {x ∈ 2ω : (x, x) /∈ U}.

Then D is Π0
α˜ because it is the continuous preimage of ∼ U under the map

x 7→ (x, x). However D 6= Ux for any x ∈ 2ω so D is not Σ0
α˜ .

This proves Theorem 1.2.
2

Define ord(X) to the least ordinal such that Σ0
α˜ (X) = Borel(X). Hence

ord(2ω) = ω1.

Corollary 1.3 If X is any topological space which contains a homeomorphic
copy of 2ω, then ord(X) = ω1. More generally, if Y ⊆ X is subspace, then
ord(Y ) ≤ ord(X).

proof:
If Y ⊆ X, then

Σ0
α˜ (Y ) = {B ∩ Y : B ∈ Σ0

α˜ (X)}

and
Borel(Y ) = {B ∩ Y : B ∈ Borel(X)}.

2

Suppose H ⊆ P(Y ) define Σα(H) as follows:
Σ0(H) = {∼ A : A ∈ H} and for α > 0

Σα(H) = {
⋃
n<ω

∼ A : An ∈
⋃
β<α

Σβ(H)}

We let Borel(H) be the σ-algebra generated by H and let ord(H) be the least
α with Σα(H) = Borel(H).

Theorem 1.4 (Bing, Bledsoe, Mauldin [2] also [16] Thm 3.2 [15] Thm 18)
Suppose H ⊆ P(2ω) is a countable family such that Borel(2ω) ⊆ Borel(H).
Then ord(H) = ω1, i.e., the σ-algebra generated by H has ω1 many levels.
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To prove this theorem we will need the following two lemmas. Given a
countable H ⊆ P (2ω) let

F = {C × A : C ⊆ 2ω is clopen and A ∈ H} ⊆ P(2ω × 2ω).

Lemma 1.5 (Universal sets) For each α with 1 ≤ α < ω1 there exists a set
U ∈ Σα(F) which is universal for Σα(H) sets, i.e., for every A ∈ Σα(H),
there exists x ∈ 2ω such that A = {y : (x, y) ∈ U}.

proof:
For α = 1: Let H = {An : n ∈ ω} let

U =
⋃
n∈ω

{x : x(n) = 1} × (2ω \ An).

For α > 1: Let x 7→ 〈xn : n ∈ ω〉 be a nice recursive coding taking
2ω → (2ω)ω. Let βn for n ∈ ω be cofinal in α, and Un ∈ Σβn(F) be universal
for Σβn(H) sets. Define U ′n by (x, y) ∈ U ′n iff (xn, y) ∈ Un. It is easy to check
that U ′n is also Σβn(F) and universal for Σβn(H). But now taking

U =
⋃
n∈ω

(2ω \ U ′n)

gives us a set in Σα(F) which is universal for Σα(H) sets.
2

Lemma 1.6 (Diagonalization) Suppose that every clopen set is in Borel(H).
Then for every B ∈Borel(F) the set {x : (x, x) ∈ B} is in Borel(H).

proof:
For B = C × A where A ∈ H and C ⊆ 2ω is clopen, note that

{x : (x, x) ∈ B} = C ∩ A.

Since by assumption C ∈Borel(H), we have the lemma for elements of F .
To do Borel(F) is an easy induction.
2

Now we give a proof of Theorem 1.4. Suppose Borel(H) = Σα(H). By
Lemma 1.5 there exist U in Borel(F) which is universal for Σα(H) and hence
Borel(H). By Lemma 1.6 the set

D = {x : (x, x) /∈ U}
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is in Borel(H). But this means that for some x that D = {y : (x, y) ∈ U}.
But then x ∈ D iff x /∈ D.
2

Theorem 1.7 (Rec law 1993 see [16] Thm 3.5 [15] Thm 17) If X is a second
countable space and X can be mapped continuously onto any space containing
2ω, then ord(X) = ω1.

proof:
By going to a subspace of X we may that there is an f : X → 2ω which

is one-to-one, onto, and continuous. Let C be a countable open basis for X
containing the pre-images under f of the clopen subsets of 2ω. Let

H = {f(C) : C ∈ C}.

Since it is clear thatH contains all clopen sets, by Theorem 1.4, the ord(H) =
ω1. But the map f takes the Borel hierarchy of X directly over to the
hierarchy on Borel(H), so ord(X) = ω1.
2

Remark 1.8 Rec law’s result is also true, ord(X) = ω1, if we only assume
that there is a Borel map onto map f : X → 2ω.

To see this let C be a countable open basis for X and let B be the pre-
images under f of the clopen subsets of 2ω. Let G = C ∪B and H = {f(C) :
C ∈ G}. Then ord(H) = ω1 by Theorem 1.4. And so ord(G) = ω1. This
means that ord(X) = ω1, since Borel(G) = Borel(X) and Σ0

1˜ (X) ⊆ Σ1(G)
implies ord(G) ≤ ord(X). To see this note that if α = ord(X), then

Borel(G) = Borel(X) = Σ0
α˜ (X) ⊆ Σα(G) ⊆ Borel(G).

An extension of Rec law’s result to Souslin (operation A) sets appears in
Miller [14].

Remark 1.9 It is relatively consistent to have X, Y ⊆ 2ω and f : X → Y
continuous, one-to-one, and onto such that ord(X) = 2 and ord(Y ) = 3.

proof:
To see this note that it is relatively consistent to have a Q-set H of size

ω1 which is concentrated on a countable set E (Fleissner and Miller [4]).
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Let Y = H ∪ E = {yα : α < ω1} and H = {xα : α < ω1} be one-to-one
enumerations. Put X = {〈xα, yα〉 : α < ω1} and let f be projection onto the
second coordinate, i.e., f(〈x, y〉) = y. X is a Q-set so has order 2 and it easy
to check that Y has order 3.
2

In the iterated Sack real model the continuum is ω2 and for every X ⊆ 2ω

of size ω2 there is a continuous onto map f : X → 2ω (see Miller [12]) and
hence ord(X) = ω1. So in the Sacks real model every set of reals of size
continuum has order ω1.

Corollary 1.10 If X is separable, metric, but not zero-dimensional, then
ord(X) = ω1.

proof:
Suppose ord(X) < ω1. Let d be any metric on X and x ∈ X arbitrary.

There must be arbitrarily small ε > 0 such that there is no y ∈ X with
d(x, y) = ε. Otherwise the map y 7→ d(x, y) has a nontrivial interval in its
image.
2

Any zero-dimensional separable metric space is homeomorphic to a sub-
space of 2ω. See Kechris [6] page 38.

2 The ω1-Borel hierarchy

Define the levels of the ω1-Borel hierarchy of subsets of 2ω as follows:

1. Σ∗0 = Π∗0 = clopen subsets of 2ω

2. Σ∗α = {
⋃
β<ω1

Aβ : (Aβ : β < ω1) ∈ (Π∗<α)ω1}

3. Π∗α = {2ω\A : A ∈ Σ∗α}

4. Π∗<α =
⋃
β<α Π∗β Σ∗<α =

⋃
β<α Σ∗β

The length of this hierarchy is the smallest α ≥ 1 such that

Π∗α = Σ∗α.

Theorem 2.1 (Miller [18]) (MAω1) Π∗α 6= Σ∗α for every α < ω2.

8



We prove this using the following two lemmas. A well-known consequence
of MAω1 is that every subset Q ⊆ 2ω of size ω1 is a Q-set, i.e., for every subset
X ⊆ Q there is a Gδ set G ⊆ 2ω with G ∩ Q = X (see Fleissner and Miller
[4]).

Lemma 2.2 Suppose there exists a Q-set of size ω1. Then there exists an
onto map F : 2ω → 2ω1 such for every subbasic clopen set C ⊆ 2ω1 the set
F−1(C) is either Gδ or Fσ.

proof:
Fix Q = {uα ∈ 2ω : α < ω1} a Q-set. Let G ⊆ 2ω × 2ω be a universal

Gδ set, i.e., G is Gδ and for every Gδ set H ⊆ 2ω there exists x ∈ 2ω with
Gx = H. Define F as follows, given x ∈ 2ω let

F (x)(α) = 1 iff uα ∈ Gx

If C is a subbasic clopen set, then for some α and i = 0 or i = 1

Cα,i = {p ∈ 2ω1 : p(α) = i}.

Then for i = 1
F−1(Cα,1) = {x : uα ∈ Gx}

which is aGδ set. Since Cα,0 is the complement of Cα,1 we have that F−1(Cα,0)
is an Fσ-set

Finally, we note that since Q is a Q-set, i.e., every subset is a relative Gδ,
it follows that F is onto.
2

The next Lemma is true without any additional assumptions beyond ZFC.
Its proof is a generalization of Lebesgue’s 1905 proof (see Kechris [6] p.168)
for the standard Borel hierarchy.

Lemma 2.3 For any α with 0 < α < ω2 there exists a Σ∗α set U ⊆ 2ω1 × 2ω

which is universal for Σ∗α subsets of 2ω, i.e., for any Q ⊆ 2ω which is Σ∗α
there exists p ∈ 2ω1 with Up = Q. Similarly, there is a universal Π∗α set.

proof:
The proof is by induction on α. Note that the complement of a universal

Σ∗α set is a universal Π∗α-set.
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For α = 1, Σ∗α is just the open sets. There is a universal open set
V ⊆ 2ω × 2ω. Put

U = {(p, x) ∈ 2ω1 × 2ω : (p � ω, x) ∈ V }

For α such that 2 ≤ α < ω2 proceed as follows. Let (δβ < α : β < ω1)
have the property that for every γ < α there are ω1 many δβ ≥ γ. It follows
that for every Σ∗α set Q ⊆ 2ω there is (Qβ ∈ Π∗δβ : β < ω1) with

Q =
⋃
β<ω1

Qβ.

By induction, there are Uβ ⊆ 2ω1×2ω universal Π∗δβ sets. Let a : ω1×ω1 → ω1

be a bijection. For each β define

πβ : 2ω1 × 2ω → 2ω1 × 2ω, (p, x) 7→ (q, x)

where q(α) = p(a(β, α)). Put

U =
⋃
β<ω1

π−1
β (Uβ)

then U will be a universal Σ∗α set.
2

Now we prove Theorem 2.1. Suppose for contradiction, that every ω1-
Borel set is Σ∗α for some fixed α < ω2. Let U ⊆ 2ω1 × 2ω be a universal Σ∗α
and define

V = {(x, y) ∈ 2ω × 2ω : (F (x), y) ∈ U}.
Then V is an ω1-Borel set (although not necessarily at the Σ∗α) because the
preimage of any clopen box C ×D is ω1-Borel by Lemma 2.2. Define

D = {x : (x, x) /∈ V }.

But then D is ω1-Borel but not Σ∗α. We see this by the usual diagonal
argument that if D = Up, then since F is onto there would be x ∈ 2ω such
that F (x) = p but then

x ∈ D iff (F (x), x) /∈ U iff x /∈ Up iff x /∈ D.

2
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Remark 2.4 In the Cohen real model this hierarchy has order either ω1 + 1
or ω1 + 2, I am not sure which.

Remark 2.5 Note that in the proof V ⊆ 2ω × 2ω is a Σ∗2+α-set, since the
preimage of a clopen set under F is ∆0

3. Hence for levels α ≥ ω the set V is
a Σ∗α set which is universal for Σ∗α sets.

Remark 2.6 Our result easily generalizes to show that MA implies that for
any κ a cardinal with ω ≤ κ < |2ω| the κ-Borel hierarchy has length κ+.
This implies that assuming MA for any κ1 < κ2 there are κ2-Borel sets
which are not κ1-Borel.3 It is also true for the Cohen real model that for
ω ≤ κ1 < κ2 < |2ω| that there are κ2-Borel sets which are not κ1-Borel.

Proposition 2.7 ([18]) If P(2ω) = ω1-Borel, then P(2ω) = Σ∗α for some
α < ω2.

proof:
Suppose not and let Pα for α < ω2 be pairwise disjoint homeomorphic

copies of 2ω. For each α let Aα ⊆ Pα be such that Aα /∈ Σ∗α. Then

A =def
⋃
α<ω2

Aα

is not ω1-Borel.
2

Steprans [23] showed that it is relatively consistent with ZFC that

Π∗3 = Σ∗3 = P(2ω) and Π∗2 6= Σ∗2

and the continuum is ℵω1 . Carlson [3] showed:

Theorem 2.8 (Carlson) If every subset of 2ω is ω1-Borel, then the cofinality
of the continuum must be ω1.

proof:
Let Bα ⊆ 2ω for α < c list all (ordinary) Borel sets. Let Xα ∈ [2ω]ω

for α < c be a family of pairwise disjoint infinite countable sets. For each
α choose Zα ⊆ Xα such that Bβ ∩ Xα 6= Zα for every β < α < c. Put

3Since κ2-Borel sets at level κ+1 or higher cannot be κ1-Borel.
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Z =
⋃
α<c Zα. We claim that if cof(c) > ω1 then Z is not ω1-Borel. This will

follow easily from the following

Claim. For any C ⊆ 2ω an ω1-Borel set, there are (ordinary) Borel sets Cα
for α < ω1 such that for any x ∈ 2ω there is a closed unbounded Q ⊆ ω1 such
that for every α ∈ Q (x ∈ C iff x ∈ Cα).
proof:

We code ω1-Borel sets with well-founded trees. For T ⊆ ω<ω1 a well-
founded tree let T ∗ be the rank zero or terminal nodes of T . To simplify
matters assume that for every s ∈ T\T ∗ all immediate extensions of s, i.e.,
sˆα, are in T . Let C be the clopen subsets of 2ω. Given c : T ∗ → C define
H(s, (T, c)) ⊆ 2ω for s ∈ T by the rank of s.

• H(s, (T, c)) = c(s) for s ∈ T ∗ and otherwise

• H(s, (T, c)) =
⋂
α<ω1

∼ H(sˆα, (T, c))

Now let C = H(〈〉, (T, c)). For any α < ω1 let Tα = α<ω ∩T , cα = c � T ∗α,
and Cα = H(〈〉, (Tα, cα)). Since α is countable Cα is an ordinary Borel set.
Consider any x ∈ 2ω. Let κ be a large enough regular cardinal. Construct a
continuous ω1 chain Mα � Hκ of countable elementary substructures satis-
fying:

1. (T, c) ∈M0 and x ∈M0,

2. Mα ∈Mα+1

3. Mλ =
⋃
α<λMα for λ < ω1 limit.

Then automatically Q = {Mβ ∩ω1 : β < ω1} will be a closed unbounded set.
Now if α = Mβ ∩ ω1. Since (T, c) and x are both in Mβ it is easy to see by
induction on rank that for any s ∈ Tα that

x ∈ H(s, (Tα, cα)) iff x ∈ H(s, (T, c)).

This proves the Claim.
To prove the Theorem suppose for contradiction that Z = C where C is

ω1-Borel and let (Cα : α < ω1) be given by the Claim. If the cofinality of c is
greater ω1 then for some β < c we have that {Cα : α < ω1} ⊆ {Bα : α < β}.
But Zβ 6= Xβ ∩ Cα for every α < ω1 which is a contradiction.
2
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3 The order of a separable metric space

Theorem 3.1 (Miller [9] Thm 22) It is relatively consistent with ZFC that
ord(X) = ω1 for all uncountable X ⊆ 2ω.

It also consistent with any cardinal arithmetic that for every α with 2 ≤
α ≤ ω1 there is an uncountable X ⊆ 2ω with ord(X) = α. One can also have
model where these orders are precisely the interval [α0 + 1, ω1].

The model for this theorem is the ω2 finite support iteration of the direct
sum P of Πα-forcings for α < ω1.

Definition 3.2 Nice α tree. For 2 ≤ α < ω1 we define T ⊆ ω<ω to be a nice
α-tree iff

1. it is well-founded tree of rank α, i.e., rankT (〈〉) = α

2. for any s ∈ T with rankT (s) > 0 we have that sˆn ∈ T for all n < ω

3. if rankT (s) = β + 1, then rankT (sˆn) = β for all n

4. if rankT (s) = λ a limit ordinal, then for any β < λ there are at most
finitely many n with rankT (sˆn) ≤ β.

Definition 3.3 Fix a nice α-tree T , let T ∗ be the terminal nodes of T , i.e.,
those of rank zero, and let T+ = T\T ∗. Πα-forcing is the poset Pα defined as
follows: p ∈ Pα iff there are finite p0 ⊆ T ∗× 2<ω and p1 ⊆ T+× 2ω such that
p = p0 ∪ p1 and p0 is the graph of a partial function and they are consistent.
Consistency means that

• if (s, x), (sˆn, y) ∈ p1 then x 6= y and

• if (s, x) ∈ p1 and (sˆn, t) ∈ p0, then x /∈ [t].

We think of our conditions as attaching elements of 2ω to nodes of the
tree T subject to the condition that no x is attached to immediately adjacent
nodes, i.e., s and sˆn are immediately adjacent. We think of (sˆn, t) ∈ p0

(or equivalently p0(sˆn) = t since it is a partial function) as attaching all
elements of the clopen set [t] = {x ∈ 2ω : t ⊆ x} to the terminal node
sˆn ∈ T ∗.

Lemma 3.4 For any countable ordinal α0, Πα0-forcing Pα0 has the count-
able chain condition.
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proof:
Suppose A is uncountable antichain. Since there are only countably many

different p0 without loss we may assume that there exists r such that p0 = r
for all p ∈ A. Consequently for p, q ∈ A the only thing that can keep p ∪ q
from being a condition is that there must be an x ∈ 2ω and an s, sˆn ∈ T+

such that
(s, x), (sˆn, x) ∈ p ∪ q.

But now for each p ∈ A let Hp : X → [T+]<ω be the finite partial function
defined by

Hp(x) = {s ∈ T+ : (s, x) ∈ p1}

where X = {x : ∃s ∈ T+ (s, x) ∈ p1}. Then {Hp : p ∈ A} is an uncountable
antichain in the order of finite partial functions from 2ω to [T+]<ω. But this
is impossible.
2

It is easy to see that it has property K, in fact, it is σ-centered, so ccc
productive. It follows that the direct sum

P =def
∑
{Pα+1 : 2 ≤ α < ω1}

also has the countable chain condition.
To obtain our model for Theorem 3.1 start with a countable transitive

model of ZFC, M , and do a finite support iteration of P of length ω2, denoted
Pω2 . We let Pα be the iteration of P up to length α.

Fix T a nice α-tree for some α. Given G Pα-generic over M , for each
s ∈ T define UG

s ⊆ 2ω. For s ∈ T ∗ define UG
s = [t] if there exists p ∈ G such

that p0(s) = t. Note that by genericity such a t will always exist, i.e., for any
q there exists p ≤ q such that s is in the domain of p. For s ∈ T+ define

UG
s =

⋂
n<ω

∼ UG
sˆn.

Note that UG
s is a Π0

α˜ -set where α = rankT (s).

Lemma 3.5 For any x ∈ 2ω ∩M and s ∈ T+ and G Pα-generic over M

x ∈ UG
s iff ∃p ∈ G (s, x) ∈ p
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proof:
To simplify notation write (s, x) ∈ G instead of {(s, x)} ∈ G or there

exists p ∈ G with (s, x) ∈ p.
Fix x and s. It is easy to see that the following sets are dense:

(if rankT (s) = 1) D = {p ∈ Pα : (s, x) ∈ p or ∃n, t p0(sˆn) = t and x ∈ [t]}
(if rankT (s) > 1) E = {p ∈ Pα : (s, x) ∈ p or ∃n (sˆn, x) ∈ p}
By definition x ∈ UG

s iff x /∈ UG
sˆn for all n.

If rankT (s) > 1, then by induction:
x /∈ UG

sˆn for all n iff (sˆn, x) /∈ G for all n
Since E is dense:

(sˆn, x) /∈ G for all n iff (s, x) ∈ G.
If rankT (s) = 1, then

x /∈ UG
sˆn for all n iff for all p ∈ G if p0(sˆn) = t then x /∈ [t].

Since D is dense:
for all p ∈ G if p0(sˆn) = t then x /∈ [t] iff (s, x) ∈ G.

2

Definition 3.6 Canonical names. For any poset P the canonical names
CN(P) for an element of 2ω are defined as follows. τ ∈ CN(P) iff there
exists (A0

n, A
1
n : n < ω) such that A0

n ∪ A1
n ⊆ P is a maximal antichain and

τ = {(p, ˇ(n, i)) : n < ω, i < 2, and p ∈ Ain}.

Definition 3.7 Nice conditions. Let Tα for 2 ≤ α < ω1 be the nice α-trees
used to define Πα-forcing Pα. P For p ∈ Pα we say the p is nice iff p(0) ∈ P
and for all γ with 0 < γ < α p(γ) is a name for a finite set p0 ∪ p1 where

p0 :
⋃

2≤α<ω1

({α + 1} × T ?α+1)→ 2<ω

is a finite partial map and

p1 ⊆
⋃

2≤α<ω1

{α + 1} × (T+
α+1 × CN(Pγ))

is finite. For every τ in the range of p1 there is a tτ ∈ 2<ω such that p �
γ 
tτ ⊆ τ and for all α, s, n, τ, σ, r

1. if (α, (s, τ)), (α, (sn, σ)) ∈ p1 then tτ ⊥ tσ

15



2. if (α, (s, τ)) ∈ p1 and p0(α, sn) = r ∈ 2<ω, then tτ ⊥ r.

The nice conditions are dense so from now on we will assume all conditions
are nice.

Definition 3.8 Rank. Given H ⊆ 2ω, nice p ∈ Pα, and τ ∈ CN(Pα) define
rank(p,H) and rank(τ,H, p) by induction on α.

1. For Pα (Πα-forcing), if p = p0 ∪ p1 ∈ Pα then

rank(p,H) = max{rankTα(s) : ∃x ∈ 2ω\H (s, x) ∈ p1}

2. For p ∈ P =
∑
{Pα+1 : 2 ≤ α < ω1}

rank(p,H) = max{rank(pα, H) : α < ω1}

3. For γ a limit ordinal and p ∈ Pγ

rank(p,H) = max{rank(p � β,H) : β < γ}.

4. For τ ∈ CN(Pγ) and p ∈ Pγ, rank(τ,H, p) is the least β such that for
every n < ω

Q =def {q ∈ Pγ : q ⊥ p or rank(q,H) ≤ β} decides “τ(n) = 0”.

By which we mean

{r ∈ Pγ : ∃q ∈ Q r ≤ q and (q 
τ(n) = 0 or q 
τ(n) = 1)}

is dense in Pγ.

5. For p ∈ Pγ?
◦
P Np(γ) = {τ : ∃α < ω1 ∃s ∈ 2<ω (α, (s, τ) ∈ p(γ)}

rank(p,H) = max{rank(p � γ,H), rank(τ,H, p � γ) : τ ∈ Np(γ)}.

A set of conditions Q decides θ iff for every generic G there is a q ∈ Q∩G
which forces θ or forces ¬θ.

Lemma 3.9 (ccc) For any countable P ⊆ Pγ and countable N ⊆ CN(Pγ)
there is a countable H ⊆ 2ω such that rank(p,H) = 0 for every p ∈ P and
rank(τ,H, 1) = 0 for every τ ∈ Q.
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proof:
Let Pγ, P,Q ∈ N � Hκ where N is a countable elementary substructure

of the hereditarily of cardinality less than κ sets for some sufficiently large
regular κ. Take H = N ∩ 2ω. Then for any p ∈ N ∩Pγ and τ ∈ N ∩CN(Pγ)
we have that rank(p,H) = 0 and rank(τ,H, 1) = 0.
2

Definition 3.10 | · | abbreviations for rank. For the next two lemmas (meet
3.11 and rank 3.12) we will fix a countable H ⊆ 2ω and use the abbreviations:

|p| = rank(p,H) and |τ |(p) = rank(τ,H, p).

Lemma 3.11 (Meet lemma) If G is Pα-generic over M and (qi ∈ G : i < N)
is a finite set with |qi| < β, then there exists q ∈ G with |q| < β and q ≤ qi
for all i < N .

proof:
Case α = 0 hence P0 = P. Let q =

⋃
i<N qi. By definition of generic filter

∃p ∈ G with p ≤ qi each i < N . Hence p ≤ q and so q ∈ G.
Case α a limit ordinal. There exists α0 < α with supp(qi) ⊆ α0 for i < N .

By induction hypothesis there is q � α0 ∈ Gα0 with q � α0 ≤ qi � α0 for each
i < N and |q � α0| < β. Let q � [α0, α) be identically 1.

Case α + 1 successor. Suppose qi ∈ Gα+1 = Gα ? G
α which is Pα?

◦
P-

generic. Let Γ ⊆ Gα be finite so that |r| < β for all r ∈ Γ and for any
τ1, τ2, s, n if (s, τ1), (sn, τ2) ∈

⋃
i<N qi(α) then there exists r ∈ Γ such that

r 
τ1 6= τ2 and similarly, if (s, τ) ∈
⋃
i<N qi(α) and pqi0 (sn) = t for some i,

then there exists r ∈ Γ such that r 
t 6⊆ τ . By inductive hypothesis there is
q � α ∈ Gα with |q � α| < β and q � α ≤ qi � α for i < N and q � α ≤ r for
each r ∈ Γ. Then (q � α,

⋃
i<N qi(α)) satisfies the Lemma.

2

Lemma 3.12 (Rank Lemma for Pα) For every β ≥ 1 and p ∈ Pα there
exists p̂ ∈ Pα compatible with p, |p̂| ≤ β, and for every q ∈ Pα with |q| < β,
if q, p̂ compatible, then q, p compatible.

proof:
The nontrivial case for this is Pα+1 = Pα ∗ P.

Assume p0 ∈ Pα, |p0| ≤ β, p0 
“
◦
C⊆ 2ω closed nonempty” and for every

G Pα-generic over M with p0 ∈ G for every s ∈ 2<ω if M [G] |= [s] ∩ C = ∅
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then there is q ∈ G with |q| < β such that q 
[s]∩
◦
C= ∅. We prove the

following two Claims.

Claim 1. For all G Pα-generic over M with p0 ∈ G for every s ∈ 2<ω if

M [G] |= [s]∩C 6= ∅ then there is p ∈ G with |p| ≤ β such that p 
[s]∩
◦
C 6= ∅.

proof:

Let p1 ∈ G with p1 ≤ p0 and p1 
[s]∩
◦
C 6= ∅. Define

Dp1 = {p ∈ Pα : ∃p2 p ≤ p2 ≤ p1 and p ≤ p̂2}

where p̂2 is the condition with |p̂2| ≤ β given by the induction hypothesis of
the Rank Lemma. Dp1 is dense beneath p1 and so it meets G. Hence there
exists p2 with p2, p̂2 both in G. Apply the Meet Lemma to get p ∈ G with
|p| ≤ β and p ≤ p0 and p ≤ p̂2. To see that p works let G0 be Pα generic with
p ∈ G0. Suppose for contradiction that in M [G0] that [s] ∩ C = ∅. Then
since p0 ∈ G0 we have by assumption that for some q ∈ G0 with |q| < β that

q 
[s]∩
◦
C= ∅. Since p̂2 ∈ G0 it is compatible with q. But by the definition of

p̂2 as witness to Meet Lemma for p2, it follows that q and p2 are compatible.

But they are not compatible since p2 ≤ p1 and p1 
[s]∩
◦
C 6= ∅.

2

Claim 2. Let p0 
“
◦
x is the lexicographically least element of

◦
C. Then | ◦x

| ≤ β.
proof:

Let G be Pα-generic over M with p0 ∈ G. Fix any N < ω and let
x � N = s. Hence [s] ∩ C 6= ∅. Furthermore, if ni for i < k lists all n < N
with s(n) = 1 then [ti] ∩ C = ∅ where ti(ni) = 0 and ti � ni = s � ni. By

Claim 1, there is p1 ∈ G with |p1| ≤ β such that p1 
[s]∩
◦
C 6= ∅ and by

assumption qi ∈ G for i < k with |qi| < β such that qi 
[ti]∩
◦
C= ∅. By the

Meet Lemma there is p ∈ G with |p| ≤ β which extends p1 and qi for i < k.

Then p 

◦
x∈ [s]. Since N and G were arbitrary | ◦x | ≤ β.

2

Given τ a Pα-name for an element of 2ω, G Pα-generic over M , and p ∈ Pα
(not necessarily in G) let C(τ, p) ⊆ 2ω be the following closed set in M [G]:

C(τ, p) =
⋂
{Kτ̂ : ∃q ∈ G |q| < β, |τ̂ |(q) < β, and p ∪ q 
τ ∈ Kτ̂}
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By p∪q 
θ we mean that they are compatible and r 
θ for every r ≤ p, q.
Here K ⊆ 2ω × 2ω is the standard universal closed set and Kx is the cross
section.

Given any p ∈ Pα let p0 = p̂ be given by the inductive hypothesis for the

Rank Lemma and τ a name for an element of 2ω. Let
◦
C be a name for the

closed set C(τ, p). Then

Claim 3. p0,
◦
C satisfy the assumption of Claim 1 and 2, namely

(a) p0 

◦
C⊆ 2ω is closed and nonempty

(b) for any G Pα-generic over M with p0 ∈ G for any s ∈ 2<ω then if
[s] ∩ C = ∅ in M [G], then there is q ∈ G with |q| < β such that

q 
[s]∩
◦
C= ∅.

proof:
We verify (b) first. Suppose [s] ∩ C = ∅ in M [G]. By compactness there

are finitely many qi, τi for i < k with qi ∈ G, |qi| < β, |τi|(qi) < β, each qi
compatible with p, p ∪ qi 
τ ∈ Kτi , and⋂

i<k

Kτi ∩ [s] = ∅

We claim that for some N < ω for all (xi ∈ [τGi � N ] : i < k) that⋂
i<k

Kxi ∩ [s] = ∅

Otherwise for each N choose (xNi ∈ [τGi � N ] : i < k) and yN ∈ [s]
⋂
i<kKxNi

∩
[s]. But by compactness a subsequence of the yN converges to some y ∈ [s]
and we get (y, τGi ) ∈ K for each i < k.

Let si = τGi . By the Meet Lemma and the definition of |τi|(qi) < β there
is a q ∈ G with |q| < β such that q 
τi � N = si for all i < k. It follows that

q 
[s]∩
◦
C= ∅.

To prove (a) that C is nonempty, suppose for contradiction that for some
G Pα-generic over M with p0 ∈ G we have that C is empty. Then apply part
(b) for s = 〈〉 the empty sequence. Then there is q ∈ G with |q| < β and
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q 

◦
C= ∅. But p0 = p̂ so since p̂, q are compatible, p, q are compatible. But

this is impossible because p 
τ ∈
◦
C so it cannot be empty.

2

Before getting to the proof of the Rank Lemma for Pα+1 we note some
properties of the universal Π0

1 set K ⊆ 2ω × 2ω. First of all it is easier to
think in terms of its complement U =∼ K which is universal for open sets.
Let {sn : n < ω} = 2<ω be a recursive listing and put

y ∈ Ux iff ∃n (x(n) = 1 and sn ⊆ y)

For each n < ω there is a recursive level preserving map f : (2ω)n → 2ω

such that for any sequence (xi ∈ 2ω : i < n) if f(xi ∈ 2ω : i < n) = y then
Uy = ∩i<nUxi and hence Ky = ∪i<nKxi . Simply define f(~x) = y by

y(m) = 1 iff ∀i < n ∃l < m (xi(l) = 1 and sl ⊆ sm)

Note also that (2ω)n is natural homeomorphic to 2ω via a recursive join
operator and we use ~x to denote this element of 2ω.

So given p ∈ Pα+1 = Pα∗
◦
P and β ≥ 1 we let p = (p � α, p(α)). We may

assume that p(α) = p0 ∪ p1 where p0 : T ∗ → 2<ω is a finite partial map and
p1 is a finite subset of T 0×N where N are Pα names for elements of 2ω and
T ∗ are the terminal nodes of T and T 0 are the nonterminal nonroot nodes.
In addition we may assume for each (s, τ) ∈ p1 there is a t ∈ 2<ω such that
p 
t ⊆ τ and the t witness that p1 is a condition, namely

• if (s, τ1), (sn, τ2) ∈ p1 then t1 ⊥ t2

• if (s, τ) ∈ p1 and p0(sn) = r then t ⊥ r

We write p1 = p1(~τ) where ~τ is an n-tuple list all τ mentioned in p1. To get
p̂ for the Rank Lemma for Pα+1 let

p̂ =def ( p̂ � α , p0 ∪ p1(~τlex) )

where ~τlex is a Pα name for the lexicographically least element of
◦
C (p � α, ~τ).

By the claims |p̂| ≤ β. Note that C ⊆
∏

i<n[ti] and so ~τlex ∈
∏

i<n[ti]
and so p̂ and p are compatible. Finally we need to show that if |q| < β
and p, q incompatible, then p̂, q incompatible. Suppose p, q incompatible. If
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p � α, q � α incompatible we are done by inductive choice of p̂ � α. So we
may assume that they are compatible but

p � α ∪ q � α 
p(α) ⊥ q(α)

Let q(α) = q0∪q1 where the names occurring in q1 have rank < β with respect
to q � α. Now we detail how the incompatibility p(α) ⊥ q(α) translates into
closed sets. We may construct Σ a finite set of names for elements of 2ω such
that

• |ρ|(q � α) < β for each ρ ∈ Σ

• if (s, τi) ∈ p1 and q0(sn) = r, then for some ρ ∈ Σ

Kρ = {~x : xi ∈ [r]}

• if (s, σ) ∈ q1 and p0(sn) = r, then some ρ ∈ Σ is name such that for
any generic G

KρG =

{
∅ if σG /∈ [r]
(2ω)n otherwise

• if ((s, σ) ∈ q1 and (sn, τi) ∈ p1) or ((sn, σ) ∈ q1 and (s, τi) ∈ p1), then
some ρ ∈ Σ is name such that for any generic G

KρG = {~x : xi = σG}

We assume that all ρ in Σ arise from the above requirements and let Σ =
{ρi : i < N}. Then we have that

(p � α ∪ q � α) 
p(α) ⊥ q(α) iff (p � α ∪ q � α) 
~τ ∈
⋃
i<N

Kρi

Letting ρ = f(~ρ) we get that |ρ|(q � α) < β and

(p̂ � α ∪ q � α) 
~τlex ∈ C(~τ , p � α) ⊆ Kρ =
⋃
i<N

Kρi .

It follows that p̂, q are incompatible and the Rank-Lemma successor case is
proved.
2

Here is the main point of the Rank Lemma:
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Proposition 3.13 Suppose τ ∈ CN(Pω2) with |τ |(1) = 0, p ∈ Pω2, and B(v)
a Π0

β˜ -set coded in the ground model M such that p 
B(τ). If p̂ is given by
the Rank Lemma (p̂ compatible with p, |p̂| ≤ β, and for every q ∈ Pω2 with
|q| < β, if q, p̂ compatible, then q, p compatible), then p̂ 
B(τ).

proof:
Case β = 0. This is true by the definition of |τ |(1) = 0.
Case β > 0. Let B(v) =

∧
n<ω Bn(v) where Bn(v) Σ0

βn˜ for some βn < β.
If for contradiction p̂ does not force B(τ), then there exists q ≤ p̂ and n < ω
such that q 
¬Bn. By induction there exists q̂ compatible with q, |q̂| ≤ βn
and q̂ 
¬Bn. Since q extends p̂ it follows that q̂, p̂ are compatible. Since
|q̂| ≤ βn < β we have that q̂ is compatible with p. This is a contradiction
since p 
Bn(τ).
2

Proposition 3.14 Suppose G Pω1-generic over M . Then for any Y ∈ M
and α < ωM1 if M |= Y ⊆ 2ω and |Y | = ω1, then

M [G] |= ∀α < ω ∀V ∈ Σ0
α˜ V ∩ Y 6= UG0

α,〈〉 ∩ Y.

Here UG0

α,〈〉 is the generic Π0
α˜ set added by the first coordinate’s Πα-forcing,

namely
UG0

α,〈〉 = {x ∈ 2ω ∩M : ∃p ∈ G (α, (〈〉, x)) ∈ p(0)}.

proof:
Let V be a universal Σ0

α˜ -set coded in M . Suppose

p0 
∀y ∈ Y (y ∈ Vτ iff y ∈ UG0

α,〈〉)

Using ccc Lemma 3.9 choose H ⊆ 2ω countable so that |p| = rank(p,H) = 0
and |τ | = rank(τ,H, 1) = 0. Take any y ∈ Y \H. Let p1(0) = p(0)∪(α, (〈〉, y))
and p1 � [1, ω2) = p0 � [1, ω2), Note that p1 
y ∈ UG0

α,〈〉 and hence p1 
y ∈ Vτ .
Now B(v) =def y ∈ Vv is a Σ0

α˜ predicate coded in M . Let B(v) =
∨
n<ω Bn(v)

where Bn(v) is a Π0
βn˜ predicate with βn < β. Find p ≤ p1 and n < ω such

that p 
Bn(τ). By Proposition 3.13 there is a condition p̂ compatible with
p such that p̂ 
Bn(τ) and rank(p̂, H) ≤ βn < β. By using the meet Lemma
3.11 we may assume p̂ ≤ p0. Hence it follows p̂ 
yy ∈ UG0

α,〈〉. But by the

definition of rank since y /∈ H, there is some sufficiently large m < ω such
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that r(0) = p̂(0) ∪ (α, (〈m〉, y)) is consistent. Letting r � [1, ω2) = p̂ � [1, ω2)
leads to a contradiction:

r 
Bn(τ)

r 
(
∨
n<ω

Bn(τ)) iff y ∈ UG0

α,〈〉

r 
y /∈ UG0

α,〈〉

2

Claim. M [G] |= ∀Y ∈ [2ω]ω1 ord(Y ) = ω1.

This follows from two standard facts:

1. ∀Z ∈ P(ω1)M [G] ∃α0 < ωM2 Z ∈M [Gα0 ]

2. ∀G (Pω2)M generic over M ∀α0 < ωM2 ∃H (Pω2)M [Gα0 ] generic over
M [Gα0 ] such that M [G] = M [Gα0 ][H].

This concludes the proof of Theorem 3.1.

4 The sigma-algebra of abstract rectangles

Theorem 4.1 (Rao 1968 [21], Kunen [7]) Assume the continuum hypothesis
then every subset of the plane is in the σ-algebra generated by the abstract
rectangles. In fact, at level two.

proof:
It is enough to see that P(ω1 × ω1) = σ{A× B : A,B ⊆ ω1}, i.e. every

subset of ω1 × ω1 is in the σ-algebra generated by the abstract rectangles.

Definition 4.2 • R = {A×B : A,B ⊆ ω1}

• Σ0(R) = Π0(R) = R

• Πα(R) = {ω1 × ω1\P : P ∈ Σα(R)}

• Σα(R) = {
⋃
n<ω Pn : Pn ∈

⋃
β<α Πβ(R)}

• σ{A×B : A,B ⊆ ω1} = σR =
⋃
α<ω1

Σα(R) =
⋃
α<ω1

Πα(R)
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• bool(R) = smallest family containing R and closed under finite union
and complementation

Note that bool(R) ⊆ Σ1(R) ∩ Π1(R). Also Σα(R) for α > 0 is closed
under countable union and finite intersection.

Lemma 4.3 For f : 2ω → 2ω, the graph(f) ∈ Π1({A×B : A,B ⊆ 2ω}).

proof:
For any s ∈ 2<ω let Ds = f−1([s]). Then the following are equivalent for

any x, y ∈ 2ω:

• f(x) = y

• ∀s(s ⊆ f(x) iff s ⊆ y)

• ∀s(x ∈ As iff y ∈ [s]

• (x, y) ∈
⋂
s∈2<ω(Ds × [s]) ∪ (∼ Ds× ∼ [s])

2

Note that the Lemma is also true for any partial function f : D → 2ω for
some D ⊆ 2ω. Since if f̂ ⊇ f is total, then

graph(f) = graph(f̂) ∩ (D × 2ω) ∈ Π1(R).

Now we prove Theorem 4.1 that P(ω1 × ω1) = Σ2(R). Suppose A is a
subset of ω1 × ω1 with the property that β ≤ α for every (α, β) ∈ A. Let
fn : ω1 → ω1 be partial functions for n < ω so that for any α < ω1

{β : (α, β) ∈ A} = {fn(α) : n < ω}.

It follows that A =
⋃
n<ω graph(fn) is Σ2(R). Now any subset of ω1×ω1 can

be written as a union A ∪ B where B has the property that α ≤ β for any
(α, β) ∈ B. By symmetry B ∈ Σ2(R) and so (A ∪B) ∈ Σ2(R).
2

Theorem 4.4 (Kunen [7] 1968) Assume Martin’s axiom, then every subset
of the plane is in the σ-algebra generated by the abstract rectangles at level
two. In the Cohen real model or the random real model the well-ordering on
the continuum is not in the σ-algebra generated by the abstract rectangles.
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Theorem 4.5 (Rothberger [22] 1952) Suppose that 2ω = ω2 and 2ω1 = ωω2

then the σ-algebra generated by the abstract rectangles in the plane is not the
power set of the plane.

proof:
Let Hα for α < ℵω2 list all countable subsets of P(ω1). Let σHα be

the σ-algebra generated by Hα. Note that |σHα| ≤ |2ω| = ω2 since Hα is
countable. For each β < ω2 choose Xα ⊆ ω1 with Xα /∈

⋃
α<ℵβ σHα. Let

X =
⋃
β<ω2
{β} ×Xβ.

Claim. X /∈ σ{A×B : A ⊆ ω2 and B ⊆ ω1}.

Suppose for contradiction that

X ∈ Σγ({An ×Bn ⊆ ω2 × ω1 : n < ω}).

It is easy to see that the cross sections satisfy:

∀β < ω2 Xβ ∈ Σγ({Bn : n < ω}).

But if Hα0 = {Bn : n < ω} where α0 < ωβ0 , then Xβ0 /∈ σHα0 , which is a
contradiction.
2

Note Rothberger states this result in more generality, this is the simplest
case.

Theorem 4.6 (Bing, Bledsoe, Mauldin [2] 1974) If every subset of the plane
is in the σ-algebra generated by the abstract rectangles, then for some count-
able α every subset of the plane is in the σ-algebra generated by the abstract
rectangles by level α.

proof:
This is more general:

Claim. For any cardinal κ if σ{A×B : A,B ⊆ κ} = P(κ× κ), then there
exists α < ω1 such that Πα({A×B : A,B ⊆ κ}) = P(κ× κ).

Suppose not. Take Pα ⊆ κ for α < ω1 pairwise disjoint and cardinality
κ. For each α < ω1 take Aα ⊆ Pα × Pα such that

Aα /∈ Πα({A×B : A,B ⊆ κ}).
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Let A =
⋃
α<ω1

Aα. Note that for any α < ω1 (Pα × Pα) ∈ Π1. It follows
that if A ∈ Πα0 , then for any α < ω1 Aα = A ∩ (Pα × Pα) ∈ Πα0 , which is a
contradiction.
2

Theorem 4.7 (Miller [9] 4) If every subset of a separable metric space X is
Borel in X, then for some countable α every subset of X is Σ0

α in X.

For the proof, we will need the following two Lemmas.

Lemma 4.8 Suppose there exists X ⊆ 2ω, X = {xα : α < κ}, and there
exists α < ω1 such that for every γ < κ every Y ⊆ {xβ : β < γ} is Σ0

α˜ in X.
Then

Σα{A×B : A,B ⊆ κ} = P(κ× κ).

proof:
Consider any A ⊆ κ × κ such that β ≤ α for any (α, β) ∈ A. Let

X = {xα : α < κ} and let V ⊆ 2ω × 2ω be a universal Σ0
α˜ -set. For each

α < κ choose yα ∈ 2ω distinct such that

∀β < κ (α, β) ∈ A iff (yα, xβ) ∈ V iff xβ ∈ Vyα .

Define F : κ× κ→ X × Y by F (α, β) = (xα, yβ). Note that F is a rectangle
preserving bijection such that F (A) = V ∩ (X × Y ). Note that

V ∈ Σ0
α˜ {Cn ×Dn : n < ω}

where Cn, Dn are clopen subsets of 2ω. It follows that

A ∈ Σ0
α˜ ({α : yα ∈ Cn} × {β : xβ ∈ Dn}).

By a symmetrical argument we can handle any B ⊆ κ× κ where β ≥ α for
any (α, β) ∈ B, and hence any set of the form A ∪B.
2

4I proved this on the plane trip back to Berkeley from the January 1977 AMS-ASL
meeting in St. Louis. It was so cold that year the AMS vowed never to have their January
meetings anywhere but warm places. It was late at night; the plane was pretty much
empty and was delayed due to excessive ice on the wings, so they opened up the bar cart
as we sat on the tarmac.
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Lemma 4.9 If X ⊆ 2ω, every subset of X is Borel in X, ω < κ = |X|, and
σ{A×B : A×B ⊆ ω1 × κ} = P(ω1 × κ), then ord(X) < ω1.

proof:
Every rectangle A × B ⊆ X × X is Borel in X × X, so every subset

of X × X is Borel in X. If ord(X) = ω1, then for every α < ω1 choose
Hα ⊆ X such that Hα /∈ Σ0

α˜ (X). Choose xα ∈ X for α < ω1 distinct. Let
H =

⋃
α<ω1
{xα} × Hα. If H is Σ0

α0˜ in X ×X, then Hα is Σ0
α0˜ in X for all

α < ω1. This is a contradiction.
2

Proof of Theorem 4.7:
Let X = {xα : α < κ} and prove the Theorem by induction on κ.

Case. κ = ω1. We are done by Lemma 4.9 and Theorem 4.1 since

Σ2{A×B : A,B ⊆ ω1 × ω1} = P(ω1 × ω1).

Case. cof(κ) = ω. Let X =
⋃
n<ωXn pairwise disjoint and each |Xn| < κ.

By induction ord(Xn) < ω1 for each n < ω. Choose countable α so that
ord(Xn) ≤ α and each Xn is Σ0

α˜ in X. For any A ⊆ X we have that A ∩Xn

is Σ0
α˜ in X and so X ∩ A =

⋃
n<ω A ∩Xn is Σ0

α˜ in X.

Case. cof(κ) > ω1. Define Xα = {xβ : β < α}. Note that ord(Xα) for α < κ
is a nondecreasing function and so there is a β < ω1 such that ord(Xα) ≤ β
all α < κ. Similarly there is a countable γ ≥ β such that every Xα is Σ0

γ˜ in
X. To see this note that for α < β, if Xα is Σ0

γ˜ in Xβ and Xβ is Σ0
γ˜ in X, then

Xα is Σ0
γ˜ in X. It follows that every Y ⊆ X with Y ⊆ Xα for some α < κ is

Σ0
γ˜ and so by Lemma 4.8 we have that Σα{A×B : A,B ⊆ κ} = P(κ× κ).

Hence we are done by Lemma 4.9.

Case. cof(κ) = ω1. Let κα for α < ω1 be a cofinal in κ increasing sequence.

Claim. There exists α0 < ω1 such that Xκα is Π0
α0˜ in X for all α < ω1.

pf: Let Q = {(α, β) : α < ω1 and β ≤ κα} ⊆ ω1 × κ. Then its complement
∼ Q = {(α, β) : κα < β} has countable cross sections, so there exists partial
functions fn : κ→ ω1 for n < ω such that for any β < κ

{α : (α, β) ∈∼ Q} = {fn(β) : n < ω}
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equivalently

∼ Q =
⋃
n<ω

graph(fn).

Similar to the proof of Theorem 4.1 we get that

∼ Q ∈ Σ2({A×B : A ⊆ ω1, B ⊆ κ}.

And therefor Q ∈ Π2({A × B : A ⊆ ω1, B ⊆ κ}. Now since every rectangle
in X × X is Borel in X × X we get that {(xα, xβ) : β ≤ κα} is Borel in
X ×X. If it is Π0

α0˜ in X ×X, then so are all its cross sections and so we are
done.

Claim. Suppose ord(Xκα) = βα which is countable by induction, then
supα<ω1

βα < ω1. pf: Suppose not and choose αi < ω1 for 0 < i < ω1

strictly increasing, so that βαi > α0 and βαi+1
> βαi + ω. For each i < ω1

let Yi = Xκi+1
\Xκi . The Yi are pairwise disjoint, ord(Yi) = βi+1, and Yi is

Π0
α0+1˜ in X. Choose Ai ⊆ Yi which is not Π0

α˜ i
in Yi. But then A =

⋃
i<ω1

Ai
is not Borel in X, since Ai = A ∩ Yi.

It follows from the second Claim and Lemmas 4.8 and 4.9 that ord(X) <
ω1. This proves Theorem 4.7.
2

Theorem 4.10 ([9]) For any countable α it is consistent to have a separable
metric space X in which every subset is Borel and the order of X is α.
Furthermore in this model for successor α = α0 + 1 ≥ 3 for any Z ⊆ 2ω if
every subset of is Σ0

α0˜ in Z, then Z is countable.

We just prove this for countable successor ordinals α0 + 1 greater than
two. For limit α see [9].

Definition 4.11 P(T, Y,X). Fix countable α0 ≥ 2. This forcing is similar
to Πα0+1 forcing (Definition 3.3). Assume Y ⊆ X ⊆ 2ω. Recall that defini-
tion uses a nice α0 + 1 tree T which will remain fixed throughout the proof.
We denote terminal nodes of T by T ∗ and interior nodes T 0 = T\({〈〉}∪T ∗).
Then p ∈ P(T, Y,X) iff p = p0 ∪ p1 finite with p0 : T ∗ → 2<ω finite partial
and finite p1 ⊆ T 0 ×X subject to the consistency demands:

• if ((n), x) ∈ p1, then x /∈ Y
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• if (s, x) ∈ p1 and (sn, y) ∈ p1, then x 6= y

• if (s, x) ∈ p1 and p0(sn) = r, then x /∈ [r]

Note that we only attach elements of X to the interior nodes of T , we do
not attach any reals to the top node 〈〉 of T , and we only attach reals from
X\Y to the rank α0 nodes of T , i.e., those of the form (n). We remark
that P(T, ∅, 2ω) is the same as the direct sum of countably many copies of
Πα0-forcing. We could think of the first condition as equivalent to putting
all (〈〉, y) for y ∈ Y into p1.

Definition 4.12 UG
s . Similar to before for a generic G a P(T, Y,X)-filter,

define UG
s ⊆ 2ω for s ∈ T . For s ∈ T ∗ define UG

s = [r] iff p0(s) = r for some
p ∈ G. For s ∈ T\T ∗ define UG

s =
⋂
n<ω ∼ UG

sn.

Lemma 4.13 For G any generic P(T, Y,X)-filter:

1. For any s ∈ T 0 and x ∈ X x ∈ UG
s iff {(s, x)} ∈ G.

2. UG
〈〉 ∩X = Y .

proof:
For any s ∈ T 0 and x ∈ X define Ds,x ⊆ Pα0+1(Y,X) by p ∈ Ds,x iff

• (s, x) ∈ p or

• ∃n < ω (sn, x) ∈ p1 or

• ∃r ∈ 2<ω p0(sn) = r and x ∈ [r].

Then Ds,x is dense. Note for n < ω and y ∈ Y you can never add ((n), y)
however you will be add ((n,m), y) for some sufficiently large m.

(1) Suppose x ∈ UG
s =

⋂
n<ω ∼ UG

sn, then x /∈ UG
sn for all n. Hence by

induction for all n for all p ∈ G ((sn, x) /∈ p or x /∈ [p0(sn)]) if rankT (s) = 1.
Since Ds,x is dense we have that {(s, x)} ∈ G.

Conversely, suppose {(s, x)} ∈ G. Then for every n < ω and p ∈ G
(sn, x) /∈ p or x /∈ [p0(sn)]) if rankT (s) = 1. So by induction x /∈ UG

sn for all
n and by definition of UG

s we have that x ∈ UG
s .

(2) Suppose y ∈ Y . Fix n. By the definition of P(T, Y,X) ((n), y) is not
in any condition. Hence for any p there exists m sufficiently large so that
p ∪ {((n,m), y)} is consistent. It follows that y /∈ UG

(n) and so y ∈ UG
〈〉 .
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Conversely, suppose x ∈ X\Y . Then {p : ∃n ((n), x) ∈ p} is dense, so
x ∈ UG

(n) for some n and hence y /∈ UG
〈〉 .

2

Let M be a countable standard model of ZFC+GCH. Fix X = 2ω ∩M
(or any uncountable subset of 2ω in M) and T a nice α0 + 1-tree in M . We
will iterate P(T, Yα, X) for α<ω2 with finite support, diagonalizing to get all
Y ⊆ X. An explicit description of this model is as follows.

Let P0 = P(T, ∅, X).
Inductively assume that Pα ⊆ Σβ<αP(T, ∅, X) (the direct sum). Suppose

◦
Y α is a nice Pα-name for a subset of X, i.e., there exists (Aαx : x ∈ X) where
Aαx ⊆ Pα is countable and

◦
Y α= {(p, x̌) : x ∈ X and p ∈ Aαx}.

Then p ∈ Pα+1 iff p � α ∈ Pα, p(α) ∈ P(T, ∅, X), and if p(α) = p0 ∪ p1, then
whenever ((n), x) ∈ p1 for some n < ω and x ∈ X, then

p � α 
x /∈
◦
Y α

or equivalently (p � α) ⊥ q for all q ∈ Aαx .
For λ ≤ ω2 a limit ordinal

Pλ = {p : ∀α < λ p � α ∈ Pα and supp(p) is finite }}.

where supp(p) =def {α < λ : p(α) 6= 1} is the support of p. Note that
for any α < ω2, Σβ<αP(T, ∅, X) has cardinality ω1. It also has ccc (in fact
property K). Note that p, q ∈ Pα are compatible iff p ∪ q ∈ Pα iff p ∪ q ∈
Σβ<αP(T, ∅, X). For α < ω2 we may regard

Pα = {p ∈ Pω2 : p � [α, ω2) ≡ 1}.

By a standard dovetailing argument in M we may choose the sequence of

names
◦
Y α so that for any G Pω2-generic over M for any Y ⊆ X in M [G]

there is an α < ωM2 such that Y G
α = Y .

By Lemma 4.13 we have that in M [G] every subset of X is Σ0
α0+1˜ in X.

Recall that P0 = P(T, ∅, X). Let UG
(0) be the generic Π0

α˜ 0
-set added by P0.

(Any of the other UG
(n) would do as well.) We will show that there is no

Σ0
α˜ 0

-set V ⊆ 2ω in M [G] such that UG
(0) ∩X = V ∩X.
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Given H ⊆ X define

rank(p,H) = max{rankT (s) : ∃x ∈ X\H ∃α < ω2 (s, x) ∈ p(α)}.

Working in M suppose we are given Γ ∈ Pω2 countable and τ a nice Pω2

for an element of 2ω. Then by the ccc we can find a countable H ⊆ X and
countable K ⊆ ω2 with the following properties:

1. rank(p,H) = 0 for all p ∈ Γ

2. ∀n ∈ ω {p ∈ Pω2 : supp(p) ⊆ K and rank(p,H) = 0} decides5

“τ(n) = 0”.

3. ∀x ∈ H ∀α ∈ K {p ∈ Pα : supp(p) ⊆ K and rank(p,H) = 0} decides

“x ∈
◦
Y α”.

The analogue of the meet lemma for this forcing is trivial.

Lemma 4.14 Meet Lemma. For any p, q ∈ Pω2 we have:
p and q are compatible iff p ∪ q ∈ Pω2.

The union is defined by (p ∪ q)(α) =def p(α) ∪ q(α) for each α < ω2.

proof:
Prove by induction that (p ∪ q) � α ∈ Pα and extends both p � α and

q � α.
2

The union operation preserves rank and support.

Lemma 4.15 Rank Lemma for H,K. Assume H,K satisfy condition 3
above, i.e., ∀x ∈ H ∀α ∈ K {p ∈ Pα : supp(p) ⊆ K and rank(p,H) = 0}
decides “x ∈

◦
Y α”. Suppose p ∈ Pω2 and 1 ≤ β < α0. Then there exists p̂

compatible with p, rank(p̂, H) ≤ β, supp(p̂) ⊆ K, and for any q ∈ Pω2 with
rank(q,H) < β and supp(q) ⊆ K, (p ⊥ q ⇒ p̂ ⊥ q).

proof:
Extend p to p̃ so that for any α, s, x, λ if (s, x) ∈ p(α) and rankT (s) = λ

is a limit ordinal, then for every i < ω with rankT (si) ≤ β + 1 < λ there
exists j with (sij, x) ∈ p̃(α). The definition of nice tree tells us there are at
most finitely many such i.

Let G be Pω2-generic with p̃ ∈ G. Choose Γ ⊆ G finite so that

5Recall that a set conditions Q decides a sentence θ iff every generic filter contains a
condition in Q which forces either θ or its negation.
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(a) ∀q ∈ Γ rank(q,H) = 0 and supp(q) ⊆ K

(b) if ((n), x) ∈ p(α) for some α ∈ K and x ∈ H, then there exists q ∈ Γ

such that q � α 
x /∈
◦
Y α.

Note that in (b) it must be that p � α 
x /∈
◦
Y α.

Working in M define p̂ as follows: for α ∈ K

p̂(α) =
⋃
{q(α) : q ∈ Γ}∪{(s, x) ∈ p̃1(α) : rankT (s) ≤ β or x ∈ H}∪p̃0(α)

and p̂(α) = 1 for α /∈ K.
We prove that p̂ ≤ q for each q ∈ Γ and rankT (p̂) ≤ β. Note that

β < α0 = rankT ((n)) so we have retained no conditions of the form ((n), x)
for x /∈ H, i.e., if ((n), x) ∈ p̂, then α ∈ K and x ∈ H. So p̂ � α ≤ q � α for

some q ∈ Γ such that q � α 
x /∈
◦
Y α and so p̂ � α 
x /∈

◦
Y α. This shows that

p̂ is a condition.
We check that it satisfies the Lemma. Since p̃ ≤ p and p̃, p̂ are both

in G, we have that p and p̂ are compatible. Suppose rank(q,H) < β and
supp(q) ⊆ K. We need to show that p ⊥ q → p̂ ⊥ q. Assume p ⊥ q, hence
p ∪ q is not a condition so there must be α ∈ supp(p) ∩ supp(q) (so α ∈ K)

(p∪ q) � α ∈ Pα, but p(α)∪ q(α) /∈ P(T,
◦
Y α, X). Therefor at least one of the

following cases occurs:

Case 1. For some s ∈ T ∗ we have p0(α)(s) 6= q0(α)(s).

But p̂0(α)(s) = p0(α)(s), so p̂(α) ⊥ q(α).

Case 2. For some s, r, n with s ∈ T 0 and sn ∈ T ∗ and x ∈ X:
(p0(α)(sn) = r or q0(α)(sn) = r) and (s, x) ∈ p1(α) ∪ q1(α), but x ∈ [r].

In this case, rankT (s) = 1 ≤ β and hence (s, x) ∈ p̂1(α) if (s, x) ∈ p1(α). So
if q0(α)(sn) = r, then p̂(α) ⊥ q(α). The other possibility is that p0(sn) = r
and (s, x) ∈ q1(α). Then since p̂0(sn) = p0(sn), we also have p̂(α) ⊥ q(α).

Case 3. For some s, sn ∈ T 0 and x ∈ X (s, x), (sn, x) ∈ p1(α) ∪ q1(α).

In this case, if x ∈ H, then (s, x), (sn, x) ∈ p̂1(α)∪ q1(α) and so p̂(α) ⊥ q(α).
Suppose x /∈ H, then one of the following occurs:

1. (sn, x) ∈ p1(α) and (s, x) ∈ q1(α)
2. (s, x) ∈ p1(α) and (sn, x) ∈ q1(α)
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For (1) since rank(q,H) < β we have that rankT (sn) < rankT (s) < β and
so by the definition of p̂ we have that (sn, x) ∈ p̂1(α) so p̂(α) ⊥ q(α). For
(2) we have that rankT (sn) < β because rank(q,H) < β. If rankT (s) ≤ β,
then (s, x) ∈ p̂1(α) so p̂(α) ⊥ q(α). Finally we have the possibility that
rankT (s) = λ > β a limit ordinal. In this case we choose p̃(α) so that for some
m we have that (snm, x) ∈ p̃1(α). Since rankT (snm) < β, (snm, x) ∈ p̂1(α),
and therefor p̂(α) ⊥ q(α).
2

Lemma 4.16 Suppose τ a nice Pω2 for an element of 2ω and H ⊆ X and
K ⊆ ω2 are countable satisfying

1. ∀n ∈ ω {p ∈ Pω2 : supp(p) ⊆ K, rank(p,H) = 0} decides“τ(n) = 0”.

2. ∀x ∈ H ∀α ∈ K {p ∈ Pα : supp(p) ⊆ K, rank(p,H) = 0} decides

“x ∈
◦
Y α”.

Suppose B(v) is a Σ0
β˜ predicate for 1 ≤ β ≤ α0 with parameters from M

and p ∈ Pω2 satisfies: p 
B(τ). Then there exists p̂ compatible with p,
rank(p̂, H) < β, supp(p̂) ⊆ K, and p̂ 
B(τ).

Case β = 1.
Suppose R ⊆ 2<ω is in M and p 
∃n ∈ ω R(τ � n). Find q ≤ p, n ∈ ω,

t ∈ 2n such that R(t) and q 
τ � n = ť. Take G Pω2-generic with q ∈ G. By
(1) we can choose finite Γ ⊆ G such that

for all m < n there is a r ∈ Γ r 
“τ(m) = t(n)” and
supp(r) ⊆ K and rank(r,H) = 0 for all r ∈ Γ.

Then p̂ =
⋃

Γ satisfies the Lemma.

Case β ≤ α0 a limit ordinal.
Suppose p 
 “∃n ∈ ω Bn(τ)” where for each n Bn(v) is a Π0

βn˜ predicate
coded in M with βn < β. Extend p by q ≤ p such that for some k q 

“Bk(τ)”. Since Π0

βk˜ predicates are Σ0
βk+1˜ and βk+1 < β, we have by induction

p̂ compatible with q (hence p) with rank(p̂, H) ≤ βk+1 < β, supp(p̂) ⊆ K,
and p̂ 
 “Bk(τ)”.

Case 1 < β + 1 ≤ α0 a successor ordinal.
Suppose p 
 “∃n ∈ ω B(n, τ)” where B(n, v) is a Π0

β˜ predicate coded
in M . We may extend p to p0 ≤ p so that for some n p0 
B(n, τ). By the
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Rank Lemma since β < α0 there is some p̂0 compatible with p0 such that
rank(p̂0, H) ≤ β, supp(p̂0) ⊆ K, and for any q ∈ Pω2 with rank(q,H) < β
and supp(q) ⊆ K, (p0 ⊥ q ⇒ p̂0 ⊥ q). But then p̂0 
B(n, τ). Because if not,
by inductive hypothesis there would be q compatible with p̂0, rank(q,H) < β,
supp(q) ⊆ K, and q 
¬B(n, τ). But such a q is incompatible with p0 which
is a contradiction.
2

Lemma 4.17 Suppose X = {xα : α < ω1} and Z = {zα : α < ω1} ⊆ 2ω be
an arbitrary set of reals in M . For any G Pω2-generic over M , then

(UG
(0) × 2ω) ∩ {(xα, zα) : α < ω1} 6= V ∩ {(xα, zα) : α < ω1}

for any V ⊆ 2ω × 2ω a Σ0
α0˜ -set coded in M [G]

proof:
Recall that UG

(0) (4.12) is one of the “generic” Π0
α0˜ sets determined by the

first coordinate, i.e., for x ∈ X we have that x ∈ UG
(0) iff ((0), x) ∈ p1(0) for

some p ∈ G.
Work in M . Let V ⊆ 2ω × (2ω × 2ω) be a universal Σ0

α0˜ -set. For contra-
diction, suppose there exists q ∈ Pω2 and τ is a nice name for an element of
2ω such that

q 
∀α < ω1 (xα ∈
◦
U (0) iff (τ, (xα, zα) ∈ V ).

Choose H ⊆ X,K ⊆ ω2 countable such that rank(q,H) = 0, supp(q) ⊆ K,
and satisfying the conditions of Lemma 4.16 for τ .

Fix any α ∈ ω1 with xα /∈ H and define the Σ0
α0˜ predicate B(v) by

B(v) ≡ (v, (xα, zα)) ∈ V.

Let p ≤ q be defined by only adding ((0), xα) to the first coordinate of q, i.e.,
p(0) = q(0) ∪ ((0), xα) and p � [1, ω2) = q � [1, ω2). This is possible because
q(0) cannot mention xα because rank(q,H) = 0. Note that p 
B(τ). By
Lemma 4.16 there is a p̂ compatible with p such that rank(p̂, H) < α0 and
p̂ 
B(τ). By replacing p̂ by p̂∪p we may assume p̂ ≤ p. Since rank(p̂, H) < α0

we have that ((0), xα) is not in p̂1(0). It follows by taking a large enough k
that p̂1(0) ∪ {((0, k), xα)} is consistent, i.e., an element of P(T, ∅, X). If we
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define r by r(0) = p̂(0) ∪ {((0, k), xα)} and r � [1, ω2) = p̂ � [1, ω2) we get a

contradiction: r 
“xα ∈
◦
U (0) iff B(τ)”, r 
B(τ), and r 
xα ∈

◦
U (0,k).

2

Finally we prove Theorem 4.10. Lemma 4.13 shows that ord(X) ≤ α0 +1
and Lemma 4.17 shows that ord(X) > α0. Given any Z ⊆ 2ω of size ω1 in
M [G] there will be δ < ω2 with Z ∈ M [Gδ]. We can assume unbounded
many Yδ code the empty set, so by replacing M by the ground model M [Gδ]
and forcing with P[δ,ω2), Lemma 4.17 shows that ord(Z) > α0.
2

Theorem 4.18 ([9]) For any countable α ≥ 2 it is consistent that every
subset of the plane is in the σ-algebra generated by the abstract rectangles at
level α but for every β < α not every subset is at level β.

proof:
We sketch the proof only for the case of a countable successor α = α0+1 ≥

3. Start with a countable transitive model M of ZFC+2ω = 2ω1 = ω2. Let
X = 2ω ∩M . Hence |X| = ω2. Do a finite support iteration (as in the proof

of Theorem 4.10) of length ω2 of P(T,
◦
Y α, X) for α < ω2 making sure to have

names for all potential subsets of X of size ≤ ω1. It follows from Lemma 4.8
that P(ω2 × ω2) = Σα0+1({A×B : A,B ⊆ ω2}.

It also follows by a similar proof to Theorem 4.10 that in M [G] there is
no Z ⊆ 2ω with |Z| = ω1 such that every subset of Z is Σ0

α0˜ in Z. So we are
done by the following:

Lemma 4.19 (Bing, Bledsoe, Mauldin [2]) Suppose α < ω1, ω < κ, |2κ| = c,
and P(κ × c) = Σα({A × B : A ⊆ κ, B ⊆ c}. Then there exists Z ⊆ 2ω

with |Z| = κ and every subset of Z is Σ0
α˜ in Z.

proof:
Let Yα ⊆ κ for α < c list all subsets of κ. Define

Y = {(β, α) : β ∈ Yα, α < c}.

Let {An×Bn : n < ω} be rectangles with Y ∈ Σα({An×Bn : n < ω}). Take
ψ : κ→ 2ω to be the Marczewski characteristic function:

ψ(α)(n) = 1 iff α ∈ An.

Then Z = {ψ(α) : α < κ} has the required property. Note that the cross
sections of a Σ0

α˜ -set are Σ0
α˜ .

2
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5 Universal functions

Theorem 5.1 (Larson, Miller, Steprans, Weiss [20]) Suppose 2<c = c then
the following are equivalent:

(1) There is a Borel universal function, i.e, a Borel function F : 2ω×2ω →
2ω such that for every abstract G : 2ω × 2ω → 2ω there are h : 2ω → 2ω and
k : 2ω → 2ω such that for every x, y ∈ 2ω G(x, y) = F (h(x), k(y)).

(2) Every subset of the plane is in the σ-algebra generated by the abstract
rectangles.

Furthermore the universal function has level α iff every subset of the plane
is in the σ-algebra generated by the abstract rectangles at level α.

Theorem 5.2 ([20]) If 2<κ = κ, then there is an abstract universal function
F : κ× κ→ κ.

Theorem 5.3 ([20]) It is relatively consistent with ZFC, that there is no
abstract universal function F : c× c→ c.

Theorem 5.4 ([20]) There does not exist a Borel function F : 2ω×2ω → 2ω

such that for every Borel G : 2ω× 2ω → 2ω there are h, k : 2ω → 2ω such that
k is Borel and for every x, y ∈ 2ω

G(x, y) = F (h(x), k(y))

The following two theorems are proved just like Theorems 8 and 9 of
Bing, Bledsoe, and Mauldin [2] who only stated it for the square case, e.g.,
κ× κ.

Theorem 5.5 (Bing, Bledsoe, and Mauldin Theorem 8 for κ = λ)

1. The following are equivalent:

(a) Σ0
ω˜ 1

({A×B : A ⊆ κ,B ⊆ λ}) = P(κ× λ)

(b) for every A ∈ [P(λ)]κ there is B ∈ [P(λ)]ω and α < ω1 such that
A ⊆ Σ0

α˜ (B)

(c) for every A ∈ [P(κ)]λ there is B ∈ [P(κ)]ω and α < ω1 such that
A ⊆ Σ0

α˜ (B)

2. Suppose α < ω1, then the following are equivalent:
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(a) Σ0
α˜ ({A×B : A ⊆ κ,B ⊆ λ}) = P(κ× λ).

(b) for every A ∈ [P(λ)]κ there is B ∈ [P(λ)]ω such that A ⊆ Σ0
α˜ (B)

(c) for every A ∈ [P(κ)]λ there is B ∈ [P(κ)]ω such that A ⊆ Σ0
α˜ (B)

Theorem 5.6 (Bing, Bledsoe, and Mauldin Theorem 9 for κ = λ) The fol-
lowing are equivalent:

1. Σ0
ω˜ 1

({A×B : A ⊆ κ,B ⊆ λ}) = P(κ× λ)

2. for every A ∈ [P(λ)]κ there is B ∈ [P(λ)]ω and α < ω1 such that
A ⊆ Σ0

α˜ (B)

3. there is α < ω1 such that for every A ∈ [P(λ)]κ there is B ∈ [P(λ)]ω

such that A ⊆ Σ0
α˜ (B)

4. there exists α < ω1 such that Σ0
α˜ ({A×B : A ⊆ κ,B ⊆ λ}) = P(κ×λ).

Definition 5.7 X ⊆ 2ω is a strong Qα-set iff
letting B0 =def {X ∩ C : C ⊆ 2ω clopen } then

• P(X) = Σ0
ω˜ 1

(B0) ( σ-algebra generated by B0 ) and

• ∀B ⊇ B0 countable ord(B) = α, i.e. α is the least ordinal such that
Σ0
α˜ (B) = Σ0

ω˜ 1
(B).

The above definition is the one we use to verify the existence of a strong
Qα-set in a generic extension. When we force a generic Π0

α˜ set it is not Σ0
α˜even when we add sets from the ground model as new “clopen” sets.

Theorem 5.8 The following are equivalent for a cardinal κ such that 2κ = c
and α < ω1:

1. there exists a strong Qα-set of cardinality κ

2. α is the smallest ordinal such that

Σ0
α˜ ({A×B : A ⊆ κ,B ⊆ c}) = P(κ× c)

3. there is a Qα-set of size κ but no Qβ-set of size κ for any β < α
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4. α is the minimal ordinal for which there is a countable B ⊆ P(κ) with
Σ0
α˜ (B) = P(κ)

proof:
Assume (1). First note that Σα{A×B : A ⊆ κ,B ⊆ c} = P(κ× c}. This

is proved just like Lemma 4.8. Namely, let {xβ : β < κ} ⊆ 2ω be a Qα-set.
Fix U ⊆ 2ω × 2ω a universal Σ0

α˜ set. Then for any subset C ⊆ κ × c
choose {yβ ∈ 2ω : β < c} so that for each γ < κ and β < c, (xγ, yβ) ∈ U iff
(γ, β) ∈ C. Since U is Σ0

α˜ in the clopen rectangles in 2ω × 2ω, it follows that
C is Σ0

α˜ in the abstract rectangles on κ× c.
Now suppose for contraction that for some β < α

Σβ{A×B : A ⊆ κ,B ⊆ c} = P(κ× c}.

Let C ⊆ κ × c be such that the cross sections of C list P(κ). Suppose C ∈
Σ0
β˜ ({An×Am : n,m < ω}). Consider the Marczewski characteristic function

of the sequence of sets An, i.e., f : c→ 2ω defined by f(β)(n) = 1 iff β ∈ An.
We can assume that the An separate points (by adding a countable sequence
of sets if necessary) so that f is a 1-1 function. Let zβ = f(β). The function
f maps the abstract sets An into relatively clopen sets in Z = {zγ : γ < c}.
It follows that {zγ : γ < κ} is a Qδ-set for some δ ≤ β < α which contradicts
the definition of “strong” Qα-set.

The proof of (2) implies (1) is virtually the same. The fact that

Σ0
α˜ ({A×B : A ⊆ κ,B ⊆ c}) = P(κ× c)

via the Marczewski function gives us a Qα-set of cardinality κ. The mini-
mality of α gives us that there is no Qβ-set of size κ for any β < α.

(3) and (4) are equivalent by using the Marczewski characteristic function.
(1) implies (3): Let {xγ : γ < κ} be a strong Qα-set and suppose {yγ :

γ < κ} is a Qβ-set for some β < α. For any clopen set C ⊆ 2ω let C ′ = {xα :
yα ∈ C}, then B = B0 ∪ {C ′ : C clopen } has order ≤ β contradicting the
definition of strong Qα-set.

(3) implies (1): Any Qα-set of size κ must be strong, otherwise by using
the Marczewski characteristic function we could produce for some β < α a
Qβ-set of cardinality κ.
2
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Theorem 5.9 It is consistent that for every countable α ≥ 2 there is a strong
Qα-set.

proof:
This holds in a model mentioned in [9] see Theorem 55 and 52. Theorem

55 [9] states that it is consistent that for every countable α ≥ 2 there is
a Qα-set. The proof is similar to Theorem 52 in that these sets are all of
different cardinality. By an analogous argument to Theorem 4.10, in fact,
those Qα-sets are strong Qα-sets.
2

Theorem 5.10 Remark 4.6 [20]. It is consistent that the Borel subsets of
the plane are not contained in any bounded level of the σ-algebra generated by
the abstract rectangles. The proof of Theorem 5.1 shows that in this situation,
there does not exist a Borel function

F : 2ω × 2ω → 2ω

such that for every Borel H : 2ω × 2ω → 2ω there exist functions g and h
from 2ω to 2ω such that

H(x, y) = F (g(x), h(y))

for all x, y ∈ 2ω. Hence, if we drop the condition that k is Borel in Theorem
5.4 it is consistent that there be no such Borel F .

We show that:

Theorem 5.11 If for unboundedly many α < ω1 there is a strong Qα-set,
then there is no countable α0 such that

Borel(2ω × 2ω) ⊆ Σα0({A×B : A,B ⊆ 2ω}).

proof:
Let U ⊆ 2ω × 2ω be a universal Σ0

α0+1˜ -set and X a strong Qα0+1-set.
Choose An ×Bn ⊆ 2ω × 2ω for n < ω so that U ∈ Σα0({An ×Bn : n < ω}).

Define
H = {X ∩ C : C clopen ⊆ 2ω} ∪ {Bn ∩X : n < ω}.

Claim. ord(H) ≤ α0, so X is not a strong Qα0+1-set.

39



proof:
For any Y ⊆ X there exists z ∈ 2ω such that Uz ∩X = Y , because U is

a universal Σα0+1-set and X is a Qα0+1-set. But any cross section of set in
Σα0({An × Bn : n < ω}) is a set in Σα0({Bn : n < ω}). It follows that
Y ∈ Σα0(H). Hence P(X) = Σα0(H) and so ord(H) ≤ α0.

This proves the Claim and hence the Theorem.
2

The following theorem was proved in May 2017. It answers negatively
the rectangular form of a question asked by Bing, Bledsoe, and Mauldin [2]
in the paragraph just before Theorem 10, namely, in Theorem 5.6 (2,3) can
we replace “A ⊆ Σ0

α˜ (B)” with “A ⊆ Σ0
ω˜ 1

(B)”? I want to thank Ashutosh
Kumar for bringing the problem to my attention. I do not know the answer
for the square version of this question.

Theorem 5.12 Suppose for unboundedly many α < ω1 there exists a strong
Qα-set, then there exists an uncountable cardinal κ < c such that

1. every family of size κ of sets of reals is included in a countably generated
σ-algebra, ∀A ∈ [P(c)]κ ∃B ∈ [P(c)]ω A ⊆ Σ0

ω˜ 1
(B).

2. there is a family of size κ of sets of reals which is not include in
a bounded level of any countably generated σ-algebra. ∃A ∈ [P(c)]κ

∀B ∈ [P(c)]ω ∀α < ω1 A 6⊆ Σ0
α˜ (B).

proof:
Let Γ ⊆ ω1 be unbounded so that for every α ∈ Γ there exists a strong

Qα-set Xα ⊆ 2ω. Note that for α < β elements of Γ that |Xα| < |Xβ|. Let
κα = |Xα| and put κ = supα∈Γ κα. Given any family A ⊆ P(c) of size κ
of write A =

⋃
{Aα : α ∈ Γ} where |Aα| = κα. By Theorems 5.6,5.8 Aα is

included in the σ-algebra generated by a countable set Bα, i.e., Aα ⊆ Σ0
α˜ (Bα).

but then
⋃
{Bα : α ∈ Γ} is included in a countably generated σ-algebra and

hence so is A. This proves item (1).
To prove (2) note that for each α ∈ Γ there is Aα ⊆ P(c) of cardinality

κα which is not in any countably generated σ-algebra at a level before α,
i.e., Aα 6⊆ Σ0

β˜ (B) for any countable B ⊆ P(c) and β < α. It follows that
A =

⋃
α∈ΓAα satisfies (2).

2
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6 Universal Functions of Higher Dimension

The main result of this section is from ([20]). Universal functions F of higher
dimensions reduce to countably many cases where the only thing that matters
is the arity of the parameter functions, e.g., one of the forms:

G(x, y) = F (h(x), k(y))
G(x, y, z) = F (h(x, y), k(y, z), l(x, z))
G(x1, x2, x3, x4) = F (h(x2, x3, x4), k(x1, x3, x4), l(x1, x2, x4), i(x1, x2, x3))
. . .
G(x0, . . . , xn) = F (~xs : s ∈ [n+ 1]n)
. . .

Furthermore, each of these forms is consistently weaker than the preceding
one.

Definition 6.1 A k-dimensional universal function is a function

F : (2ω)k → 2ω

such that for every function G : (2ω)k → 2ω there is h : 2ω → 2ω such that

G(x1, x2, . . . , xk) = F (h(x1), h(x2), . . . , h(xk))

for all (x1, x2, . . . , xk) ∈ (2ω)k.

Proposition 6.2 Suppose F (x, y) is a universal function, then F (F (x, y), z)
is a 3-dimensional universal function. Similarly the existence of a universal
function in dimension 2 is equivalent to the existence of a universal function
in dimension k for any k > 1.

proof:
Given G(x, y, z) define G0(u, z) = G(u0, u1, z) using unpairing, u =

〈u0, u1〉. By universality of F there are g, h with G0(u, z) = F (g(u), h(z)).
Again by universality of F there are g0, g1 with g(〈u0, u1〉) = F (g0(u0), g1(u1))
and hence G(x, y, z) = F (F (g0(x), g1(y)), h(z)).

To prove a 3-dimensional implies a 2-dimensional use unpairing, i.e., put
F̂ (u, y) = F (u1, y, u2) so if G(x, y) = F (h(x), k(y), j(z)), then putting ĥ(x) =
〈h(x), j(0)〉 we have G(x, y) = F (h(x), k(y), j(0)) = F̂ (ĥ(x), k(y)).
2

This proposition is true for either Borel or abstract universal functions,
but note however that the Baire complexity of F (F (x, y), z) is higher than
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that of F . The question “Is it consistent that the Borel rank in different
dimensions is different ?”, is open.

Juris Steprans recently pointed out (Feb 2017) that the obvious attempt
to prove that a 3-dimensional universal function implies the existence of a 2-
dimensional universal function, namely freezing a coordinate, may not work;
i.e., putting F̂ (x, y) = F (x, y, z0), because different G might require different
z0. However, it almost works. Here is his proof: Suppose F : κ3 → κ is
universal, i.e., for every G : κ3 → κ there are h, k, j : κ → κ such that
G(x, y, z) = F (h(x), k(y), j(z)) for all x, y, z ∈ κ. Let Az ⊆ κ for z ∈ κ
partition κ into sets of size κ. Define Fz(x, y) = F (x, y, z). Then we claim
that for some z the map Fz restricted to Az × Az is universal for all maps
from Az×Az to κ. Suppose not. For each z let Gz : Az×Az → κ witness that
it is not universal. Take any G : κ × κ → κ which extends all Gz. Since F
is universal there are h, k, j with G(x, y) = F (h(x), k(y), j(z)) all x, y, z ∈ κ.
Letting z0 = j(0) gives us that

Gz0(x, y) = G(x, y) = F (h(x), k(y), z0) = Fz0(h(x), k(y)) for all x, y ∈ Az0

which contradicts the choice of Gz0 .
This argument requires that we restrict to a subset Az of κ, we don’t know

if there could be a 3-dimensional universal F such no Fz is 2-dimensional
universal with respect to maps on all of κ2.

We may also consider universal functions F where the parameters func-
tions are functions of more than one variable, for example:

∀G ∃g, h, k ∀x, y, z G(x, y, z) = F (g(x, y), h(y, z), k(z, x)).

This form easily follows from the existence of a dimension 3 universal. Note
that by using pairing functions we can always combine parameter functions
which have the same sequence of variables. The reader can imagine many
variants. For example,

G(x, y, z) = F (g(x, y), h(y, z))
G(x1, x2, x3, x4) = F (g1(x1, x2), g2(x2, x3), g3(x3, x4), g4(x4, x1))

where we have omitted quantifiers for clarity. These two variants are equiv-
alent to the existence of 2-dimensional universal function. To see this in the
first example put y = 0 and get

G(x, z) = F (g(x, 0), h(0, z)).
In the second example put x2 = x4 = 0 and get

G(x1, x3) = F (g1(x1, 0), g2(0, x3), g3(x3, 0), g4(0, x1)).
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More generally, suppose F and ~xk’s have the property that for every G there
are gk’s such that for all ~x

G(~x) = F (g1(~x1), . . . , gn(~xn)).

Suppose there are two variables x and y from ~x which do not simultaneously
belong to any ~xk. Then we get a universal 2-dimensional function simply by
putting all of the other variables equal to zero.

Proposition 6.3 If there is a (3, 2)-dimensional universal function, i.e., an
F (x, y, z) such that for every G there is h with

G(x, y, z) = F (h(x, y), h(y, z), h(z, x)) all x, y, z

then for every n > 3 there is a (n, 2)-dimensional universal function F , i.e.,
for every G n-ary there is a binary h with

G(x1, x2, . . . , xn) = F (〈h(xi, xj) : 1 ≤ i < j ≤ n〉) all ~x.

F is

(
n
2

)
-ary. Conversely, if there is a (n, 2)-dimensional universal func-

tion for some n > 3, then there is a (3, 2)-dimensional universal function.

proof:
Consider the case for n = 4.
Suppose that F is (3, 2)-dimensional universal function. Given a 4-ary

function G(x, y, z, w) for each fixed w we get a function hw(u, v) with

G(x, y, z, w) = F (hw(x, y), hw(y, z), hw(z, x)) for all x, y, z.

But now considering h(u, v, w) = hw(u, v) we get a function k(s, t) with
h(u, v, w) = F (k(u, v), k(v, w), k(w, u)). Note that

G(x, y, z, w) =
F (F (k(x, y), k(y, w), k(w, x)),

F (k(y, z), k(z, w), k(w, y)),
F (k(z, x), k(x,w), k(w, z))).

Note that k(s, t) and k(t, s) can be combined by pairing and unpairing into
a single function k1(s, t). From this one can define a (4, 2)-dimensional uni-
versal function.
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For the converse, if F is a (4, 2)-dimensional universal function, then for
every G 3-ary, there exists h binary with

G(x, y, z) = F (h(x, y), h(y, z), h(x, z), h(x, 0), h(y, 0), h(z, 0)).

But note that, for example, h(x, y) and h(x, 0) can be combined into a single
function of h1(x, y). Hence we can get a (3, 2)-dimensional universal function.

2

To state the generalization of these ideas

Definition 6.4 Let U(κ,m, n) mean that we have a (m,n)-dimensional uni-

versal function on κ. This means for k =

(
n
m

)
there exists F : κk → κ

such that for every G : κm → κ there is h : κn → κ such that

G(x0, x1, . . . , xm−1) = F (h(xj : j ∈ Q) : Q ∈ [m]n) for all ~x ∈ κm.

Then the last two propositions can be generalized to show:

Proposition 6.5 For any infinite cardinal κ and positive integer n

1. U(κ, n+ 1, n) implies ∀m > n U(κ,m, n).

2. (∃m > n U(κ,m, n)) implies U(κ, n+ 1, n).

3. U(κ, n+ 1, n) implies U(κ, n+ 2, n+ 1)

We show that U(κ, n + 1, n) are the only generalized multi-dimensional
universal functions properties.

Definition 6.6 Suppose Σ ⊆ P({0, 1, 2, . . . , n − 1}) = P(n) (the power set
of n). Define U(κ, n,Σ) to mean that there exists F : κΣ → κ such that for
every G : κn → κ there are hQ : κ|Q| → κ for Q ∈ Σ such that

G(x0, x1, . . . , xn−1) = F (hQ(xj : j ∈ Q) : Q ∈ Σ) for all ~x ∈ κn.

Proposition 6.7 Let κ be an infinite cardinal, n ≥ 2, and Σ,Σ0,Σ1 subsets
of P(n).

1. If Σ0 ⊆ Σ1 , then U(κ, n,Σ0) implies U(κ, n,Σ1).

44



2. If Q0 ⊆ Q1 ∈ Σ, then U(κ, n,Σ) is equivalent to U(κ, n,Σ ∪ {Q0}).

3. Suppose Σ is closed under taking subsets, every k < n is in some el-
ement of Σ, and {0, 1, 2, . . . , n − 1} /∈ Σ. Let k + 1 be the size of
the smallest subset of {0, 1, 2, . . . , n− 1} not in Σ. Then U(κ, n,Σ) is
equivalent to U(κ, k + 1, k).

proof:
(1) This is true because the F which works for Σ0 also works for Σ1

by ignoring the values of hQ for Q ∈ Σ1\Σ0.

(2) This is true because given hQ0 , hQ1 we may define a new ĥQ1 by
outputting the pairing

ĥQ1(xj : j ∈ Q1) = 〈(hQ0(xj : j ∈ Q0), (hQ1(xj : j ∈ Q1)〉

(3) First note that by (2) we may as well assume that Σ is closed under
taking subsets. If some k does not appear in any element of Σ, then U(κ, n,Σ)
is trivially false. If {0, 1, 2, . . . , n−1} is in Σ, then U(κ, n,Σ) is trivially true.

So let R ⊆ {0, 1, . . . n− 1} not in Σ with |R| = k + 1. By choice of k + 1
all subsets of R of size k are in Σ. By setting xi = 0 for i /∈ R, we see that
U(κ, k + 1, k) is true.

Now assume U(κ, k + 1, k) is true. By Proposition 6.5 we have that
U(κ, n, k) is true and hence if Σ0 = [n]k then U(κ, n,Σ0) is true. But Σ0 ⊆ Σ
and so by (1), U(κ, n,Σ) is true.
2

Proposition 6.8 The following are true in ZFC.

1. U(ω, 2, 1)

2. U(ω1, 3, 2)

3. U(κ, 2, 1) implies U(κ+, 3, 2)

4. U(κ, n+ 1, n) implies U(κ+, n+ 2, n+ 1)

5. U(ωn, n+ 2, n+ 1) every n ≥ 0.

proof:
For (1) see Theorem 5.2. We prove (2) and leave 3-5 to the reader.
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Suppose that f : ω2 → ω witnesses U(ω, 2, 1). For any countable ordinal
δ > 0 let δ = {δi : i < ω}. Define

F0(δ, n,m) = δf(n,m).

Now suppose G : ω3
1 → ω1. Define

k(δ) = sup{G(α, β, γ) : α, β, γ ≤ δ}+ 1

For any γ < ω1 let γ∗ = k(γ). Define g : ω2 → ω by

G((γ + 1)n, (γ + 1)m, γ)) = γ∗g(n,m).

By the universality property of f there exists h : ω → ω with

g(n,m) = f(h(n), h(m)) for every n,m ∈ ω.

For δ ≤ γ define h1(δ, γ) = h(k) where δ = (γ + 1)k. Then we have that

∀α, β ≤ γ < ω1 G(α, β, γ) = F0(k(γ), h1(α, γ), h1(β, γ)).

Define F as follows:

F (α, β, γ, α∗, β∗, γ∗, n1,m1, n2,m2, n3,m3) =
F0(γ∗, n1,m1) if α, β ≤ γ
F0(β∗, n2,m2) if γ < β and α ≤ β
F0(α∗, n3,m3) if β, γ < α

Then given G we can find k, h1, h2, h3 so that
G(α, β, γ)) =

F (α, β, γ, k(α), k(β), k(γ),
h1(α, γ), h1(β, γ), h2(α, β), h2(γ, β), h3(β, α), h3(γ, α)).

2

The κ-Cohen real model is any model of ZFC obtained by forcing with
the poset of finite partial functions from κ to 2 over a countable transitive
ground model satisfying ZFC.

Proposition 6.9 In the ω2-Cohen real model we have that U(ω1, 2, 1) fails.
Similarly, U(ω2, 3, 2) fails in the ω3-Cohen real model. More generally, we
have that U(γ, n+ 1, n) fails in the κ-Cohen real model when κ > γ ≥ ωn.
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proof:
We show that U(ω2, 3, 2) fails in the ω3-Cohen real model, leaving the

rest to the reader.
Let M be a countable transitive model of ZFC and in M define P to be

the poset of finite partial maps from ω3 × ω3 × ω3 into 2. We claim that if
G is P-generic over M , then there is no map F : ω2 × ω2 × ω2 → ω2 which is
(3,2)-universal for maps of the form H : ω × ω1 × ω2 → 2.

Suppose for contradiction that F is such a map. By the ccc we may find
γ0 < ω3 with F ∈ M [G � γ3

0 ]. Hence we may find maps h1 : ω × ω1 → ω3,
h2 : ω × ω2 → ω3, and h3 : ω1 × ω2 → ω3 such that

H(n, β, γ) =def G(n, β, γ0 + γ) = F (h1(n, β), h2(n, γ), h3(β, γ)).

for every n < ω, β < ω1, γ < ω2. By ccc we can choose γ1 < ω2 such that
h1 ∈ M [G∗] where G∗ is G restricted {(α, β, ρ) ∈ ω3 : ρ 6= γ0 + γ1}. Define
g : ω × ω1 → 2 by

g(n, α) = G(n, α, γ0 + γ1)

Note that we have that F, h1 ∈M [G∗], g is Cohen generic over M [G∗], and

g(n, α) = F (h1(n, α), h2(n, γ0 + γ1), h3(α, γ0 + γ1)).

Since the extension by g is ccc, we may find α0 < ω1 such that

h2 ∈M [G∗][g � (ω × α0)] =def N.

But this is a contradiction because gα0 defined by gα0(n) = g(n, α0) is Cohen
generic over N . But F, h1, h2 ∈ N and for any γ2 < ω2 the map k defined by

k(n) = F (h1(n, α0), h2(n, γ0 + γ1), γ2) for all n < ω

is in N and so can never be equal to gα0 . Thus h3(α0, γ0 + γ1) = γ2 cannot
be defined.
2

Corollary 6.10 ([20]) Let ℵω ≤ γ < κ. In the κ-Cohen real model we have
that

U(ωn, n+ 2, n+ 1) + ¬U(ωn, n+ 1, n) for all n > 0,

and
¬U(γ, n+ 1, n) for all n > 0.

Hence, in the Cohen real model for every n ≥ 1 there is a universal function
on ωn where the parameter functions have arity n+1 but no universal function
where the parameters functions have arity n.
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7 Model Theoretic Universal

Theorem 7.1 (Remark 7.13 [20].) If 2<c = c and there is a Borel universal
map, i.e. Borel F : 2ω × 2ω → 2ω such that for every G : 2ω × 2ω → 2ω there
is h such that G(x, y) = F (h(x), h(y)) for all x ∈ 2ω, then there is a Borel
map H such that for every cardinal κ < c for every G : κ× κ→ κ there are
xα ∈ 2ω for α < κ such that for α, β, γ < κ

G(α, β) = γ iff H(xα, xβ) = xγ

proof:
By Theorems 4.6, Lemma 4.19, and Theorem 5.1 there exists α < ω1,

Z ⊆ 2ω with |Z| = c and every Y ∈ [Z]<c is Σ0
α˜ in Z. Note that by Lemma

4.8 P(c× c) = σ({A,B : A,B ⊆ c}), so if X ⊆ Z of size κ then every subset
of X2 is Σ0

α0˜ in X2 where α0 = α + α.
Let X = {xα : α < κ}. Given any map G : κ× κ→ κ define

Yn = {(xα, xβ) : G(α, β) = δ and xδ(n) = 1}

for each n. Let Bn ⊆ 2ω × 2ω be Σ0
α0˜ so that Yn = Bn ∩ (X ×X). Define the

Borel map K by K(u, v)(n) = 1 iff (u, v) ∈ Bn. Note that

G(α, β) = δ iff K(xα, xβ) = xδ.

Let L be Borel and universal for all such maps K, i.e., For all Borel K of
rank less than α0 + 1 there is a y such that ∀u, v K(u, v) = L(y, u, v). Now
define H((y, u), (y, v)) = (y, L(y, u, v)). Putting x̂α = (y, xα) we have that
for every α, β, δ

H(x̂α, x̂β) = x̂δ iff G(α, β) = δ.

2

8 Generic Souslin sets

Theorem 8.1 (Marczewski see Miller[17]) If I is a ccc σ-ideal in the Borel
sets then the family of I-measurable sets is closed under the Souslin operation.

Theorem 8.2 ([16]) (CH) For any α with 2 ≤ α ≤ ω1 there is exists an
uncountable X ⊆ 2ω such that ord(X) = α and every Souslin set in X is
Borel in X.
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Theorem 8.3 (Miller [10]) It is consistent to have X ⊆ 2ω such that every
subset of X is Souslin in X and the Borel order of X is ω1.

The set X also has the property that P(X) is not a countably generated
σ-algebra.

Theorem 8.4 ([10]) It is relatively consistent with ZFC that for every subset
A ⊆ 2ω × 2ω there are abstract rectangles Bs × Cs with

A =
⋃
f∈ωω

⋂
n<ω

(Bf�n × Cf�n)

but not every subset of 2ω × 2ω is in the σ-algebra generated by the abstract
rectangles.

9 Products and Unions

Theorem 9.1 (Sierpinski 1935) Assume CH. There Luzin sets and Sierpin-
ski sets whose square can be continuously mapped onto 2ω.

Corollary 9.2 (CH) For any α with 2 ≤ α < ω1 there is X ⊆ 2ω such that

ord(X) = α and ord(X2) = ω1

proof:
Let S ⊆ 2ω be a Sierpinski set whose square continuously maps onto 2ω.

Let Xα have order α (which exists by CH [9]), then the clopen separated
union X = S ⊕Xα has order α and its square has order ω1 by Reclaw 1.7.

Theorem 9.3 (Miller [13]) (CH) There is an uncountable σ-set X ⊆ 2ω

which is concentrated on a countable set. (σ-set means ord(X) = 2.)

Theorem 9.4 (Fleissner, Miller [4]) It is relatively consistent with ZFC to
have an uncountable Q-set which is concentrated on a countable set.

Theorem 9.5 (CH) For any α0 with 3 ≤ α0 < ω1 there are X0, X1 ⊆ 2ω

with ord(X0) = α0 = ord(X1) and ord(X0 ∪X1) = α0 + 1.

proof:
Let T be a nice α0-tree (see Definition 3.2).
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Definition 9.6 Define PT by p ∈ PT iff p : T → 2 is a finite partial function
such that for all s ∈ T 0 and n < ω if s, sn ∈ dom(p) and p(s) = 1, then
p(sn) = 0. Define the rank of p: |p| = max{rankT (s) : s ∈ dom(p)}.

Lemma 9.7 Rank Lemma. For all countable β ≥ 1 for all p ∈ PT there
exists p̂ ∈ PT compatible with p, |p̂| ≤ β, and for all q ∈ PT with |q| < β,
(p ⊥ q)→ (p̂ ⊥ q).

proof:
As usual ⊥ stands for incompatible. First extend p to p∗ which has the

property that for any s ∈ dom(p) with p(s) = 1 and rankT (s) = λ a limit
ordinal greater than β and n such that rankT (sn) < β there exists m such
that p∗(snm) = 1. Note that by the definition of nice tree there are at most
finitely many sn.

Now define p̂ = p∗ � {s ∈ domp∗ : rankT (s) ≤ β}. Suppose |q| < β and
p ⊥ q. So one of the following must be true:

1. There exists s ∈ dom(q) ∩ dom(p) with p(s) 6= q(s).

2. There exists s ∈ dom(q) and sn ∈ dom(p) with q(s) = 1 and p(sn) = 1.

3. There exists s ∈ dom(p) and sn ∈ dom(q) with p(s) = 1 and q(sn) = 1.

In the first case since |q| < β we have that s ∈ dom(p̂) so p̂ ⊥ q. In the
second case rankT (sn) < rankT (s) < β so again p̂ ⊥ q. In the third case
rankT (sn) < β so either rankT (s) ≤ β (so p̂ ⊥ q) or rankT (s) = λ > β a limit
ordinal. By the construction of p∗ there is some m with p∗(snm) = 1. Since
p̂(snm) = 1 and q(sn) = 1 it follows that p̂ ⊥ q.
2

Definition 9.8 For G sufficiently PT -generic, its union,
⋃
G, will be a map

from T into 2. Let g be the restriction of
⋃
G to T ∗, the terminal nodes of

T . So g : T ∗ → 2 is defined by g(s) = i iff ∃p ∈ G with p(s) = i.

Lemma 9.9 Suppose α ≥ 1, B(v) is a Σ0
α˜ predicate on 2T

∗
coded in M ,

and p ∈ PT . If p 
B(
◦
g), then there exists p̂ compatible with p, |p̂| < α, and

p̂ 
B(
◦
g).
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proof:
Case α = 1. Suppose (B(v) ⇐⇒ ∃n Cn(v)) where Cn are clopen. Take

q ≤ p and n so that q 
Cn(
◦
g). By extending q we may assume that Cn(f)

holds for all f ∈ T ∗ with q � T ∗ ⊆ f . Then p̂ =def q � T ∗ is as required.
Case α > 1. Suppose (B(v) ⇐⇒ ∃n Bn(v)) where Bn is Π0

βn˜ for

some βn < α. Let p1 ≤ p and n < ω be such that p1 
Bn(
◦
g). Let p̂1 be

obtained from the Rank Lemma for β = βn. Then it must be that p̂1 
Bn(
◦
g).

Otherwise there exists p2 ≤ p̂1 such that p2 
¬Bn(
◦
g). By induction there q

compatible with p2 (and hence with p̂1), |q| < βn and q 
¬Bn(
◦
g). But by

the Rank Lemma such a q would be compatible with p1, contradiction.
2

Lemma 9.10 If B(v) is a Σ0
α˜ 0

predicate on 2T
∗

coded in M , then there exists
G PT -generic over M such that B(g) iff G(〈〉) = 0.

proof:

If not, 1 
 “B(
◦
g) iff G(〈〉) = 1”. Let p = (〈〉, 1), so p 
G(〈〉) = 1 and

therefor p 
B(
◦
g). By the Lemma 9.9 there is q compatible with p, |q| < α0

and q 
B(
◦
g). But note that q∗ = q ∪ {(〈〉, 0)} is a condition because 〈〉 is

not in the domain of q since it has rank α0. But q∗ 
“ G(〈〉) = 0 and B(
◦
g)”

which is a contradiction.
2

Now we prove Theorem 9.5. Let Mβ � Hκ for β < ω1 be countable
elementary substructures of Hκ for some sufficiently large regular κ, so that
β < γ implies Mβ �Mγ and P(ω) ⊆

⋃
β<ω1

Mβ. Choose Gα PT -generic over

Mα with the property that for any B(v) a Σ0
α˜ 0

predicate on 2T
∗

for some

α B(gα) iff Gα(〈〉) = 0. Let X = {gα ∈ 2T
∗

: α < ω1} and for i = 0, 1
let Xi = {gα : Gα(〈〉) = i}. Define Us ⊆ 2T

∗
for s ∈ T as follows.

Us = {x ∈ 2T
∗

: x(s) = 1}. For s ∈ T 0 Us =
⋂
n<ω ∼ Usn. Note that if

rankT (s) = β then Us is Π0
β˜ . Therefor since U〈〉 ∩X = X1 we have that X1

is a Π0
α0˜ subset of X which by construction is not Σ0

α˜ 0
. So ord(X) ≥ α0 + 1.

Define for p ∈ PT [p] =
⋃
{Us : p(s) = 1} ∪

⋃
{∼ Us : p(s) = 0}. Note

that [p] is ∆0
α0+1˜ . For any Borel B ⊆ 2T

∗
there is an α < ω1 with B coded

in Mα. For all γ ≥ α Gγ is PT -generic over Mγ and hence

gγ ∈ B iff ∃p ∈ Gγ p 
gγ ∈ B.
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Note that by Borel absoluteness gγ ∈ B iff Mγ[gγ] |= gγ ∈ B. Let

Σ =def {p ∈ PT : p 

◦
g∈ B}.

Let X≥α = {gγ : γ ≥ α}. Then

X≥α ∩B = X≥α ∩
⋃
p∈Σ

[p].

Since we add and subtract a countable set from any ∆0
α0+1˜ set and remain

∆0
α0+1˜ , we see that ord(X) ≤ α0 + 1.
For any p ∈ PT and i = 0, 1 we have that [p]∩Xi is ∆0

α˜ 0
since it is either

empty (if p(〈〉) = 1− i) or equal to [p∗]∩Xi where p∗ = p\{(〈〉, i)}. It follows
that ord(Xi) ≤ α0.

To get an example with order exactly α0: Either by modifying the above
construction or using the Luzin set argument from [9] Thm 18, we can get
Y ⊆ 2ω with order exactly α0. Let X+

i =def Xi ⊕ Y where ⊕ means to take
a clopen separated union. Then ord(X+

i ) = α0 and X+
0 ∪X+

1 = X ⊕ Y has
order α0 + 1.

This proves Theorem 9.5.
Note that in case α0 is a successor order we can use the above proof to get

Z0, Z1 such that ord(Z0) = α0, ord(Z1) = α0− 1, and ord(Z0 ∪Z1) = α0 + 1.
To see this note that since p(〈〉) = 1 implies p(〈n〉) = 0 for all 〈n〉 ∈ dom(p)
we have that ord(X1) ≤ α0 − 1. Take Y ′ with ord(Y ′) = α0 − 1 and put
Z0 = X0 ⊕ Y ⊕ ∅ and Z1 = X1 ⊕ ∅ ⊕ Y ′.

10 Invariant Descriptive Set Theory

For ρ a countable similarity type let Xρ be the Polish space of ρ-structures
with universe ω. For example if ρ = {R, f, U, c} where R is a binary relation
symbol, f a binary operation symbol, U a unary operation symbol and c a
constant symbols then

Xρ = 2ω×ω × ωω×ω × 2ω × ω.

The language Lω1,ω(ρ) is obtained by adding countably infinite conjunctions
and disjunctions to the usual first order logical axioms. For example:

∀y
∨
n<ω

∃x1, x2, . . . xn ∀z(R(z, y)→ ∨ni=1z = xi)
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which says that for every y there are at most finitely many z with R(z, y).
We consider only formulas with at most finitely many free variables. In-

ductively define Σα and Πα formulas as follows: Σ0 = Π0 formulas are the
ordinary first-order quantifier free finite formulas. For α > 0 a formula φ(~y)
is Σα iff there are φn( ~xn, ~y) each a Π<α formula and

φ(~y) =
∨
n<ω

∃ ~xnφn( ~xn, ~y).

A formula φ(~y) is Πα iff there are φn( ~xn, ~y) each a Σ<α formula and

φ(~y) =
∧
n<ω

∀ ~xnφn( ~xn, ~y)

Theorem 10.1 (Mostowski see Kuratowski [8] page ???) If θ is a Σα sen-
tence of Lω1,ω(ρ), then the set of models of θ is a Σ0

α Borel subset of Xρ.

proof:
For any n and formula θ(~x) where ~x = x0, . . . , xn−1 includes all free

variable of θ and any s ∈ ωn consider the models of θ(s):

{M ∈ Xρ : M |= θ(s(0), s(1), . . . , s(n− 1))}

Details left to reader.
2

Theorem 10.2 (Scott 1964 see Barwise [1]) For any countable structure A
in a countable similarity type ρ, there is a sentence θ of Lω1,ω(ρ) such that
for any countable ρ-structure B

A ' B iff B |= θ

A subset of Xρ is invariant iff it is closed under isomorphism. Lopez-
Escobar (1965) showed that invariant Borel subsets of Xρ are the models of
an Lω1,ω(ρ)-sentence. Vaught proved a hierarchy version of this:

Theorem 10.3 (Vaught [24]) Any Π0
α subset of Xρ which is closed under

isomorphism is the set of models of a Πα sentence of Lω1,ω(ρ)
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proof:
Let S∞ ⊆ ωω be the Polish group of bijections of ω. It’s action on Xρ is

isomorphism. For example, given π ∈ S∞ and R ⊆ ω × ω a binary relation,
then (ω,R) is isomorphic to (ω, S) via π where S is defined by R(x, y) iff
S(π(x), π(y)). S∞ ×Xρ → Xρ (π,R) 7→ S is a continuous action.

The following is the Vaught transform: For each n ∈ ω and one-to-one
map s : n → ω define (A, s) ∈ B∗n iff there are comeagerly many π ∈ [s]
such that π−1(A) ∈ B. For n = 0 then B∗ is the set of all A ∈ Xρ for which
there are comeagerly many π ∈ S∞ such that π−1(A) ∈ B (or equivalent
comeagerly many π with π(A) ∈ B).

Lemma 10.4 Suppose (Bn ⊆ Xρ : n < ω) and m < ω, then

(
⋂
n<ω

Bn)∗m =
⋂
n<ω

B∗mn

proof:
The countable intersection of comeager sets is comeager.

2

Lemma 10.5 Suppose B ⊆ Xρ is Borel and n < ω, then for any s : n→ ω
one-to-one,

(A, s) ∈ B∗n iff ¬∃t ⊇ s (A, t) ∈ (∼ B)∗|t|

where ∼ B is the complement of B.

proof:
For any (A, s) the set {π ∈ S∞ : π−1 ∈ B} is the continuous preimage

of a Borel set and hence is Borel and so has the property of Baire. For a
set with the property of Baire, it either is comeager or its complement is
somewhere comeager.
2

Lemma 10.6 For any n, α ≥ 1 and B ⊆ Xρ a Π0
α set, there is a Πα formula

θ(~v) such that for any A ∈ Xρ and s : n→ ω one-to-one

(A, s) ∈ B∗n iff (A, s) |= θ(s(0), . . . , s(n− 1)).
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proof:
First assume α = 1 and B ⊆ Xρ is clopen. Then for some quantifier-free

finite formula
B = {A ∈ Xρ : A |= θ(0, 1, 2, . . . ,m)}

Without loss, we may assume m > n.
Then by definition (A, s) ∈ B∗n iff {π : π−1(A) ∈ B} is comeager in [s].

But since B is clopen, {π : π−1(A) ∈ B} is comeager in [s] iff π−1(A) ∈ B
for all π ⊇ s. But now π−1(A) ∈ B iff π−1(A) |= θ(0, 1, 2, . . . ,m). iff
A |= θ(π(0), π(1), . . . , π(m).

Hence we get that (A, s) ∈ B∗n iff
(A, s) |= ∀vn, . . . , vm (D(s,~v)→ θ(s(0), . . . , s(n− 1), v(n), . . . , v(m)))

where D is the first-order formula saying that the vi are distinct and
different from all the s(j).

To finish the case of α = 1 just use that if B is Π0
1 then B =

⋂
m<ω Bm

where each Bm is clopen and B∗n =
⋂
m<ω B∗nm by Lemma 10.4.

Now assume α > 1 and B ⊆ Xρ is Σ0
β for some β < α. Then ∼ B

is Π0
β and so by Lemma 10.5: (s, A) ∈ B∗n iff ¬∃t ⊇ s (A, t) ∈ (∼ B)∗|t|

By induction hypothesis (A, t) ∈ (∼ B)∗|t| iff (A, t) |= θm(t(0), . . . , t(m)) for
some Πβ formula θm. And so, (A, s) ∈ B∗n iff
(A, s) |= ∀vn, . . . , vm (D(s,~v)→ ¬θ(s(0), . . . , s(n− 1), v(n), . . . , v(m)))

Note that this is a Πβ+1 formula and so a Πα formula. To finish this case
if B is Π0

α then B =
⋂
m<ω Bm where Bm is Σ0

βm
for some βm < α. Hence

applying Lemma 10.4 us the result since the countable conjunction of Πα

formulas is a Πα formula.
2

Vaught’s Theorem 10.3 follows immediately from the Lemma for the case
n = 0 and B invariant, i.e., B∗ = B. It also the case that invariant Σ0

α sets
are the models of a Σα sentence by considering complements.

Theorem 10.7 (Hausdorff Difference Hierarchy) B ∈ ∆0
α+1 iff there exists

a countable sequence of decreasing Π0
α sets Bβ for β < γ such that

B =
⋃

β even <γ

Bβ\Bβ+1

For a proof see Kuratowski [8] page-section ???.
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Theorem 10.8 (Douglas E. Miller [19]) If B is also invariant, then

B =
⋃

β even <γ

B∗β\B∗β+1

proof:
The dual of the Vaught *-transform is B4 =∼ (∼ B∗). Equivalently

A ∈ B4 iff π(A) ∈ B for non-meagerly many π ∈ S∞. Two other transforms
are

B+ = {A : ∃π ∈ S∞ π(A) ∈ B} and B− = {A : ∀π ∈ S∞ π(A) ∈ B}.

Note that

1. B− ⊆ B∗ ⊆ B4 ⊆ B+

2. B is invariant iff B− = B+

3. (
⋃
n<ω Bn)4 =

⋃
n<ω B4n

4. B∗1 ∩ B
4
2 ⊆ (B1 ∩ B2)4

5. (∼ B)∗ =∼ B4

6. B∗1\B∗2 = B∗1 ∩ ∼ (B∗2) = B∗1 ∩ (∼ B2)4 ⊆ (B1\B2)4

To prove the theorem note that⋃
even β<γ

B∗β\B∗β+1 ⊆
⋃
β

(Bβ\Bβ+1)4 = (
⋃
β

Bβ\Bβ+1)4 = B4 = B

where these unions are all taken over even β < γ. Hence if we let

Diffeven(Bα : α < γ) =def
⋃
{Bα\Bα+1 : even α < γ}

Then we conclude that

Diffeven(B∗α : α < γ) ⊆ B.

To get the reverse inclusion note that the complement of a difference set
is also a difference set. To see this we may without loss of generality assume
that γ is a limit ordinal by padding with the empty set if necessary. Then
∼ B =∼ (

⋃
{Bβ\Bβ+1 : β even < γ} is the union of the following sets:
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• Xρ\B0

• Bβ\Bβ+1 for odd β < γ

• (∩α<λBα)\Bλ for limit λ < γ

• ∩α<γBα

Let us denote this union as Diffodd(Bα : α < γ). Then by the argument
above we get that

Diffodd(B∗α : α < γ) ⊆∼ B
But since Diffeven(B∗α : α < γ) and Diffodd(B∗α : α < γ) are complements, it
follows that B = Diffeven(B∗α : α < γ).
2

Corollary 10.9 If the isomorphism class of a countable structure is ∆0
α+1

then it must be either Π0
α, Σ0

α, or the difference of two invariant Π0
α sets.

Theorem 10.10 (Miller [11]) The isomorphism class of a countable model
cannot be properly Σ0

1 or properly Σ0
2. For λ a countable limit ordinal, it

cannot be properly Σ0
λ or properly the difference of two Π0

λ sets.

Theorem 10.11 (Miller [11], Hjorth [5]) In all other cases of there are
examples of countable structures whose isomorphism class is properly of that
Borel class.
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