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1 Propositional Logic

In this book we shall study certain formal languages each of which abstracts
from ordinary mathematical language (and to a lesser extent, everyday En-
glish) some aspects of its logical structure. Formal languages differ from
natural languages such as English in that the syntax of a formal language is
precisely given. This is not the case with English: authorities often disagree
as to whether a given English sentence is grammatically correct. Mathe-
matical logic may be defined as that branch of mathematics which studies
formal languages.

In this chapter we study a formal language called propositional logic.
This language abstracts from ordinary language the properties of the propo-
sitional connectives (commonly called conjunctions by grammarians). These
are “not”, “and”, “or”, “if”, and “if and only if”. These connectives are ex-
tensional in the sense that the truth value of a compound sentence built up
from these connectives depends only the truth values of the component sim-
ple sentences. (The conjunction “because” is not extensional in this sense:
one can easily give examples of English sentences p, q, and r such that p,
q, r are true, but ‘p because q’ is true and ‘p because r’ is false.) Further-
more, we are only concerned with the meanings that common mathematical
usage accord these connectives; this is sometimes slightly different from their
meanings in everyday English. We now explain these meanings.

NEGATION. A sentence of form ‘not p’ is true exactly when p is false.
The symbol used in mathematical logic for “not” is ¬ (but in older books
the symbol ∼ was used). Thus of the two sentences

¬2 + 2 = 4

¬2 + 2 = 5

the first is false while the second is true. The sentence ¬p is called the
negation of p.

CONJUNCTION. A sentence of form ‘p and q’ is true exactly when both
p and q are true. The mathematical symbol for “and” is ∧ (or & in some
older books). Thus of the four sentences

2 + 2 = 4 ∧ 2 + 3 = 5
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2 + 2 = 4 ∧ 2 + 3 = 7

2 + 2 = 6 ∧ 2 + 3 = 5

2 + 2 = 6 ∧ 2 + 3 = 7

the first is true and the last three are false. The sentence p ∧ q is called the
conjunction of p and q.

For the mathematician, the words “and” and “but” have the same mean-
ing. In everyday English these words cannot be used interchangeably, but
the difference is psychological rather than logical.

DISJUNCTION. A sentence of form ‘p or q’ is true exactly when either p
is true or q is true (or both). The symbol use in mathematical logic for “or”
is ∨. Thus of the four sentences

2 + 2 = 4 ∨ 2 + 3 = 5

2 + 2 = 4 ∨ 2 + 3 = 7

2 + 2 = 6 ∨ 2 + 3 = 5

2 + 2 = 6 ∨ 2 + 3 = 7

the first three are true while the last is false. The sentence p∨ q is called the
disjunction of p and q.

Occasionally, the sentence p or q has a different meaning in everyday life
from that just given. For example, the phrase “soup or salad included” in a
restaurant menu means that the customer can have either soup or salad with
his/her dinner at no extra cost but not both. This usage of the word “or”
is called exclusive (because it excludes the case where both components are
true). Mathematicians generally use the inclusive meaning explained above;
when they intend the exclusive meaning they say so explicitly as in p or q
but not both.

IMPLICATION. The forms ‘if p, then q’, ‘q, if p’, ‘p implies q’, ‘p only if
q’, and ‘q whenever p’ all having the same meaning for the mathematician:
p ‘implies q’ is false exactly when p is true but q is false. The mathematical
symbol for “implies” is⇒ (or ⊃ in older books). Thus, of the four sentences

2 + 2 = 4⇒ 2 + 3 = 5
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2 + 2 = 4⇒ 2 + 3 = 7

2 + 2 = 6⇒ 2 + 3 = 5

2 + 2 = 6⇒ 2 + 3 = 7

the second is false and the first, third and fourth are true.
This usage is in sharp contrast to the usage in everyday language. In

common discourse a sentence of form if p then q or p implies q suggests a
kind of causality that is that q “follows” from p. Consider for example the
sentence

“If Columbus discovered America, then Aristotle was a Greek.”

Since Aristotle was indeed a Greek this sentence either has form If true
then true or If false then true and is thus true according to the meaning
of “implies” we have adopted. However, common usage would judge this
sentence either false or nonsensical because there is no causal relation between
Columbus’s voyage and Aristotle’s nationality. To distinguish the meaning
of “implies” which we have adopted (viz. that p implies q is false precisely
when p is true and q is false) from other possible meanings logicians call it
material implication. This is the only meaning used in mathematics. Note
that material implication is extensional in the sense that the truth value of
p materially implies q depends only on the truth values of p and q and not
on subtler aspects of their meanings.

EQUIVALENCE. The forms ‘p if and only if q’, ‘p is equivalent to q’; and
‘p exactly when q’ all have the same meaning for the mathematician: they
are true when p and q have the same truth value and false in the contrary
case. Some authors use “iff” is an abbreviation for “if and only if”. The
mathematical symbol for if and only if is⇔ ( ≡ in older books). Thus of the
four sentences

2 + 2 = 4⇔ 2 + 3 = 5

2 + 2 = 4⇔ 2 + 3 = 7

2 + 2 = 6⇔ 2 + 3 = 5

2 + 2 = 6⇔ 2 + 3 = 7

the first and last are true while the other two are false.
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Evidently, p if and only if q has the same meaning as if p then q and if q
then p. The meaning just given is called material equivalence by logicians.
It is the only meaning used in mathematics. Material equivalence is the
“equality” of propositional logic.

1.1 Syntax of Propositional Logic.

In this section we begin our study of a formal language (or more precisely a
class of formal languages) called propositional logic.

A vocabulary for propositional logic is a non-empty set P0 of symbols; the
elements of the set P0 are called proposition symbols and denoted by lower
case letters p, q, r, s, p1, q1, . . .. In the standard semantics1 of propositional
logic the proposition symbols will denote propositions such as 2+2 = 4 or 2+
2 = 5. Propositional logic is not concerned with any internal structure these
propositions may have; indeed, for us the only meaning a proposition symbol
may take is a truth value – either true or false in the standard semantics.

The primitive symbols of the propositional logic are the following:

• the proposition symbols p, q, r, . . . from P0;

• the negation sign ¬

• the conjunction sign ∧

• the disjunction sign ∨

• the implication sign ⇒

• the equivalence sign ⇔

• the left bracket [

• the right bracket ]

Any finite sequence of these symbols is called a string. Or first task is
to specify the syntax of propositional logic; i.e. which strings are grammat-
ically correct. These strings are called well-formed formulas. The phrase

1In studying formal languages it is often useful to employ other semantics besides the
“standard” one.)
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well-formed formula is often abbreviated to wff (or a wff built using the
vocabulary P0 if we wish to be specific about exactly which proposition
symbols may appear in the formula). The set of wffs of propositional logic
is then inductively defined 2 by the following rules:

(W:P0) Any proposition symbol is a wff;

(W:¬) If A is a wff, then ¬A is a wff;

(W:∧,∨,⇒,⇔) If A and B are wffs, then [A ∧B], [A ∨B], [A⇒ B], and
[A⇔ B] are wffs.

To show that a particular string is a wff we construct a sequence of strings
using this definition. This is called parsing the wff and the sequence is called
a parsing sequence. Although it is never difficult to tell if a short string is a
wff, the parsing sequence is important for theoretical reasons. For example
we parse the wff [¬p⇒ [q ∧ p]].

(1) p is a wff by (W:P0).

(2) q is a wff by (W:P0).

(3) [q ∧ p] is a wff by (1), (2), and (W:∧).

(4) ¬p is a wff by (1) and (W:¬).

(5) [¬p⇒ [q ∧ p]] is a wff by (3), (4), and (W:⇒).

In order to make our formulas more readable, we shall introduce certain
abbreviations and conventions.

• The outermost brackets will not be written. For example, we write
p⇔ [q ∨ r] instead of [p⇔ [q ∨ r]].

• For the operators ∧ and ∨ association to the left is assumed. For
example, we write p ∨ q ∨ r instead of [p ∨ q] ∨ r.

• The rules give the operator ¬ the highest precedence: (so that ¬p ∧ q
abbreviates [¬p ∧ q] and not ¬[p ∧ q] but we may insert extra brackets
to remind the reader of this fact. For example, we might write [¬p]∧ q
instead of ¬p ∧ q.

2i.e. the set of wffs is the smallest set of strings satisfying the conditions (W:*).
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• The list: ∧, ∨, ⇒, ⇔ exhibits the binary connectives in order of de-
creasing precedence. In other words, p∧ q∨ r means [p∧ q]∨ r and not
p ∧ [q ∨ r] since ∧ has a higher precedence than ∨.

• In addition to omitting the outermost brackets, we may omit the next
level as well replacing them with a dot on either side of the principle
connective. Thus we may write p ⇒ q. ⇒ .¬q ⇒ p instead of [p ⇒
q]⇒ [¬q ⇒ p]

1.2 Semantics of Propositional Logic.

Recall that P0 is the vocabulary of all proposition symbols of propositional
logic; let WFF(P0) denote the set of all wffs of propositional logic built using
this vocabulary. We let > denote the truth value true and ⊥ denote the
truth value false.

A modelM for propositional logic of type P0 is simply a function

M : P0 −→ {>,⊥} : p 7→ pM

i.e. a specification of a truth value for each proposition symbol. This function
maps p to pM. Or we sayM interprets p to be pM.

We shall extend this function to a function

M : WFF(P0) −→ {>,⊥} : .

And write AM for the valueM(A).
We write

M |= A

(which is read “M models A” or “A is true inM”) as an abbreviation for
the equation AM = >; i.e. M |= A means that A is true in the model M.
We write

M 6|= A

(which is read “ A is false inM”) in the contrary case AM = ⊥; i.e. M 6|= A
means that A is false in the modelM. Then the assertionM |= A is defined
inductively by

10



(M:P0) M |= p if p ∈ P0 and pM = >;
M 6|= p if p ∈ P0 and pM = ⊥.

(M:¬) M |= ¬A ifM 6|= A;
M 6|= ¬A ifM |= A.

(M:∧) M |= A ∧B ifM |= A andM |= B;
M 6|= A ∧B otherwise.

(M:∨) M 6|= A ∨B ifM 6|= A andM 6|= B;
M |= A ∨B otherwise.

(M:⇒) M 6|= A⇒ B ifM |= A andM 6|= B;
M |= A⇒ B otherwise.

(M:⇔) M |= A⇔ B if eitherM |= A ∧B
or elseM |= ¬A ∧ ¬B;

M 6|= A⇔ B otherwise.

Notice how the semantical rules (M:*) parallel the syntactical rules (W:*).
To find the value of A in a modelM we must apply the inductive definition
ofM |= A to the parsing sequence which constructs the wff A. For example,
let us compute the value of [p ⇒ ¬q] ⇒ [q ∨ p] for a model M satisfying
pM = > and qM = ⊥. We first parse the wff.

(1) p is a wff by (W:P0).

(2) q is a wff by (W:P0).

(3) ¬q is a wff by (2) and (W:¬).

(4) [p⇒ ¬q] is a wff by (1), (3), and (W:⇒).

(5) [q ∨ p] is a wff by (1), (2), and (W:∨).

(6) [[p⇒ ¬q]⇒ [q ∨ p]] is a wff by (4), (5), and (W:⇒).

Now we apply the definition ofM |= A to this construction:

(1) M |= p by (M:P0) and pM = >.
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(2) M 6|= q by (M:P0) and qM = ⊥.

(3) M |= ¬q by (2) and (M:¬).

(4) M |= [p⇒ ¬q] by (1), (3), and (M:⇒).

(5) M |= [q ∨ p] by (1),(2), and (M:∨).

(6) M |= [p⇒ ¬q]⇒ [q ∨ p] by (4),(5), and (M:⇒).

The following easy proposition will motivate the definition of proposi-
tional tableaus.

Proposition 1.2.1 Let M be a model for propositional logic and A and B
be wffs. Then:

¬¬ If M |= ¬¬A, then M |= A.

∧ If M |= [A ∧B], then M |= A or M |= B.

¬∧ If M |= ¬[A ∧B], then M |= ¬A and M |= ¬B.

∨ If M |= [A ∨B], then either M |= A or M |= B.

¬∨ If M |= ¬[A ∨B], then M |= ¬A and M |= ¬B.

⇒ If M |= [A⇒ B], then either M |= ¬A or M |= B.

¬ ⇒ If M |= ¬[A⇒ B], then M |= A and M |= ¬B.

⇔ If M |= [A⇔ B], then either M |= A ∧B or else M |= ¬A ∧ ¬B.

¬ ⇔ If M |= ¬[A⇔ B], then either M |= A ∧ ¬B or else M |= ¬A ∧B.

12



1.3 Truth Tables

The evaluation of M |= A is so routine that we can arrange the work in a
table. First let us summarize our semantical rules in tabular form:

A ¬A
> ⊥
⊥ >

and

A B A ∧B A ∨B A⇒ B A⇔ B
> > > > > >
> ⊥ ⊥ > ⊥ ⊥
⊥ > ⊥ > > ⊥
⊥ ⊥ ⊥ ⊥ > >

Now we can evaluate M |= A by the following strategy. We first write
the wff down and underneath each occurrence of a proposition symbol write
its value thus:

[p ⇒ ¬ q] ⇒ [q ∨ p]
> ⊥ ⊥ >

and then we fill in the value of each formula on the parsing sequence under
its corresponding principal connective thus:

[p ⇒ ¬ q] ⇒ [q ∨ p]
> > > ⊥ > ⊥ > >

A wff A is called a tautology if it is true in every model: M |= A for
every model M. To check if A is a tautology, we can make a truth table
which computes the value of A in every possible model (each row of the truth
table corresponds to a different model). The truth table will have 2n rows if
A contains exactly n distinct proposition symbols. For example,

[p ⇒ ¬ q] ⇒ [q ∨ p]
> ⊥ ⊥ > > > > >
> > > ⊥ > ⊥ > >
⊥ > ⊥ > > > > ⊥
⊥ > > ⊥ ⊥ ⊥ ⊥ ⊥
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The entries in the fifth column give the values for the whole wff and as the
last of these is ⊥ the wff is not a tautology.

Here is a tautology:

¬ p ⇒ [p ⇒ q]
⊥ > > > > >
⊥ > > > ⊥ ⊥
> ⊥ > ⊥ > >
> ⊥ > ⊥ > ⊥

Note that the same table shows that ¬A⇒ [A⇒ B] is a tautology for any
wffs A and B (not just proposition symbols):

¬ A ⇒ [A ⇒ B]
⊥ > > > > >
⊥ > > > ⊥ ⊥
> ⊥ > ⊥ > >
> ⊥ > ⊥ > ⊥

This is because the wffs A and B can only take the values > and ⊥ just like
the proposition symbols p and q.

1.4 Induction on formulas and unique readability

In this section (unless we mention otherwise) by formula we mean unsimpli-
fied fully-bracketed well-formed formula.

PRINCIPLE OF INDUCTION ON FORMULAS. To prove that all for-
mulas have a given property PROP:

• Show that every p ∈ P has the property PROP.

• Show that if Ais formula with property PROP then ¬A has PROP.

• Show that if Aand Bare formula with property PROP and * is one of
{∧,∨,⇒,⇔} then [A ∗B] has property PROP.

This principle can be proved by using ordinary induction on the natural
numbers (see section 5.8).

Lemma 1.4.1 Every formula has the same number of [’s as ]’s.
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This is clear for every p ∈ P since they contain no [’s or ]’s. The inductive
step in the case of ¬ does not add any brackets and in the case of [A ∗ B]
one of each is added to the total number in Aand B.

Lemma 1.4.2 In every formula, every binary connective is preceded by more
[’s than ]’s.

Here the basis step is true since atomic formulas contain no binary connec-
tives. The inductive step [A ∗ B] since any binary connective occurring in
Ahas one more [ occurring before it in [A ∗B] than it does in A. The main
connective * is ok since Aand Bhave a balanced set of brackets by the preced-
ing lemma. And the binary connectives of Bare ok (with respect to [A ∗B])
since Ahas a balanced set of brackets.

Theorem 1.4.3 UNIQUE READABILITY. Each propositional formula C
is either a

propositional symbol, is of the form ¬A, or can be uniquely written in the
form [A* B] where Aand Bare formulas and * is a binary connective.

The ¬ or * in this theorem is called the main connective of C. The cases that
C is a proposition symbol or starts with ¬ is easy. To prove the theorem
suppose that C is [A ∗B], and there is another way to read C say [A′ ∗′ B′].
Then either Ais a proper initial segment of A′ or vice-versa. Without loss
of generality assume that Ais a proper initial segment of A’. But then * is
a binary connective which occurs somewhere in A’ and so must be preceded
by unbalanced brackets, but this contradicts the fact that the brackets must
be balanced in A.

The proof shows that the main connective of a formula can be
picked out simply by finding the unique binary connective such
that brackets are balanced on either side of it.

This result shows that the brackets do their job. Its need can be explained
by seeing that the definition of truth value is ambiguous without brackets.
For example, p ∨ q ∧ r is not well-defined since if the model M is defined by
M(p) = >,M(q) = >, andM(r) = ⊥:

M |= [p ∨ [q ∧ r]]
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but
M |= ¬[[p ∨ q] ∧ r].

In the simplified form obtained by dropping brackets the corresponding
rule for picking out the main connective of Ais the following:

The main connective of Ais the rightmost connective of lowest
precedence which is preceded by an equal number of [’ s as ]’s in
the simplified form of A. (This is again proved by induction, of
course).

The definition of truth value is an example of definition by induction.
PRINCIPLE OF DEFINITION BY INDUCTION. A function with do-

main WFF can be defined uniquely by giving:

• A value f(p) for each p ∈ P0 ;

• A rule for computing f( ¬A) from f(A);

• For each binary connective *, a rule for computing f([A* B]) from f(A)
and f(B).

The abbreviated form of A(dropping parentheses) is another example.
Another example is in the first exercise set. Other good examples are the
tree height of a formula, and the result of substituting a formula Afor a
predicate symbol p in a formula. The height(A) is defined by

• height(p)=1 for any p ∈ P0

• height(¬A)=height(A)+1

• height([A ∗B])=max(height(A),height(B))+1

The following principle is more general and corresponds to the strong
form of induction on natural numbers:

PRINCIPLE STRONG OF INDUCTION ON FORMULAS. To prove
that all formulas have a given property PROP:

• Show that every p ∈ P0 has the property PROP.

• Show that for any formula Aif all formulas of length less than Ahave
property PROP; then Ahas property PROP.
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1.5 Tableaus.

Often one can see very quickly (without computing the full truth table)
whether some particular wff is a tautology by using an indirect argument.
As an example we show that the wff p⇒ [q ⇒ [p ∧ q]] is a tautology. If not,
there is a modelM for its negation, i.e. (1)M |= ¬[p⇒ [q ⇒ [p∧ q]]. From
(1) we obtain (2)M |= p and (3)M |= ¬[q ⇒ [p∧q]. From (3) we obtain (4)
M |= q and (5)M |= ¬[p∧q]. From (5) we conclude that either (6)M |= ¬p
or else (7) M |= ¬q. But (6) contradicts (2) and (7) contradicts (4). Thus
no such model M exists; i.e. the wff p ⇒ [q ⇒ [p ∧ q]] is a tautology as
claimed.

We can arrange this argument in a diagram (called a tableau):

(1) ¬[p⇒ [q ⇒ [p ∧ q]]]

(2) p by (1)

(3) ¬[q ⇒ [p ∧ q]] by (1)

(4) q by (3)

(5) ¬[p ∧ q] by (3)

�
�

�
��

Q
Q

Q
QQ

(6,7) ¬p ¬q by (5)

The steps in the original argument appear at nodes of the tableau. The
number to the left of a formula is its step number in the argument; the
number to the right is the number of the earlier step which justified the

17



given step. The two branches in the tree at node (5) correspond to the two
possibilities in the case analysis. There are two ways to move from formula
(1) down to the bottom of the diagram: viz. (1)-(2)-(3)-(4)-(5)-(6) and (1)-
(2)-(3)-(4)-(5)-(7); along each of these two ways there occurs a formula and
its negation: viz (2) and (6) for the former way and (4) and (7) for the latter.

Before explaining the method of tableaus precisely we generalize slightly
our problem. If H is a set of wffs andM is a model we shall sayM models
H (or M is a model of H) and write M |= H iff M models every element
A of H:

M |= H iffM |= A for all A ∈ H.

Of course, when H is a finite set, say H = {A1,A2, . . . ,An} then M |= H
if and only ifM models the conjunction: M |= A1 ∧A2 ∧ . . . ∧An but the
notation is handy (especially for infinite sets H).

A set of sentences H is called semantically consistent iff it has a model;
i.e. M |= H for some M. Now a wff A is a tautology if and only if the set
{¬A} consisting of the single wff ¬A is inconsistent so we shall study the
problem of deciding if a given finite set H of wffs is consistent rather than
the special case of deciding whether a given wff is a tautology.

A wff A is called a semantic consequence of the set of wffs H iff every
model of H is a model of A. Evidently, A is a semantic consequence of H if
and only if the set H ∪ {¬A} is semantically inconsistent.

A tree T is a system consisting of a set of points called the nodes of the
tree, a distinguished node rT called the root of the tree, and a function π,
or πT, which assigns to each node t distinct from the root another node π(t)
called the parent of t; it is further required that for each node t the sequence
of nodes

π0(t), π1(t), π2(t), . . .

defined inductively by
π0(t) = t

and
πk+1(t) = π(πk(t))

terminates for some n at the root:

πn(t) = rT.
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The nodes π1(t), π2(t), π3(t), . . . are called the proper ancestors of t; a node
t′ is an ancestor of t iff it is either t itself or is a proper ancestor of t. Thus
the root is an ancestor of every node (including itself). Conversely, the nodes
s whose parent is t are called the children of t; the set of children of t is
denoted by π−1(t):

π−1(t) = {s : π(s) = t}.

A node of the tree which is not the parent of any other node (i.e. not in the
range of the function π) is called a terminal node. A node is terminal if and
only if it has no children.

A sequence
Γ = (t, π(t), π2(t), . . . , rT)

starting at a terminal node t is called a branch or finite branch. Thus finite
branches and terminal nodes are in one-one correspondence.

In a tree with infinitely many nodes we may have an infinite branch. An
infinite sequence

Γ = (p0, p1, p2, . . .)

is an infinite branch is an infinite branch if p0 is the root node and for every
n pn+1 is a child of pn.

It is customary to draw trees upside down with the root at the top and
each node connected to its parent by a line. For example, in the tree

a

b !!!!!

caaaaa

d e ����

fHHHH

g

the root is a; the parent function is defined by π(b) = π(c) = a, π(d) = b,
π(e) = π(f) = c, π(g) = e; the children of the various are given by π−1(a) =
{b, c}, π−1(b) = {d}, π−1(c) = {e, f}, π−1(e) = {g}, π−1(d) = π−1(e) =
π−1(g) = ∅; the terminal nodes are d, f, g; and the branches are (d, b, a),
(f, c, a), (g, e, c, a).

By a labeled tree for propositional logic we shall mean a system (T,H, Φ)
consisting of a tree T, a set of wffs H which is called the set of hypotheses,
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and a function Φ which assigns to each nonroot node t a wff Φ(t). In order to
avoid excessive mathematical notation we shall say “A occurs at t” or even
“A is t” in place of the equation A = Φ(t). We will also denote the labeled
tree by T rather than the more cumbersome (T,H, Φ),

A wff which which occurs at a child of a node t will be called a child
wff (or simply child) of t, and a wff at a child of a child of t will be called
a grandchild wff of t. A wff which is either in the hypothesis set H or else
occurs at some ancestor node of t is called an ancestor wff of t or simply an
ancestor of t.

We call the labeled tree T a propositional tableau 3 iff at each non-
terminal node t one of the following conditions holds:

¬¬ t has an ancestor ¬¬A and a child A.

∧ t or its parent has an ancestor A ∧B a child A and grandchild B.

¬∧ t has an ancestor ¬[A ∧B] and two children ¬A and ¬B.

∨ t has an ancestor A ∨B and two children A and B.

¬∨ t or its parent has an ancestor ¬[A ∨B] a child ¬A and grandchild ¬B.

⇒ t has an ancestor A⇒ B and two children ¬A and B.

¬ ⇒ t or its parent has an ancestor ¬[A⇒ B] a child A and grandchild ¬B.

⇔ t has an ancestor [A⇔ B] and two children A ∧B and ¬A ∧ ¬B.

¬ ⇔ t has an ancestor ¬[A⇔ B] and two children A ∧ ¬B and ¬A ∧B.

In each case, the ancestor wff is called the node used at t and the other
wffs mentioned are called the nodes added at t. What this definition says
is this. To build a propositional tableau start with a tree T0 consisting of a

3This definition is summarized in section D.
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single node (its root) and a set H hypotheses. Then extend the tableau T0

to a tableau T1 and extend T1 to T2 and so on. Each extension uses one of
a set of nine rules which apply to a propositional tableau T to extend it to a
larger propositional tableau T′. These rules involve choosing a terminal node
t of T and a formula C which appears on the branch through t. Depending
on the structure of the wff C we extend the tree T by adjoining either one
child, one child and one grandchild, or two children of t. At the new node
or nodes we introduce one or two wffs which are well formed subformulas of
the wff C.

For reference we have summarized the nine extension rules in Figure 1.
This figure shows the node t and a formula C above it; the vertical dots
indicate the branch of the tableau through t so the figure shows C on this
branch. (It is not precluded that C be at t itself.) Below t in the figure
are the wffs at the children of t, and when appropriate the grandchild of t.
When both child and grandchild are added together in a single rule, they are
connected by a double line. Thus the ¬¬ rule yields one child, the ∧ , ¬∨ ,
and ¬ ⇒ rules each yield one child and one grandchild, and the remaining
five rules yield two children.

Any finite tableau within the memory limits of the computer can be built
with the TABLEAU program. The Why command shows which formula was
used at each node of the tableau.

1.6 Soundness and Confutation

We say that a formula A is along or on a branch Γ if A is either a hypothesis
(hence attached to the root node) or is attached to a node of Γ.

The definition of propositional tableau has been designed so that the
following important principle is obvious.

Theorem 1.6.1 (The Soundness Principle.) Let T be a propositional
tableau with hypothesis set H. LetM be a propositional model of the hypoth-
esis set H: M |= H. Then there is a branch Γ such that M |= Γ, that is,
M |= A for every wff A along Γ.

Now call a branch Γ of a tableau contradictory iff for some wff A both
A and ¬A occur along the branch. When every branch of a propositional
tableau T with hypothesis set H is contradictory we say that the tableau is
a confutation of the hypothesis set H.
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Figure 1: Propositional Extension Rules.
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In the TABLEAU program, a node is colored red if every branch through
the node is contradictory. In a confutation every node is colored red.

Since we cannot have bothM |= A andM |= ¬A it follows thatM 6|= Γ
for any contradictory branch Γ. Hence

Corollary 1.6.2 If a set H of propositional wffs has a tableau confutation,
then H has no models, that is, H is semantically inconsistent.

A tableau confutation can be used to show that a propositional wff is a
tautology. Remember that a propositional wff A is a tautology iff it is true
in every model, and also iff ¬A is false in every model. Thus if the one-
element set {¬A} has a confutation, then A is a tautology. By a tableau
proof of A we shall mean a tableau confutation of ¬A. More generally, by
a tableau proof of A from the set of hypotheses H we shall mean a
tableau confutation of the set H∪{¬A}. Thus to build a tableau proof of A
from H we add the new hypothesis ¬A to H and build a tableau confutation
of the new set H ∪ {¬A}.

Corollary 1.6.3 If a propositional wff A has a tableau proof, then A is a
tautology. If a propositional wff A has a tableau proof from a set of proposi-
tional wffs H, then A is a semantic consequence of H, that is, A is true in
every model of H.

1.7 Completeness

We have seen that the tableau method of proof is sound: any set H of propo-
sitional wffs which has a tableau confutation is semantically inconsistent.
In this section we prove the converse statement that the tableau method is
complete: any semantically inconsistent set has a tableau confutation.

Theorem 1.7.1 (Completeness Theorem.) Let H be a finite set of propo-
sitional wffs. If H is semantically inconsistent (that is, H has no models),
then H has a tableau confutation.

Theorem 1.7.2 (Completeness Theorem, Second Form.) If a wff A is a
semantic consequence of a set of wffs H, then there is a tableau proof of A
from H.
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The completeness theorem can also be stated as follows: If H does not
have a tableau confutation, then H has a model.

To prove the completeness theorem we need a method of constructing a
model of a set of wffs H. To do this, we shall introduce the concept of a
finished branch and prove two lemmas. Recall that a branch of a tableau
is called contradictory, iff it contains a pair of wffs of the form ¬A and A.
(In the TABLEAU program, a branch is contradictory if its terminal node is
red.)

By a basic wff we shall mean a propositional symbol or a negation of a
propositional symbol. The basic wffs are the ones which cannot be broken
down into simpler wffs by the rules for extending tableaus.

A branch Γ of a tableau is said to be finished iff Γ is not contradictory
and every nonbasic wff on Γ is used at some node of Γ. (In the TABLEAU
program, a branch Γ is finished iff its terminal node is yellow and each node
of Γ is either a basic wff or is shown by the Why command to be invoked at
some other node of Γ.)

Lemma 1.7.3 (Finished Branch Lemma.) Let Γ be a finished branch of a
propositional tableau. Then any model of the set of basic wffs on Γ is a model
of all the wffs on Γ.

LetM be a model of all basic wffs on Γ. The proof is to show by strong
induction on formulas that for any formula C

if C is on Γ thenM |= C

Let
∆ = Γ ∪H

be the set of formulas which occur along the branch. Then ∆ is not contra-
dictory (i.e. contains no pair of wffs A, ¬A) and for each wff C ∈ ∆ either
C is basic or one of the following is true:

[¬¬] C has form ¬¬A where A ∈∆;

[∧] C has form A ∧B where both A ∈∆ and B ∈∆;
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[¬∧] C has form ¬[A ∧B] where either ¬A ∈∆ or B¬ ∈∆;

[∨] C has form A ∨B where either A ∈∆ or B ∈∆;

[¬∨] C has form ¬[A ∨B] where both ¬A ∈∆ and ¬B ∈∆;

[⇒] C has form A⇒ B where either ¬A ∈∆ or B ∈∆;

[¬ ⇒] C has form ¬[A⇒ B] where both A ∈∆ and ¬B ∈∆;

[⇔] C has form A⇔ B where either [A ∧B] ∈∆ or [¬A ∧ ¬B] ∈∆;

[¬ ⇔] C has form ¬[A⇔ B] where either [A ∧ ¬B] ∈∆ or [¬A ∧B] ∈∆.

When C is basic, this is true by the hypothesis of the lemma. In any other
case, one of the nine cases [¬¬] . . . [¬ ⇔] applies and by the hypothesis of
induction M |= A and/or M |= B provided A ∈ ∆ and/or B ∈ ∆. But
then (applying the appropriate case) it follows thatM |= C by the definition
of |=. This proves the finished branch lemma.

It follows from the finished branch lemma that every finished branch has a
model. Since the set of hypotheses is contained in any branch of the tableau,
any set H of wffs which has a tableau with at least one finished branch has
a model.

Define a propositional tableau T to be finished iff every branch of T
is either contradictory or finished. Thus a finished tableau for H is either
a confutation of H (i.e. all its branches are contradictory) or else (one of
its branches is not contradictory) has a finished branch whose basic wffs
determine a model of H.

Lemma 1.7.4 (Extension Lemma.) For every finite hypothesis set H there
exists a finite finished tableau with H attached to its root node.

First let us assume that our hypothesis set consists of a single formula, say
H = {A}. We prove the lemma in this case by using the principle of strong
induction on formulas. If A is a propositional symbol or the negation of a
propositional symbol (i.e. basic wff), then the tableau with a single node ,
the root node, is already finished.
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Figure 2: Proof of Extension Lemma

The inductive case corresponds to the nine cases illustrated in figure 1.
For example if A = ¬¬B then by induction we have a finished tableau for
B, say TB. Then the finished tableau for A would be as in figure 2 ¬¬ .

If H = {A ∧ B}, then by induction we have a finished tableau for A,
say TA, and also one for B, say TB. Then to build the finished tableau for
{A ∧B} simply hang TA on every terminal node of TB (see figure 2 ∧ ).

If H = {A ∨B}, then we take the finished tableaus TA and TB (which
have at their root nodes the formulas A and B) and hang them beneath
{A ∨B} (see figure 2 ∨ ).

The proofs of the other cases are similar to this one. The proof for the
case that H is not a single formula is similar the ∧ case4 above.

The next two results will be used to prove the compactness theorem.

Theorem 1.7.5 (Koenig Tree Lemma.) If a tree has infinitely many nodes
and each node has finitely many children, then the tree has an infinite branch.

To prove this inductively construct an infinite set of nodes p0, p1, p2, . . . with
properties

1. p0 is the root node;

4Actually there is a glitch in the case of ⇔ . This is because one of the formulas which
replaces A ⇔ B is ¬A ∧ ¬B which is two symbols longer. One kludge to fix this is to
regard the symbol ⇔ as having length four instead of one.
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2. pn+1 is a child of pn; and

3. each pn has infinitely many nodes beneath it;

Given pn with infinitely many nodes beneath it, note that one of its children
must also have infinitely many nodes beneath it (since an infinite set cannot
be the union of finitely many finite sets). Let pn+1 be any of these.

Lemma 1.7.6 Every finite propositional tableau can be extended to a finite
finished tableau.

An algorithm for doing this is illustrated by the computer program COM-
PLETE. Construct a sequence of tableaus by starting with the given tableau
(in which every node has been colored unused). At each step of the algo-
rithm select any unused node color it used and extend the tableau on every
branch below the selected node which is not contradictory (and color all ba-
sic formulas used). The algorithm must terminate for the following reasons.
We show that the “limit” tableau must have finite height. Suppose not and
apply Koenig’s lemma to conclude that there must be an infinite branch Γ.
Put another tree ordering on Γ by letting node p be a child of node q if q
was used to get the node p. Note that every node has at most two children (
for example a node with [A∧B] attached to it may have two children nodes
one with A attached to it and one with B attached to it ). Since Γ is infinite
it follows from Koenig’s lemma that there is an infinite subsequence of nodes
from Γ

p0, p1, p2, p3, . . .

which is a branch thru this second tree. But note that the lengths of
formula attached to this sequence must be strictly decreasing.

Another proof of this lemma is given in the exercises.

Theorem 1.7.7 (Compactness Theorem.) Let H be a set of propositional
wffs. If every finite subset of H has a model, then H has a model.

Proof: We give the proof only in the case that H is countable. Let H =
{A1,A2, . . .} be a countably infinite set of wffs and suppose that each finite
subset of H has a model. Form an increasing chain Tn of finite finished
tableaus for Hn = {A1,A2, . . . ,An} by extending terminal nodes of finished
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branches of Tn to get Tn+1. Let T be the union. By Koenig’s lemma, T has
an infinite branch Γ. Each branch Γ of T intersects Tn in a finished branch
of Tn, so any model of the basic wffs of Γ is a model of H.

We now give some applications of the propositional compactness theorem.
One example is that the four color theorem for finite maps implies the

four color theorem for infinite maps. That is:

If every finite map in the plane can be colored with four colors
so that no two adjacent countries have the same color, then the
same is true for every infinite map in the plane.

Suppose that C is a set of countries on some given map. Let P0 be defined
by

P0 = {p1
c , p

2
c , p

3
c , p

4
c : c ∈ C}.

The idea is that the proposition letter pi
n is to express the fact that the color

of country n is i. So let H be the set of all sentences of the following forms:

1. p1
c ∨ p2

c ∨ p3
c ∨ p4

c for each n;

2. pi
c ⇒ ¬pj

c for each c and for each i 6= j; and

3. ¬[pi
c ∧ pi

c′ ] for each i and for each pair of distinct countries c and c′

which are next to each other.

Now a modelM for H corresponds to a coloring of the countries by the four
colors {1, 2, 3, 4} such that adjacent countries are colored differently. If every
finite submap of the given map has a four coloring, then every finite subset
of H has a model. By the compactness theorem H has a model, hence the
entire map can be four colored.

Another example: Given a set of students and a set of classes, suppose
each student wants one of a finite set of classes, and each class has a finite
enrollment limit. If each finite set of students can be accommodated, then
the whole set can. The proof of this is an exercise. Hint: let your basic
propositional letters consist of psc where s is a student and c is a class. And
psc is intended to mean “student s will take class c”.
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1.8 Computer Problem

In this assignment you will construct tableau proofs in propositional logic.
Use the TABLEAU program commands to LOAD the problem, do your work,
and then FILE your answer on your diskette. The file name of your answer
should be the letter A followed by the name of the problem. (For example,
your answer to the CYCLE problem should be called ACYCLE).

This diskette contains an assignment of seven problems, called CASES,
CONTR, CYCLE, EQUIV, PIGEON, PENT, and SQUARE. It also has
the extra files SAMPLE, ASAMPLE, and RAMSEY. SAMPLE is a prob-
lem which was done in the class lecture and ASAMPLE is the solution.
RAMSEY5 is included as an illustration of a problem which would require a
much larger tableau.

Be sure your name is on your diskette label.
Here are the problems with comments, listed in order of difficulty.

CASES
The rule of proof by cases. (Can be done in 8 nodes).
Hypotheses: a− > c, b− > c
To prove: [a ∨ b]− > c

CONTR
The law of contraposition. (Can be done in 14 nodes).
Hypotheses: none
To prove: [p− > q] < − > [notq− > notp]

CYCLE
Given that four wffs imply each other around a cycle and at least one of

them is true, prove that all of them are true. (26 nodes)
Hypotheses: p− > q, q− > r, r− > s, s− > p, p ∨ q ∨ r ∨ s
To prove: p&q&r&s

EQUIV

5I have a wonderful proof of this theorem, but unfortunately there isn’t room in the
margin of memory of my computer for the solution.
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Two wffs which are equivalent to a third wff are equivalent to each other.
(30 nodes)

Hypotheses: p < − > q, q < − > r
To prove: p < − > r

PIGEON
The pigeonhole principle: Among any three propositions there must be a

pair with the same truth value. (34 nodes)
To prove: [p < − > q] ∨ [p < − > r] ∨ [q < − > r]

PENT
It is not possible to color each side of a pentagon red or blue in such a

way that adjacent sides are of different colors. (38 nodes)
Hypotheses: b1 ∨ r1, b2 ∨ r2, b3 ∨ r3, b4 ∨ r4, b5 ∨ r5,
not[b1&b2], not[b2&b3], not[b3&b4], not[b4&b5], not[b5&b1], not[r1&r2], not[r2&r3], not[r3&r4], not[r4&r5], not[r5&r1]
Find a tableau confutation.

SQUARE
There are nine propositional symbols which can be arranged in a square:

a1 a2 a3
b1 b2 b3
c1 c2 c3

Assume that there is a letter such that for every number the proposition
is true (that is, there is a row of true propositions). Prove that for every
number there is a letter for which the proposition is true (that is, each column
contains a true proposition). (58 nodes)

Hypothesis: [a1&a2&a3] ∨ [b1&b2&b3] ∨ [c1&c2&c3]
To prove: [a1 ∨ b1 ∨ c1]&[a2 ∨ b2 ∨ c2]&[a3 ∨ b3 ∨ c3]

RAMSEY
The simplest case of Ramsey’s Theorem can be stated as follows. Out

of any six people, there are either three people who all know each other or
three people none of whom know each other. This problem has 15 proposition
symbols ab, ac, ..., ef which may be interpreted as meaning “a knows b”, etc.
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The problem has a list of hypotheses which state that for any three people
among a,b,c,d,e,f, there is at least one pair who know each other and one
pair who do not know each other. There is tableau confutation of these
hypotheses, and I would guess that it requires between 200 and 400 nodes. I
do not expect anyone to do this problem, but you are welcome to try it out
and see what happens.

1.9 Exercises

1. Think about the fact that the forms ‘P only if Q’ and ‘if P then Q’ have
the same meaning.

2. Brown, Jones, and Smith are suspects in a murder. The testify under
oath as follows.

Brown: Jones is guilty and Smith is innocent.

Jones: If Brown is guilty, then so is Smith.

Smith: I am innocent, but at least one of the others is guilty.

Let B, J, and S be the statements “Brown is guilty”, “Jones is guilty”, and
“Smith is guilty”, respectively.

• Express the testimony of each suspect as a wff built up from the propo-
sition symbols B, J, and S.

• Write out the truth tables for each of these three wffs in parallel
columns.

• Assume that everyone is innocent. Who committed perjury?

• Assume that everyone told the truth. Who is innocent and who is
guilty?

• Assume that every innocent suspect told the truth and every guilty
suspect lied under oath. Who is innocent and who is guilty?
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3. Show that the following are tautologies (for any wffs A, B, and C). Use
truth tables.

(1) ¬¬A⇔ A

(2) A⇒ [B⇒ A]

(3) [A⇒ B].⇒ .[B⇒ C]⇒ [A⇒ C]

(4) [A ∧B] ∧C⇔ A ∧ [B ∧C]

(5) [A ∨B] ∨C⇔ A ∨ [B ∨C]

(6) A ∧B⇔ B ∧A

(7) A ∨B⇔ B ∨A

(8) A ∧ [B ∨C]⇔ [A ∧B] ∨ [A ∧C]

(9) A ∨ [B ∧C]⇔ [A ∨B] ∧ [A ∨C]

(10) A⇒ [B⇒ C]⇔ [A⇒ B]⇒ [A⇒ C]

(11) ¬[A ∨B]⇔ ¬A ∧ ¬B

(12) ¬[A ∧B]⇔ ¬A ∨ ¬B

(13) ¬A⇒ ¬B⇔ B⇒ A

(14) [[A⇒ B]⇒ A]⇒ A

These laws have names. (1) is the law of double negation; (2) is the law
of affirmation of the consequent; (3) is the transitive law for implication (4)
is the associative law for conjunction; (5) is the associative law for disjunc-
tion; (6) is the commutative law for conjunction; (7) is the commutative law
for disjunction; (8) is the distributive law for conjunction over disjunction;
(9) is the distributive law for disjunction over conjunction; (10) is the self-
distributive law for implication; (11) and (12) are DeMorgan’s laws; (13) is
the law of contraposition; (14) is Pierce’s law.

4. Show that [A ⇒ B] ⇒ A is a tautology if A is p ⇒ p and B is q but is
not a tautology if A and B are both p ⇒ q. (The aim of this exercise is to
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make sure you distinguish between a proposition symbol p and a variable A
used to stand for a wff which may have more complicated structure.)

5. For a wff A define s(A) to be the number of occurrences of propositional
symbols in A, and c(A) to be the number of occurrences of binary connectives
(∧, ∨, ⇒, ⇔) in A. Prove by induction that for every wff A,

s(A) = c(A) + 1.

6. a) Make a finished tableau for the hypothesis

[q ⇒ p ∧ ¬r] ∧ [s ∨ r].

b) Choose one of the finished branches, Γ , and circle the terminal node
of Γ .

c) Using the Finished Branch Lemma, find a wff A such that:
(i) A has exactly the same models as the set of wffs on the branch Γ

which you chose, and
(ii) The only connectives occurring in A are ∧ and ¬.

7. Let M be the model for propositional logic such that pM = T for every
propositional symbol p. Prove by induction that for every wff A:

Either the ¬ symbol occurs in A, or A is true in M.

8. Using the Soundness and Completeness Theorems for propositional tableaus,
prove that if

A has a tableau proof from H and
B has a tableau proof from H ∪ {A}
then
B has a tableau proof from H.

9. The Kill command in the TABLEAU program works as follows when it
is invoked with the cursor at a node t. If there is a double line below t, (i.e.
t and its child were added together) then every node below the child of t is
removed from the tableau. Otherwise, every node below t is removed from
the tableau. Using the definition of propositional tableau, prove that if you
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have a tableau before invoking the Kill command, then you have a tableau
after using the Kill command.

10. If p is a propositional symbol and C is a propositional wff, then for each
propositional wff A the wff A(p//C) formed by substituting C for p in A is
defined inductively by:

• p(p//C) = C;

• If q is different from p, then q(p//C) = q.

• (¬A)(p//C) = ¬(A(p//C)).

• [A ∗B](p//C) = [A(p//C) ∗B(p//C)], for each binary connective *.

For example,

([p⇔ r]⇒ p)(p//s ∧ p) is [[s ∧ p]⇔ r]⇒ [s ∧ p].

Prove: If A has a tableau proof then A[p//C] has a tableau proof with the
same number of nodes (In fact, the same tree but different wffs assigned to
the nodes).

11. Prove that for any propositional symbol p and wffs A, B, and C,

[B ⇔ C]⇒ [A(p//B)⇔ A(p//C)]

is a tautology. (Show by induction on the wff A that every model of

B ⇔ C

is a model of
A(p//B)⇔ A(p//C)).

12. Let T0 be any finite propositional tableau and suppose that T1 is any
extension produced by applying the program COMPLETE. Let Γ0 be any
branch in T0 and let Γ1 be a subbranch of T1 which starts at the terminal
node of Γ0 and ends at a terminal node of T1. Show that the length of Γ1

can be at most 2nm where n is the number of formulas on Γ0 and m is their
maximum length. Note that this gives an alternative proof of Lemma 1.7.6.
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13. Given a countable set of students and a countable set of classes, suppose
each student wants one of a finite set of classes, and each class has a finite
enrollment limit. Prove that:

If each finite set of students can be accommodated, then the whole
set can.

Polish notation for propositional logic is defined as follows. The logical
symbols are {∧,∨,¬,⇔,⇒}, and the nonlogical symbols or proposition sym-
bols are the elements of an arbitrary set P0. The well-formed formulas in
Polish notation (wffpn) are the members of the smallest set of strings which
satisfy:

1. Each p ∈ P0 is wffpn;

2. If A is wffpn, then so is ¬A;

3. If A is wffpn and B is wffpn, then ∧AB is wffpn, ∨AB is wffpn,⇔ AB
is wffpn, and ⇒ AB is wffpn.

Note that no parentheses or brackets are needed for Polish notation.

14. Put the formula [p⇔ q]⇒ [¬q ∨ r] into Polish notation.

15. Construct a parsing sequence for the wffpn

∨¬ ⇒ pq ⇔ rp

to verify that it is wffpn. Write this formula in regular notation.

16. State the principle of induction as it should apply to wffpn. Prove using
induction that for any wffpn A that the number of logical symbols of the kind
{∧,∨,⇔,⇒} in A is always exactly one less than the number of nonlogical
symbols.

17. Prove using induction that for any wffpn A and any occurence of a
nonlogical symbol p in A except the last that the number of logical symbols
of the kind {∧,∨,⇔,⇒} to the left of p is strictly greater than the number
of nonlogical symbols to the left of p.
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18. State and prove unique readability of formulas in Polish notation.
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2 Pure Predicate Logic

The predicate logic developed here will be called pure predicate logic to
distinguish it from the full predicate logic of the next chapter.

In this chapter we study simultaneously the family of languages known
as first-order languages or predicate logic. These languages abstract from
ordinary language the properties of phrases like “for all” and “there exists”.
We also study the logical properties of certain linguistic entities called pred-
icates.

A predicate is a group of words like “is a man”, “is less than”, “belongs
to”, or even “is” which can be combined with one or more names of individ-
uals to yield meaningful sentences. For example, “Socrates is a man”, “Two
is less than four”, “This hat belongs to me”, “He is her partner”. The names
of the individuals are called individual constants. The number of individual
constants with which a given predicate is combined is called the arity of the
predicate. For instance, “is a man” is a 1-ary or unary predicate and “is
less than” is a 2-ary or binary predicate. In formal languages predicates are
denoted by symbols like P and Q; the sentence ‘x satisfies P’ is written P(x).

A unary predicate determines a set of things; namely those things for
which it is true. Similarly, a binary predicate determines a set of pairs of
things – a binary relation – and in general an n-ary predicate determines
an n- ary relation. For example, the predicate “is a man” determines the
set of men and the predicate “is west of” (when applied to American cities)
determines the set of pairs (a, b) of American cities such that a is west of
b. (For example, the relation holds between Chicago and New York and
does not hold between New York and Chicago.) Different predicates may
determine the same relation (for example, “x is west of y” and “y is east of
x’.)

The phrase “for all” is called the universal quantifier and is denoted
symbolically by ∀. The phrases “there exists”, “there is a”, and “for some”
all have the same meaning: “there exists” is called the existential quantifier
and is denoted symbolically by ∃.

The universal quantifier is like an iterated conjunction and the existential
quantifier is like an iterated disjunction. To understand this, suppose that
there are only finitely many individuals; that is the variable x takes on only
then values a1, a2, . . . , an. Then the sentence ∀x P (x) means the same as the
sentence P (a1) ∧ P (a2) ∧ . . . ∧ P (an) and the sentence ∃x P (x) means the
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same as the sentence P (a1) ∨ P (a2) ∨ . . . ∨ P (an). In other words, if

∀x[x = a1 ∨ x = a2 ∨ . . . ∨ x = an]

then
[∀xP (x)]⇐⇒ [P (a1) ∧ P (a2) ∧ . . . ∧ P (an)]

and
[∃xP (x)]⇐⇒ [P (a1) ∨ P (a2) ∨ . . . ∨ P (an)].

Of course, if the number of individuals is infinite, such an interpretation of
quantifiers is not rigorously possible since infinitely long sentences are not
allowed.

The similarity between ∀ and ∧ and between ∃ and ∨ suggests many
logical laws. For example, De Morgan’s laws

¬[p ∨ q]⇔ [¬p ∧ ¬q]

¬[p ∧ q]⇔ [¬p ∨ ¬q]

have the following “infinite” versions

¬∃xP (x)⇔ ∀x¬P (x)

and
¬∀xP (x)⇔ ∃x¬P (x).

In sentences of form ∀xP (x) or ∃xP (x) the variable x is called a dummy
variable or a bound variable. This means that the meaning of the sentence
is unchanged if the variable x is replaced everywhere by another variable.
Thus

∀xP (x)⇔ ∀yP (y)

and
∃xP (x)⇔ ∃yP (y).

For example, the sentence “there is an x satisfying x + 7 = 5” has exactly
the same meaning as the sentence “there is a y satisfying y + 7 = 5”. We
say that the second sentence arises from the first by alphabetic change of a
bound variable.
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In mathematics, universal quantifiers are not always explicitly inserted
in a text but must be understood by the reader. For example, if an algebra
textbook contains the equation

x + y = y + x

we are supposed to understand that the author means

∀x∀y : x + y = y + x.

(The author of the textbook may call the former equation an identity since
it is true for all values of the variables as opposed to an equation to be
solved where the object is to find those values of the variables which make
the equation true.)

A precise notation for predicate logic is important because natural lan-
guage is ambiguous in certain situations. Particularly troublesome in English
is the word “any” which sometimes seems to mean “for all” and sometimes
‘there exists”. For example, the sentence “Q(x) is true for any x” means “
Q(x) is true for all x” and should be formalized as ∀xQ(x). But what about
the sentence “ if Q(x) is true for any x, then p”? Perhaps (as before) “any”
means “for all” and so it should be formalized [∀xQ(x)] ⇒ p. But consider
the following text which might appear in a mathematics book:

This shows Q(x) for x = 83. But earlier we saw that if Q(x)
holds for any x whatsoever then p follows. This establishes p and
completes the proof.

In this fragment what “we saw earlier” was [∃xQ(x)] ⇒ p i.e. “any” means
“there exists”. The formal sentences [∀xQ(x)] ⇒ p and [∃xQ(x)] ⇒ p obvi-
ously have different meanings since the antecedents [∀xQ(x)] and [∃xQ(x)]
differ. Since [∃xQ(x)]⇒ p is equivalent 6 to ∀x[Q(x)⇒ p] the ambiguity in
English is probably caused by the fact that the rules of grammar in English
are not specific about parsing; parsing is handled unambiguously in formal
languages using brackets.

6See blah blah below
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2.1 Syntax of Predicate Logic.

A vocabulary for pure predicate logic is a non-empty set P of symbols
which is decomposed as a disjoint union

P =
∞⋃

n=0

Pn.

The symbols in the set Pn are called n-ary predicate symbols (with the
symbols in P0 called proposition symbols as before). The words unary,
binary, ternary mean respectively 1-ary, 2-ary, 3-ary.

In the intended interpretation of predicate logic the predicate symbols
denote relations such as x < y or x + y = z.

The primitive symbols of the pure predicate logic are the following:

• the predicate symbols from P ;

• an infinite set VAR = {x, y, z, . . .} of symbols which are called indi-
vidual variables;

• the negation sign ¬

• the conjunction sign ∧

• the disjunction sign ∨

• the implication sign ⇒

• the equivalence sign ⇔

• the left bracket [

• the right bracket ]

• the left parenthesis (

• the right parenthesis )

• the comma ,

• the universal quantifier ∀

40



• the existential quantifier ∃

Any finite sequence of these symbols is called a string. Our first task is to
specify the syntax of pure predicate logic; i.e. which formulas are grammat-
ically correct. These strings are called well-formed formulas or sometimes
simply formulas. The phrase well-formed formula is often abbreviated to
wff. The set of wffs of pure predicate logic is then inductively defined
by the following rules:

(W:P0) Any proposition symbol from P0 is a wff;

(W:Pn) If p ∈ Pn is an n-ary predicate symbol, and x1,x2, . . . ,xn ∈ VAR
are individual variables, then p(x1,x2, . . . ,xn) is a wff;

(W:¬) If A is a wff, the ¬A is a wff;

(W:∧,∨,⇒,⇔) If A and B are wffs, then [A ∧B], [A ∨B], [A⇒ B], and
[A⇔ B] are wffs;

(W:∀,∃) If A is a wff and x ∈ VAR is an individual variable, then the
formulas ∀xA and ∃xA are wffs.

If we wish to emphasize that the proposition symbols appearing in a wff A
come from a specific vocabulary P we may call it a wff built using the
vocabulary P .

To show that a particular formula is a wff we construct a sequence of
formulas using this definition. This is called parsing the wff and the sequence
is called a parsing sequence. Although it is never difficult to tell if a short
formula is a wff, the parsing sequence is important for theoretical reasons.
For example, let us assume that P0 contains a propositional symbol q, P1

contains a unary predicate symbol P , and that VAR contains an individual
variable x. We parse the wff ∀x [P (x)⇒ q].

(1) P (x) is a wff by (W:P1).

(2) q is a wff by (W:P0).

(3) P (x)⇒ q is a wff by (1), (2), and (W:⇒).

(4) ∀x[P (x)⇒ q] is a wff by (3) and (W:∀).
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Now we parse the wff ∀xP (x)⇒ q.

(1) P (x) is a wff by (W:P1).

(2) ∀xP (x) is a wff by (1) and (W:∀).

(3) q is a wff by (W:P0).

(4) ∀xP (x)⇒ q is a wff by (2), (3) and (W:⇒).

We continue using the abbreviations and conventions introduced the propo-
sitional logic and in addition add a few more.

• Certain well-known predicates like = and < are traditionally written in
infix rather than prefix notation and we continue this practice. Thus
when our set P2 of binary predicate symbols contains = we write x = y
rather than = (x,y). We do the same thing in other cases such as for
the usual order relations ( ≤, <, etc.).

• According to the syntactical rules just given, the quantifiers have the
highest precedence. Thus ∀xP (x) ⇒ q means [∀xP (x) ⇒ q] and not
∀x[P (x) ⇒ q]. Since students sometimes confuse these two we may
sometimes insert extra brackets and write [∀xP (x)]⇒ q for ∀xP (x)⇒
q

2.2 Free and Bound Variables.

Let x be an individual variable and Q be a quantifier i.e. Q is either ∀ or ∃.
Suppose the wff QxB is a well-formed part of the wff A. The well-formed
part B is called the scope of the particular occurrence of the quantifier Qx
in A. Every occurrence of x in QxB (including the occurrence immediately
after the Q) is called a bound occurrence of x (in A). Any occurrence of
x in C which is not a bound occurrence is called a free occurrence of x (in
A). For example in the wff

P (x, y)⇒ ∀x[∃yR(x, y)⇒ Q(x, y)] (1)

the first occurrence of x is free, the three remaining occurrences of x are
bound, the first and last occurrences of y are free, the second and third
occurrences of y are bound, the well-formed part [∃yR(x, y) ⇒ Q(x, y)] is
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the scope of the quantifier ∀x and the well-formed part R(x, y) is the scope
of the quantifier ∃y. If we make an change of bound variable (say replacing
all bound occurrences of x by u and all bound occurrences of y by v) we
obtain

P (x, y)⇒ ∀u[∃vR(u, v)⇒ Q(u, y)] (2)

which has exactly the same meaning as the original wff.
Now we shall tentatively denote by

C(x//y)

the result of replacing all free occurences of x in C by y. For example, if C is
the wff R(x) ∨ [Q(x)⇒ ∃xP (x, z)] then C(x//u) is the wff R(u) ∨ [Q(u)⇒
∃xP (x, z)].

There is a problem with this notation. We certainly want any wff of the
form

∀xC⇒ C(x//y) (3)

to be valid (i.e. true in any interpretation) for it says that if C is true for
all x it is in particular true for x = y. But consider the case where C is
∃yQ(x, y); then we would obtain

∀x∃yQ(x, y)⇒ ∃yQ(y, y) (4)

which is false if for example Q(x, y) means x < y since ∀x∃yQ(x, y) is true
(take y = x + 1) but ∃yQ(y, y) is false. The problem is that the substitution
of y for x in ∃yQ(x, y) creates a bound occurence of y at a position where
there is a free occurence of x; this is called confusion of bound variables.

More precisely, we say that the individual variable y is free for the
individual variable x in the wff C if no free occurence of x in C occurs in a
well-formed part of C which is of the form ∀yB or ∃yB. Henceforth we will
use the notation C(x//y) only in the case that y is free for x in C.

A wff with no free variables is called a sentence. A sentence has a mean-
ing (truth value) once we specify (1) the meanings of all the propositional
symbols and predicate symbols which appear in it and (2) the range of val-
ues which the bound individual variables assume. For example, the sentence
∃x∀y x ≤ y is true if ≤ has its usual meaning and the variables x and y
range over the natural numbers (since ∀y 0 ≤ y) but is false if the variables
x and y range over the integers. By contrast the truth value of a wff which
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has one or more free variables depends on more: viz. on the values of the
free variables. For example, the wff x = y is true if x = 2 and y = 2 but is
false if x = 2 and y = 3.

2.3 Semantics of Predicate Logic.

For any set X and any natural number n > 0 let RELn(X) denote the set of
all n-ary relations on X. A n-ary relation on X is a subset of the set Xn of
all length n sequences (x1, x2, . . . , xn) with elements from X so that

R ∈ RELn(X) iff R ⊂ Xn.

A model for pure predicate logic of type P is a systemM consisting of a
non-empty set UM called the universe of the modelM, a function

P0 −→ {>,⊥} : p 7→ pM

which assigns a truth value pM to each proposition symbol, and for each n
a function

Pn −→ RELn(UM) : p 7→ pM

which assigns an n-ary relation to each n-ary predicate symbol.
Another notation for the universe ofM is |M|. Also M is used to denote

the universe ofM.
A valuation inM is a function

v : VAR −→ UM

which assigns to each variable x ∈ VAR a value v(x) ∈ UM in the universe
of the modelM. We denote the set of all valuations inM by VAL(M):

v ∈ VAL(M) iff v : VAR −→ UM.

Given a valuation v ∈ VAL(M) and a variable x ∈ VAR the semantics ex-
plained below require consideration of the set of all valuations w ∈ VAL(M)
which agree with v except possibly on x; we denote this set of valuations by
VAL(x, v). Thus for v ∈ VAL(M) and x ∈ VAR:

w ∈ VAL(x, v) iff

{
w ∈ VAL(M) and
v(y) = w(y) for all y ∈ VAR distinct from x.
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Note that in particular v ∈ VAL(x, v) for certainly v(y) = v(y) for all
y ∈ VAR distinct from x.

Let M be a model for predicate logic, v be a valuation in M, and A be
a wff. We will define the notation

M, v |= A

which is read “M models A in the valuation v” or “A is true in the model
M with the valuation v”. and its opposite

M, v 6|= A

which is read “ A is false in the model M with the valuation v”. Roughly
speaking, the notation M, v |= A means that A is true in the model M
when the free variables x1,x2, . . . ,xm which appear in A are given the values
v(x1), v(x2), . . . , v(xm) respectively. More precisely, we define M, v |= A is
inductively by

(M:P0) M, v |= p if pM = >;
M, v 6|= p if pM = ⊥.

(M:Pn) M, v |= p(x1,x2, . . . ,xn) if (v(x1), v(x2), . . . , v(xn)) ∈ pM;
M, v 6|= p(x1,x2, . . . ,xn) if (v(x1), v(x2), . . . , v(xn)) /∈ pM.

(M:¬) M, v |= ¬A ifM, v 6|= A;
M, v 6|= ¬A ifM, v |= A.

(M:∧) M, v |= A ∧B ifM, v |= A andM, v |= B;
M, v 6|= A ∧B otherwise.

(M:∨) M, v 6|= A ∨B ifM, v 6|= A andM, v 6|= B;
M, v |= A ∨B otherwise.

(M:⇒) M, v 6|= A⇒ B ifM, v |= A andM, v 6|= B;
M, v |= A⇒ B otherwise.

(M:⇔) M, v |= A⇔ B if eitherM, v |= A ∧B
or else M, v |= ¬A ∧ ¬B;
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M, v 6|= A⇔ B otherwise.

(M:∀) M, v |= ∀xA ifM, w |= A for every w ∈ VAL(v,x);
M, v 6|= ∀xA otherwise.

(M:∃) M, v |= ∃xA ifM, w |= A for some w ∈ VAL(v,x);
M, v 6|= ∃xA otherwise.

Let M be a model, v and w be valuations, and A be a wff such that
v(x) = w(x) for every variable which has a free occurence in A. Then 7

M, v |= A if and only ifM, w |= A.

In particular, if A is a sentence (i.e. if A has no free variables) then the
condition M, v |= A is independent of the choice of the valuation v; i.e.
M, v |= A for some valuation v if and only ifM, v |= A for every valuation
v. Hence for sentences A we define

M |= A

(read “M models A” or “ A is true in M”) to mean that M, v |= A for
some (and hence every) valuation v and we define

M 6|= A

(read “A is false inM”) to mean thatM, v 6|= A for some (and hence every)
valuation v.

To find the value of A in a modelM we parse A according to the inductive
definition of wff and then apply the definition of M |= A to the parsing
sequence of A.

Example 1. We compute the value of sentence ∀xP (x)⇒ q in a modelM
satisfying UM = {0, 1} a two element set, qM = ⊥, and PM ∈ REL1(UM)
given by

PM = {0}.

We first parse the sentence.

7See section B.
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(1) P (x) is a wff by (W:P1).

(2) ∀xP (x) is a wff by (1) and (W:∀).

(3) q is a wff by (W:P0).

(4) ∀xP (x)⇒ q is a wff by (2), (3) and (W:⇒).

Now we apply the definition.

(1) M, v 6|= P (x) if v(x) = 1 by (M:P1) as 1 /∈ UM.

(2) M 6|= ∀xP (x) by (1) and (M:∀).

(3) M 6|= q by (M:P0) as qM = ⊥.

(4) M |= ∀xP (x)⇒ q by (2), (3), and (M:⇒).

Example 2. We compute the value of sentence ∀x[P (x)⇒ q]. in the model
M of previous example 1. We first parse the sentence.

(1) P (x) is a wff by (W:P1).

(2) q is a wff by (W:P0).

(3) P (x)⇒ q is a wff by (1), (2), and (W:⇒).

(4) ∀x[P (x)⇒ q] is a wff by (3) and (W:∀).

Now we apply the definition. Let w be any valuation such that w(x) = 0.

(1) M, w |= P (x) by (M:P0) as w(x) = 0.

(2) M, w 6|= q by (M:P0) as qM = ⊥.

(3) M, w 6|= P (x)⇒ q by (1), (2), and (M:⇒).

(4) M 6|= ∀x[P (x)⇒ q] by (3) and (M:∀).

Example 3. We compute the value of ∀y∃x x ≤ y ⇒ ∃x∀y x ≤ y for a
modelM satisfying UM = N the natural numbers and ≤M is the usual order
relation on N:

≤M = {(a, b) ∈ N2 : a ≤ b}.
We first parse the wff.
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(1) x ≤ y is a wff by (W:P2).

(2) ∃x x ≤ y is a wff by (1) and (W:∃).

(3) ∀y∃x x ≤ y is a wff by (2) and (W:∀).

(4) ∀y x ≤ y is a wff by (1) and (W:∀).

(5) ∃x∀y x ≤ y is a wff by (4) and (W:∃).

(6) [∀y∃x x ≤ y ⇒ ∃x∀y x ≤ y] is a wff by (3), (5), and (W:⇒).

Now we apply the definition ofM |= A to this parsing sequence.

(1) M, v |= x ≤ y iff v(x) ≤ v(y).

(2) M, v |= ∃x x ≤ y for every v since M, w |= x ≤ y if w(y) = v(y) and
w(x) = 0.

(3) M |= ∀y∃x x ≤ y by (2).

(4) M, v |= ∀y x ≤ y iff v(x) = 0.

(5) M |= ∃x∀y x ≤ y by (4).

(6) M |= ∀y∃x x ≤ y ⇒ ∃x∀y x ≤ y by (3) and (5).

Example 4. We compute the value of the wff of example 3 for a slightly
different model. Take UM = Z the set of integers with ≤M the usual order
relation on Z:

≤M = {(a, b) ∈ Z2 : a ≤ b}.

(1) M, v |= x ≤ y iff v(x) ≤ v(y).

(2) M, v |= ∃x x ≤ y for every v since M, w |= x ≤ y if w(y) = v(y) and
w(x) = v(y).

(3) M |= ∀y∃x x ≤ y by (2).

(4) M, v 6|= ∀y x ≤ y for every v since M, w 6|= x ≤ y if w(x) = v(x) and
w(y) = v(x)− 1.

(5) M 6|= ∃x∀y x ≤ y by (4).

(6) M 6|= ∀y∃x x ≤ y ⇒ ∃x∀y x ≤ y by (3) and (5).
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2.4 A simpler notation.

The notation Mv |= A is very precise and therefore useful for theoretical
discussions but for working examples it is somewhat cumbersome. Hence we
shall adopt a notation which supresses explicit mention of the valuation v.
To do this we simply substitute the values v(x1), v(x2), . . . , v(xn) in for the
variables x1, x2, . . . , xn in the wff A to produce a new “wff” A∗ and write
M |= A∗ instead ofM, v |= A. For example we will write

M |= 3 < 7

in place of the more cumbersome 8

M, v |= x < y where v(x) = 3 and v(y) = 7.

Let’s redo the examples in the new notation.

Example 1. Consider the modelM given by

UM = {0, 1}, qM = ⊥, PM = {0}.

(1) M 6|= P (1).

(2) M 6|= ∀xP (x).

(3) M 6|= q.

(4) M |= ∀xP (x)⇒ q.

Example 2. In the modelM of previous example 1:

(1) M |= P (0).

(2) M, w 6|= q.

(3) M, w 6|= P (0)⇒ q.

(4) M 6|= ∀x[P (x)⇒ q].

8See the relevant remarks in section B.
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Example 3. Consider the model

UM = N

≤M = {(a, b) ∈ N2 : a ≤ b}.

(1) M |= 0 ≤ b for every b ∈ UM = N and hence

(2) M |= ∃x x ≤ b. As b is arbitrary

(3) M |= ∀y∃x x ≤ y. Now

(4) M |= ∀y 0 ≤ y so

(5) M |= ∃x∀y x ≤ y. Thus

(6) M |= ∀y∃x x ≤ y ⇒ ∃x∀y x ≤ y .

Example 4. Now take
UM = Z

≤M = {(a, b) ∈ Z2 : a ≤ b}.

(1) M, v |= a ≤ b iff a ≤ b. Thus

(2) M, v |= ∃x x ≤ b for every b sinceM |= a ≤ a. Thus

(3) M |= ∀y∃x x ≤ y.

(4) M 6|= ∀y a ≤ y for every a sinceM, w 6|= a ≤ a− 1. Hence

(5) M 6|= ∃x∀y x ≤ y. Thus

(6) M 6|= ∀y∃x x ≤ y ⇒ ∃x∀y x ≤ y.
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2.5 Tableaus.

The analog of a tautology in propositional logic is a valid sentence in predicate
logic. All of mathematics can be formulated as a list of theorems showing
that certain inportant sentences of predicate logic are valid.

A sentence A of predicate logic is said to be valid iff A is true in every
model.

In propositional logic it is possible to test whether a wff is valid in a finite
number of steps by constructing a truth table. This cannot be done in pred-
icate logic. In predicate logic there are infinitely many universes to consider.
Moreover, for each infinite universe set there are infinitely many possible
models, even when the vocabulary of predicate symbols is finite. Since one
cannot physically make a table of all models, another method is needed for
showing that a sentence is valid. To this end, we shall generalize the notion
of tableau proof from propositional logic to predicate logic. As before, a
formal proof of a sentence A will be represented as a tableau confutation of
the negation of A.

There is one important difference between the method of truth tables in
propositional logic and the method of tableaus in predicate logic, to which
we shall return later in this book. In propositional logic, the method of truth
tables works for all sentences; if a sentence is valid the method will show that
it is valid in a finite number of steps, and if a sentence is not valid the method
will show that it that it is not valid in a finite number of steps. However, in
predicate logic the method of tableau proofs only works for valid sentences.
If a sentence is valid, there is a tableau proof which shows that it is valid in
finitely many steps. But tableau proofs do not give a method of showing in
finitely many steps that a sentence is not valid.

Tableaus in predicate logic are defined in the same way as tableaus in
propositional logic except that there are four additional rules for extending
them. The new rules are the ∀ and ∃ rules for wffs which begin with

quantifiers and the ¬∀ and ¬∃ rules for the negations of formulas which
begin with quantifiers. As in the case of propositional logic, our objective will
be to prove the Soundness Theorem and the Completeness Theorem. The
Soundness Theorem will show that every sentence which has a tableau proof
is valid, and the Completeness Theorem will show that every valid sentence
has a tableau proof. The tableau rules are chosen in such a way that if M
is a model of the set of hypotheses of the tableau, then there is at least one
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branch of the tableau and at least one valuation v inM such that every wff
on the branch is true forM, v.

A labeled tree for predicate logic is a system (T,H, Φ) where T is a tree,
H is a set of sentences of predicate logic, and Φ is a function which assigns
to each nonroot node t of T a wff Φ(t) of predicate logic. (The definition
is exactly the same as for propositional logic, except that the wffs are now
wffs of predicate logic.) We shall use the same lingo (ancestor, child, parent
etc.) as we did for propositional logic and also confuse the node t with the
formula Φ(t) as we did there.

We call the labeled tree (T,H, Φ) a tableau for predicate logic 9 iff at
each non-terminal node t either one of the tableau rules for propositional
logic (see section 1.5) holds or else one of the following conditions holds:

∀ t has an ancestor ∀xA and a child A(x//y) where y is free for x.

¬∀ t has an ancestor ¬∀xA and a child ¬A(x//z) where z is a variable
which does not occur in any ancestor of t;

∃ t has an ancestor ∃xA and a child A(x//z) where z is a variable which
does not occur in any ancestor of t;

¬∃ t has an ancestor ¬∃xA and a child ¬A(x//y) where y is free for x.

The for new rules are summarized in figure 3 which should be viewed as
an extension of figure 1 of section 1.5.

Notice that the ∀ and ¬∃ rules are similar to each other, and the

∃ and ¬∀ rules are similar to each other. The ∀ and ¬∃ rules allow
any substitution at all as long as there is no confusion of free and bound
variables. These rules are motivated by the fact that if M, v |= ∀xA then
M, v |= A(x//y) for any variable whatsoever (and if M, v |= ¬∃xA then
M, v |= ¬A(x//y)).

On the other hand, the ∃ and ¬∀ rules are very restricted, and only
allow us to substitute a completely new variable z for x. In an informal
mathematical proof, if we know that ∃xA is true we may introduce a new
symbol z to name the element for which A(x//z) is true. It would be incor-
rect to use a symbol which has already been used for something else. This

9This definition is summarized in section D.
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...
∀xA

...
t

A(x//y)

∀

...
∃xA

...
t

A(x//z)

∃

...
¬∃xA

...
t

¬A(x//y)

¬∃

...
¬∀xA

...
t

¬A(x//z)

¬∀

y is free for x z is new

Figure 3: Quantifier Rules for Pure Predicate Logic.
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informal step corresponds to the ∃ rule for extending a tableau. A similar
remark applies to the ¬∀ rule.

As for propositional tableaus, a tableau confutation of a set H of sen-
tences in predicate logic is a finite tableau (T,H, Φ) such that each branch
is contradictory, that is, each branch has a pair of wffs A and ¬A. A
tableau proof of a sentence A is a tableau confutation of the set {¬A}, and
a tableau proof of A from the hypotheses H is a tableau confutation of
the set H ∪ {¬A}.

It is usually much more difficult to find formal proofs in predicate logic
than in propositional logic, because if you are careless your tableau will keep
growing forever. One useful rule of thumb is to try to use the ∃ and ¬∀ rules,
which introduce new variables, as early as possible. Quite often, these new
variables will appear in substitutions in the ∀ or ¬∃ rules later on. The rule
of thumb can be illustrated in its simplest form in the following examples.

Example 1. A tableau proof of ∃y P (y) from ∃x P (x).

(1) ¬∃y P (y) ¬ to be proved

(2) ∃x P (x) hypothesis

(3) P (a) by (2)

(4) ¬P (a) by (1)

Example 2. A tableau proof of ∀y∃x P (x, y) from ∃x∀y P (x, y).
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(1) ¬∀y∃x P (x, y) ¬ to be proved

(2) ∃x∀y P (x, y) hypothesis

(3) ∀y P (a, y) by (2)

(4) ¬∃ xP (x, b) by (1)

(5) P (a, b) by (3)

(6) ¬P (a, b) by (4)

2.6 Soundness

The proof of the soundness theorem for predicate logic is similar to the proof
of the soundness theorem for propositional logic, with extra steps for the
quantifiers. It comes from the following basic lemma.

Lemma 2.6.1 If T a finite tableau in predicate logic and hypothesis set H
and M is a model of the set of sentences of H, then there is a branch Γ
and a valuation v in M such that M, v |= A for every wff A on Γ, that is,
M, v |= Γ

This is proved by induction on the cardinality of T.

Theorem 2.6.2 (Soundness Theorem.) If a sentence A has a tableau proof,
then A is valid. If A has a tableau proof from a set H of sentences, then A
is a semantic consequence of H, that is every model of H is a model of A.
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2.7 Completeness

The completeness theorem for predicate logic uses many of the ideas intro-
duced in the completenes theorem for propositional logic. One inportant
difference is that it is necessary to consider infinite tableaus.

Theorem 2.7.1 (Completeness Theorem.) Let A be any sentence in pure
predicate logic. If A has no models, then A has a tableau confutation. In
other words, If A does not have a tableau confutation, then A has a model.

To prove the completeness theorem we shall extend the concepts of a
basic wff and a finished branch to predicate logic.

By an atomic wff we mean either a propositional symbol alone or a
wff of form p(x1,x2, . . . ,xn) where p is an n-ary predicate symbol and
x1,x2, . . . ,xn are variables. By a basic wff in predicate logic we mean a
wff which is either an atomic wff or the negation of an atomic wff.

Let ∆ be a set of wffs of pure predicate logic. Let U∆ be the set of
variables which occur freely in some wff C ∈∆.

We call a set ∆ of wffs contradictory iff it contains some pair of wffs of
form A, ¬A. We call ∆ finished iff ∆ is not contradictory, and for each wff
C ∈∆ either C is a basic wff or else one of the following is true:

[¬¬] C has form ¬¬A where A ∈∆;

[∧] C has form A ∧B where both A ∈∆ and B ∈∆;

[¬∧] C has form ¬[A ∧B] where either ¬A ∈∆ or ¬B ∈∆;

[∨] C has form A ∨B where either A ∈∆ or B ∈∆;

[¬∨] C has form ¬[A ∨B] where both ¬A ∈∆ and ¬B ∈∆;

[⇒] C has form A⇒ B where either ¬A ∈∆ or B ∈∆;

[¬ ⇒] C has form ¬[A⇒ B] where both A ∈∆ and ¬B ∈∆;
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[⇔] C has form A⇔ B where either [A ∧B] ∈∆ or [¬A ∧ ¬B] ∈∆;

[¬ ⇔] C has form ¬[A ∧B] where either [A ∧ ¬B] ∈∆ or [¬A ∧B] ∈∆;

[∀] C has form ∀xA where A(x//z) ∈∆ for every z ∈ U∆;

[¬∀] C has form ¬∀xA where ¬A(x//z) ∈∆ for some z ∈ U∆;

[∃] C has form ∃xA where A(x//z) ∈∆ for some z ∈ U∆;

[¬∃] C has form ¬∃xA where ¬A(x//z) ∈∆ for every z ∈ U∆.

The wffs in ∆ required by the definition are said to be witnesses for C.
For instance in case [∨] where C is A ∨B we say that A is a witness for C
if A ∈∆ and that B is a witness for C if B ∈∆.

The definition of finished set parallels the definition of tableau. It should
be noted, however, that the key point in the definition of finished set is that
every possible application of the tableau rules has been made. This remark
is especially relevant in comparing the ∀ and ¬∃ tableau extension rules
with the [∀] and[¬∃] clauses in the definition of finished set. The latter two
rules say that every possible substitution instance must lie in the finished
set, whereas the former two rules say that the tableau may be extended by
an arbitrary substitution.

To simplify our exposition, we will impose a further condition on finished
sets in the arguments given below. We call a set ∆ of wffs unconfused iff no
variable having a free occurrence in some wff of ∆ has a bound occurrence
in any other wff of ∆. The idea of this definition is that in an unconfused
set the variables in the set U∆ can be considered as constants since they are
never used as bound variables.

Lemma 2.7.2 (Finished Branch Lemma.) Suppose ∆ is an unconfused, fin-
ished set of wffs with U∆ non-empty. LetM be any model for pure predicate
logic whose universe UM is the set U∆, and let v be the valuation inM which
assigns each variable in U∆ to itself. IfM, v |= A for every basic wff A ∈∆,
then M, v |= A for every wff A ∈∆, that is, M, v |= ∆.

The proof is by induction on the logical complexity of formulas, that is
the number of logical symbols appearing in the formula. The basis step is
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for atomic formula and the negation of an atomic formula. This follows from
the definition of M and the fact that the branch is not contradictory. The
inductive case breaks down into the thirteen subcases corresponding to the
items in the definition of finished set. Here we give a few example proofs:

[⇒] where C ∈ ∆ and C has form A ⇒ B where either ¬A ∈ ∆ or
B ∈∆;

By induction if ¬A ∈∆, thenM, v |= ¬A; and if B ∈∆ thenM, v |= B.
In either caseM, v |= C.

[∀] where C ∈ ∆ and C has form ∀xA where A(x//z) ∈ ∆ for every
z ∈ U∆;

By inductionM, v |= A(x//z) for every z ∈ U∆, hence by the definition
of |=,M, v |= C.

[∃] where C ∈ ∆ and C has form ∃xA where A(x//z) ∈ ∆ for some
z ∈ U∆;

By induction M, v |= A(x//z) for some z ∈ U∆. So if w ∈ VAL(x, v) is
such that w(x) = z then M, w |= A and so by the definition of |= we have
M, v |= ∃xA.

The other subcases are similar.
Define a tableau T to be finished if T is unconfused and every branch is

either finished or else both finite and contradictory. In a finished tableau, the
finished branches, if any, may be either finite or infinite. If all the branches
of a tableau are finite and contradictory, then the tableau will have finitely
many nodes and will be a confutation.

Lemma 2.7.3 (Tableau Extension Lemma.) For every sentence there exists
a finished tableau with the sentence attached to the root node.

We construct by induction a sequence of finite tableaus

T0 ⊂ T1 ⊂ T2 . . .

which are nested as shown. The finished tableau will be the union of these
tableaus (i.e.

⋃
n=0,1,2,... Tn). The tableau T0 is just the trivial tree with only

the root node and the given sentence attached to it. Let {a0, a1, a2, . . .} be
an infinite sequence of variables which do not occur in the given sentence.
We will construct an unconfused tableau by only using these variables in the
quantifier rules.
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Given the tableau Tn we construct the tableau Tn+1 to have the following
properties. For any noncontradictory branch Γ of Tn+1 and formula A on
Γ ∩Tn:

1. If A is of the form ∀xB then for every i = 0, 1, 2, . . . , n the formula
B(x//ai) is on Γ.

2. If A is of the form ¬∃xB then for every i = 0, 1, 2, . . . , n the formula
¬B(x//ai) is on Γ.

3. If A is of any other form, then we require that it be used at least once
on Γ. For example, If A is of the form ∃xB then for some integer k
(possibly much bigger than n) the formula B(x//ak) is on Γ.

Tn+1 is constructed in finitely many stages by taking care of all formulas
occuring in Tn one at a time. Now we claim that T =

⋃
n=0,1,2,... Tn is a

finished tableau. Let Γ be any branch of T. If Γ is not contradictory we
must show that ∆ which is the set of all formula on Γ is a finished set. Note
that U∆ = {a0, a1, a2, . . .}. Suppose that A ∈ ∆, then for some n A is in
Tn. Since Γ ∩ Tn+1 is a branch of Tn+1, by the construction A has been
used on Γ ∩Tn+1 and hence on Γ. Now suppose that A has the form ∀xB,
then for every m > n and i ≤ m the formula B(x//ai) is on Γ ∩Tm. Hence
for every i = 0, 1, 2, . . . the formula B(x//ai) is on Γ. Similarly if A has the
form ¬∃xB, then for every i = 0, 1, 2, . . . the formula ¬B(x//ai) is on Γ.

The completeness theorem can now be deduced as follows. Let A be any
sentence. Let T be a finished tableau with ¬A attached to the root node. If
all branches of T are finite and contradictory, then by the Koenig tree lemma
T is a finite tree and hence a confutation of A. Otherwise T must have a
finished branch and therefore ¬A has a model.

Note that this proof shows that any sentence of pure predicate logic that
has a model has an infinite model, i.e. one with an infinite universe. This
will not be the case for the full predicate logic.

As in the case of propositional logic, there is a second form of the com-
pleteness theorem and a compactness theorem.

Recall that a sentence A is valid iff it is true in every model, and is a
semantic consequence of a set of sentences H iff it is true in every model of
H.
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Theorem 2.7.4 (Completeness Theorem, Second Form.) If a sentence A is
a semantic consequence of a set of sentences H then there is a tableau proof
of A from H. In particular, a valid sentence has a tableau proof.

This can be proved by constructing a finished tableau for any finite set of
sentences. In fact, it is possible to construct a finished tableau for any count-
ably infinite set of sentences. This stronger result and the Koenig tree lemma
give a proof of the compactness theorem for this special case.

Theorem 2.7.5 (Compactness Theorem.) Let H be any set of sentences of
pure predicate logic. If every finite subset of H has a model, then H has a
model.

A finished set which has only finitely many terms will have a finite model.
The program BUILD is a modification of the TABLEAU program which helps
you build a finished branch with constants from a given universe, and displays
the corresponding in graphical form.

2.8 Computer problem using PREDCALC

This set of problems uses the PREDCALC program. Its purpose is to make
the student more familiar with the behavior of truth values of formulas of
predicate logic in a model. There are twelve problems, named ONE.PRD
through TWELVE.PRD. Problems ONE and TWO are text problems and
the others are graphics problems. In each problem, a goal formula or graph
will appear on the screen and your task is to use the “calculator” keys to get
an exact copy of the goal in position one of the stack. PREVIEW.PRD is
the sample described in section 6.3.

Suggestions: To solve a graphics problem, think of a formula which has
the required graph and write it down, then make a parsing sequence for the
formula and build it up step by step. You always start out with atomic
formulas involving =, <, +, or ∗. To see the graph of the goal formula in
detail, invoke the View command and then press 5. If you want to keep part
of what you did and change the rest, invoke the Mem command and replay
as far as you want by pressing the Enter key, then make your changes.

The problems are listed in order of difficulty. As in the previous problem
set, you should give your solution the name of the problem preceded by the
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letter A. The number of steps needed for a solution and other comments are
given below.

ONE. 11 steps.
TWO. 14 steps.
THREE. 6 steps. (A single point)
FOUR. 4 steps.
FIVE. 5 steps.
SIX. 5 steps.
SEVEN. 6 steps. (The graph of the relation “x + z is even”)
EIGHT. 7 steps.
NINE. 6 steps.
TEN. 8 steps. (A 3 dimensional checkerboard pattern)
ELEVEN. 16 steps. (The four main diagonals of the cube)
TWELVE. 28 steps. (The graph of the relation “z < x + y”)

2.9 Computer problem

In this assignment you will construct tableau proofs in predicate logic. Use
the TABLEAU program commands to LOAD the problem, do your work,
and then FILE your answer on your diskette. The file name of your answer
should be the letter A followed by the name of the problem.

There are three groups of problems on your diskette which use the TABLEAU
program, called

• SHORT1 - SHORT8,

• SET1 - SET6,

• and ORDER1 -ORDER6.

The first group of problems, called

SHORT1.TBU through SHORT8.TBU,

develop some of the basic properties of quantifiers. You should do these
problems first by hand on a piece of paper, and then do them on the computer
to check your work. This will help you discover any misunderstandings you
may have.
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The problems below are also in files on your problem diskette. In each
problem, you must give a tableau proof.

The notation H ` A means that A has a tableau proof from H.

SHORT1. (3 nodes) ∃x p(x, x) ` ∃x∃y p(x, y)
SHORT2. (3 nodes) ∃y p(y) ` ∃y∀x p(y)
SHORT3. (4 nodes) ∀y∀x p(x, y) ` ∀x∀y p(x, y)
SHORT4. (6 nodes) p ∧ ∃x q(x) ` ∃x [p ∧ q(x)]
SHORT5. (7 nodes) ∃x [p(x) ∧ q(x)] ` ∃x p(x) ∧ ∃x q(x)
SHORT6. (11 nodes) ` ∃x p(x)⇔ ¬∀x ¬p(x)
SHORT7. (9 nodes) ∀x∃y F (x, y) ` ∀x∃y∃z [F (x, y) ∧ F (y, z)]
SHORT8. (23 nodes) ` ∀x p(x) ∧ ∀x q(x)⇔ ∀x [p(x) ∧ q(x)]

There are two more groups of problems. The problems called

SET1.TBU through SET6.TBU

are about sets, while the problems

ORDER1.TBU through ORDER6.TBU

concern partial orders. These problems are more difficult, and you need an
overall picture of your proof so that you will be able to choose useful substi-
tutions for the quantifiers. Before doing the formal proof on the computer,
you should make a sketch of the main steps of the proof with pencil and
paper.

Here are the problems with comments and the approximate number of
nodes required for the tableau proof. You should try problems with fewer
nodes first.

SET1. (12 nodes). The predicate in(x,y) means that x is an element of y,
and the predicate subset(x,y) means that x is a subset of y. The hypothesis
defines subset(x,y) in terms of in(x,y). The conclusion states that every set
is a subset of itself.

SET2. (23 nodes) The predicate empty(x) means that x is an empty set.
The first hypothesis is the same as before. The second hypothesis defines
empty(x) in terms of in(x,y). The conclusion states that the empty set is a
subset of every set.
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SET3. (34 nodes) The predicate union(x,y,z) means that z is the union
of x and y. The hypotheses define subset(x,y) and union(x,y) in terms of
in(x,y). The conclusion states that x is a subset of the union of x and y.

SET4. (39 nodes) The hypothesis is again the definition of subset(x,y) in
terms of in(x,y). The conclusion is the transitivity law for subsets, that if x
in a subset of y and y is a subset of z then x is a subset of z.

SET5. (50 nodes) The predicate eq(x,y) means that x and y are ele-
ments of the same sets. The predicate single(x) means that x has exactly
one element. The hypotheses define the predicates subset(x,y), eq(x,y), and
single(x). The conclusion states that if single(x) and y contains some element
of x then x is a subset of y.

SET6. (61 nodes) The hypotheses define the predicates subset(x,y) and
union(x,y,z). The conclusion states that if both x and y are subsets of u then
the union of x and y is a subset of u.

ORDER1. (21 nodes) The hypotheses state that ≤ is a partial ordering.
The conclusion states that if w ≤ x ≤ y ≤ z then w ≤ z.

ORDER2. (27 nodes) The predicate glb(x,y,z) means that z is the greatest
lower bound of x and y in the partial ordering ≤, that is, z is the greatest
element which is ≤ both x and y . The conclusion states that if x ≤ y then
x is the greatest lower bound of x and y.

ORDER3. (33 nodes) The hypotheses are the same as for ORDER2. The
conclusion states that if z and t are both greatest lower bounds of x and y,
then z ≤ t. (Since the same reasoning gives t ≤ z, this shows that any two
greatest lower bounds of x and y are equal).

ORDER4. (32 nodes) The hypotheses state that ≤ is a partial ordering,
and that for any two elements x,y there is an element t such that x ≤ t and
y ≤ t. The conclusion states that for any three elements x,y,z there is an
element t such that x ≤ t, y ≤ t, and z ≤ t.

ORDER5. (44 nodes) The predicate x < y means that x ≤ y but not y ≤
x. The hypotheses state that ≤ is a partial ordering and define the predicate
x < y in terms of x ≤ y. The conclusion states that if x < y ≤ z then x < z.

ORDER6. (119 nodes) The predicate eq(x,y) means that x ≤ y and y ≤
x. The hypotheses state that ≤ is a partial ordering and define the predicates
glb(x,y,z) and eq(x,y) in terms of x ≤ y. The conclusion is an associative law
for greatest lower bounds. If we write x ∗ y for the greatest bound of x and
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y, and x = y for eq(x,y), the conclusion states that

(a ∗ b) ∗ c = a ∗ (b ∗ c).

2.10 Exercises

1. In the following, N denotes the set of natural numbers:

N = {0, 1, 2, 3, . . .}

so that the phrase ∀x ∈ N means ‘for all natural numbers x’ and the phrase
∃x ∈ N means ‘there is a natural number x such that’. The notations +, =,
≤, and < all have their usual meanings. Which of the following are true?

(1) ∀x ∈ N∀y ∈ N∀z ∈ N [x + y = z ⇒ y + x = z].

(2) ∀x ∈ N∃y ∈ N [x + y = x].

(3) ∃y ∈ N∀x ∈ N [x + y = x].

(4) ∀x ∈ N∃y ∈ N [x < y].

(5) ∀x ∈ N∃y ∈ N [y < x].

(6) ∃y ∈ N∀x ∈ N [x < y].

(7) ∀x ∈ N [[∀y ∈ N x ≤ y]⇒ x = 0].

(8) ∀x ∈ N∀y ∈ N [[x ≤ y ∧ y ≤ x]⇒ x = y].

(9) ∀x ∈ N∀y ∈ N [[x < y ∧ y < x]⇒ x 6= y].

(10) [∀x ∈ N∃y ∈ N x < y]⇒ [∃y ∈ N, 8 < y].

(11) [∀x ∈ N∃y ∈ N x < y]⇒ [∃y ∈ N y < y].

2. Let Z denote the set of integers:

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
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so that the phrase ∀x ∈ Z means ‘for all integers x’ and the phrase ∃x ∈ Z
means ‘there is an integer x such that’. Which of the sentences of exercise 1.
remain true when N is replaced by Z?

3. a) The string

∃x [∀y p(x, y)⇒ ¬q(x) ∨ r(y)]

is an abbreviation for a wff in predicate logic. Change the string into the
wff which it abbreviates by inserting brackets in the correct places.

b) Write down a parsing sequence for the wff.
c) For each wff of your parsing sequence, circle every occurrence of a

variable which is bound in that wff.

4. In this problem you are to find a model M for predicate logic with one
binary predicate symbol p. The universe of M is the set {0, 1, 2} and the
relation pM is a subset of the set of pairs (i, j) with i,j from {0, 1, 2}. Your
answer will be counted as correct iff the wff

∀x∃y p(x, y) ∧ ∃x∀y p(x, y) ∧ ¬∃y∀x p(x, y)

is true in your modelM.

5. This exercise is to give a formal proof of the completeness theorem.

1. For all H and for all T, T is a finished tableau for H iff T is a tableau
for H and for every Γ a branch of T either Γ is finished or Γ is finite
and contradictory.

2. For all H and for all T, T is a confutation of H iff T is a finite tableau
for H and every branch of T is contradictory.

3. For all H ,T and Γ if T is a tableau for H and Γ is a finished branch of
T, then there existsM such thatM models H.

4. For every H there exists T such that T is a finished tableau for H.

5. For all H and for every T if T is an infinite tableau for H, then there
exists a Γ such that Γ is an infinite branch of T.
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6. For all H if there does not existsM such thatM models H, then there
exists T such that T is a confutation of H.

The hypotheses (1-5) are the three lemmas and the definitions of finished
tableau for H and contradictory branch. Item 6 is the statement to be proved,
the completeness theorem.

Consider the following language of pure predicate logic:

P1 = {F, Cn, I} P2 = {Ft, B, S, T, Cf}

Let F(x) be interpreted as “x is a finished branch”, Cn(x) as “x is a
contradictory branch”, and I(x) as “x is infinite”. Let Ft(x,y) be interpreted
as “x is a finished tableau for hypothesis set y”, B(x,y) as “x a branch thru
tableau y”, S(x,y) as “ x is a model of hypothesis set y”, T(x,y) as “ x is a
tableau for hypothesis set y”, and Cf(x,y) as “x is a confutation of hypothesis
set y”.

Write out the above hypothesis set and sentence to prove in this language
of pure predicate logic. (It is understood that H is always a finite set of
sentences and infinite means not finite).

Give a tableau proof.

We say that a model (P,≤) is a linear order (where ≤ is a binary relation
on the universe P) iff

1. (P,≤) |= ∀x x ≤ x

2. (P,≤) |= ∀x∀y∀z [x ≤ y ∧ y ≤ z ⇒ x ≤ z]

3. (P,≤) |= ∀x∀y [x ≤ y ∧ y ≤ x⇒ x = y]

4. (P,≤) |= ∀x∀y [x ≤ y ∨ y ≤ x]

If (P,≤) satisfies only the first three it is called a partial order.

6. Find a linear order (P,≤) which satisfies all of the following:

(P,≤) |= ∀x∃y ¬x ≤ y
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(P,≤) |= ∀x∃y ¬y ≤ x

(P,≤) |= ∀x∀y [¬y ≤ x⇒ ∃z[¬z ≤ x ∧ ¬y ≤ z]

7. Show by induction that for any finite partial order (P,≤) (i.e. P is finite)
there is a linear order (P,≤∗) which extendes ≤, i.e. for every a, b ∈ P if
a ≤ b, then a ≤∗ b.

8. Use the Compactness Theorem for Propositional Logic and the last
problem to show that every partial order (finite or infinite) can be extended
to a linear order.
Hint: Let (P,≤) be any partial order. Let P0 = {Rab : a, b ∈ P}. Consider
interpreting the symbol Rab as “a ≤∗ b”. Keep in mind that you are not
given ≤∗; you must show that it exists.
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3 Full Predicate Logic

In this chapter we enrich predicate logic by adding operation symbols and a
special symbol for equality. We shall call this enriched language full predicate
logic to distinguish it from the simpler pure predicate logic developed in
the last10 chapter. Full predicate logic is closer to the usual language of
mathematics. Although it is in principle possible to express everything in
the pure predicate logic of the previous chapter, in practice it is usually more
convenient to develop mathematics in full predicate logic.

The set P2 of binary predicate symbols for full predicate logic always
contains the equality symbol, =. Of course, we always write τ = σ in place
of the more cumbersome = (σ, τ). The equality symbol should really
be thought of as a logical symbol (like the propositional connectives and
quantifiers) rather than part of the vocabulary because it will be interpreted
in a fixed way in all models.

A vocabulary for full predicate logic consists of a set P of predicate sym-
bols, and a set F of operation symbols, composed of disjoint unions

P =
∞⋃

n=0

Pn, F =
∞⋃

n=0

Fn.

The symbols in the set Pn are the n-ary predicate symbols, and the symbols
in the set Fn are the n-ary operation symbols. These sets may or may not
be empty (but P2 always contains the equality symbol). The symbols in P0

are called proposition symbols and the symbols in F0 are called constant
symbols. The primitive symbols of full predicate logic are those of pure
predicate logic together with the operation symbols from F .

Variables, constant symbols, and operation symbols may be combined to
form terms. The set of all terms is defined inductively by the following rules:

(T:VAR) Any variable is a term.

(T:F0) Any constant symbol is a term.

(T:Fn) If f ∈ Fn is a operation symbol, where n > 0, and τ1, τ2, . . . , τn are
terms, then f(τ1, τ2, . . . , τn) is a term.

10One important difference in the chapter is that we build models from constant symbols
and not variables as in the pure predicate logic. Well its hard to get five authors to agree
to anything.
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These rules are used repeatedly. For example, if y is a variable, c is a
constant, f is binary, and g is unary, then g(f(c, g(y))) is a term. Terms,
like wffs, have parsing sequences. The above example is parsed as follows:

(1) c is a term by (T:F0).

(2) y is a term by (T:VAR).

(3) g(y) is a term by (2) and (T:F1).

(4) f(c, g(y)) is a term, by (1), (3), and (T:F2).

(5) g(f(c, g(y))) is a term by (4) and (T:F1).

We continue using the abbreviations and notational conventions intro-
duced earlier in addition add the the usual mathematical conventions re-
garding infix notation and parentheses.

• The familiar binary operation sumbols +, −, and ∗ are written in infix
notation so that (x + y) is written instead of +(x, y).

• The outer parantheses may be suppressed so that x + y means (x + y).

• Multiplication has a higher precedence than addition or subtraction so
that x + y ∗ z means x + (y ∗ z) and not (x + y) ∗ z.

• Operations of equal precedence associate to the left in the absence of
explicit parantheses so that x−y−z means (x−y)−z and not x−(y−z).

The set of wffs is defined inductively as before except that the argument
places in the predicate symbols may be filled by terms. here are the rules.

(W:P0) Any propositional symbol is a wff.

(W:Pn) If p ∈ Pn ia a predicate symbol and τ1, τ2, . . . , τn are terms, then
p(τ1, τ2, . . . , τn) is a wff.

(W:¬) If A is a wff, then ¬A is a wff.

(W:∧,∨,⇒,⇔) If A and B are wffs, then [A ∧B], [A ∨B], [A⇒ B], and
[A⇔ B] are wffs.
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(W:∀,∃) If A is a wff, and x is a variable, then ∀xA and ∃xA are wffs.

(If it is necessary to explicitly specify the vocabulary P ∪ F used in the
definition of wff, we shall refer to the wffs defined here as built using the
vocabulary P ∪ F .)

An atomic wff and basic wff are defined as before except that now abri-
trary terms way occupy the argument positions. Thus atomic wffs are those
constructed by rules (W:P0) and (W:Pn) above, while a basic wff is a wff
which is either an atomic wff of the negation of an atomic wff.

Free and bound occurrences of variables in wffs are defined as before: an
occurrence of a variable x in a wff A is a bound occurrence iff it is in a well-
formed part of form QxB where (Q is either ∀ or ∃); all other occurrences
are called free. A term is said to be free for the variable x in a wff A if
no free occurrence of x occurs within a well-formed part of A of form QyB
where the variable y occurs in τ and Q is either ∀ or ∃. Given a wff A, a
variable x, and a term τ which is free for x in A, A(x//τ) is the wff obtained
by replacing each free occurrence of x in A by τ . A sentence is a wff with
no free variables.

3.1 Semantics.

For any set X and any natural number n > 0 recall that RELn(X) denote
the set of all n-ary relations on X. A n-ary relation on X is a subset of the
set Xn of all length n sequences (x1, x2, . . . , xn) with elements from X so
that

R ∈ RELn(X) iff R ⊂ Xn.

Also denote by FUNn(X) the set of all functions from Xn to X. Thus

f ∈ FUNn(X) iff f : Xn −→ X.

We also define REL0(X) to be the two element set of truth values,

REL0(X) = {>,⊥}

and FUN0(X) to be X itself,

FUN0(X) = X.
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A model for full predicate logic of type P ∪ F is a system M
consisting of a non-empty set UM called the universe of the model M,
and for each n ≥ 0 a pair of functions

Pn −→ RELn(UM) : p 7→ pM

and
Fn −→ FUNn(UM) : f 7→ fM

which assign to each predicate symbol p a relation pM and to each function
symbol f a function fM. Unless otherwise stated, we shall assume that the
model respects equality meaning that

=M = {(a, b) ∈ UM : a = b}.

We shall define the notion thatM |= A where A is a sentence, this time
without recourse to valuations as in the previous chapter. The notation we
use here is favored by many logicians over the notation using valuations,
but according to section B the two notations are entirely equivalent. The
one drawback of the new notation is that we must extend the notion of wff.
To this end we define a wff with constants from the model M to be
a wff built up using the vocabulary P ∪ F ′ where F ′ is obtained from F
by replacing F0 by F0 ∪ UM. In other words a wff with constants from M
may have elements of the model in the argument places of the function and
predicate symbols.

Now we can extend the function F0 −→ UM to a function which assigns
to each term τ a value τM ∈ UM inductively as follows.

(M:F0) If u ∈ UM then uM = u.

(M:Fn) If τ1, τ2, . . . , τn are terms and f ∈ Fn is a function symbol, then

f(τ1, τ2, . . . , τn)M = fM(τ1M, τ2M, . . . , τnM)

Now we define M |= A where A is a sentence with constants from M
much as before. The inductive definition is as follows.

(M:P0) M |= p iff pM = >;

71



(M:Pn) M |= p(τ1, τ2, . . . , τn) iff (τ1M, τ2M, . . . , τnM) ∈ pM;

(M:¬) M |= ¬A iff not -M |= A;

(M:∧) M |= A ∧B iffM |= A andM |= B;

(M:∨) M |= A ∨B iffM |= A orM |= B;

(M:⇒) M |= A⇒ B iffM |= A impliesM |= B;

(M:⇔) M |= A⇔ B iff (M |= A if and only ifM |= B)

(M:∀) M |= ∀xA iffM |= A(x//u) for every u ∈ UM;

(M:∃) M |= ∃xA iffM |= A(x//u) for some u ∈ UM.

The fact that the model respects equality may be succinctly expressed by
the assertion

M |= τ = σ if and only if τM = σM.

3.2 Tableaus.

In full predicate logic, a tableau may be formed using all the rules for tableaus
in proposition logic (see figure1) plus additional rules for handling variable
free terms and the equality relation. A labeled tree for full predicate logic is
as for propositional logic, except that now the wffs are sentences (i.e. wffs
with no free variables) of full predicate logic. We assume for tableau proofs
in full predicate logic that we have an inexhaustible supply of new constant
symbols.

A tableau for full predicate logic is as before except we allow the following
rules also:

We first generalize the rules for quantifiers to allow the substitution of
terms:
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∀ t has an ancestor ∀xA and a child A(x//τ) where τ is a term with no
variables in it;

¬∀ t has an ancestor ¬∀xA and a child ¬A(x//c) where c is a constant
which does not occur in any ancestor of t;

∃ t has an ancestor ∃xA and a child A(x//c) where c is a constant which
does not occur in any ancestor of t;

¬∃ t has an ancestor ¬∃xA and a child ¬A(x//τ) where τ is a term with
no variables in it.

In addition we allow the following equality substitution rules:

= 1 t has an ancestor B(. . . τ . . .), another ancestor of form τ = σ, and
one child B(. . . σ . . .).

= 2 t has an ancestor B(. . . τ . . .), another ancestor of form σ = τ , and
one child B(. . . σ . . .).

= 3 t has one child σ = σ.

Here B(. . . τ . . .) and B(. . . σ . . .) denote basic wffs (i.e. an atomic formula
or the negation of an atomic formula) such that the latter results from the
former by replacing one occurrence of the term τ by the term σ. It is not
required that occurrence of τ be an entire argument of the proposition symbol
B, it may be a part of an argument; for example, we may take a = b for
τ = σ, p(f(a), a, b) for p(. . . τ . . .), and p(f(b), a, b) for p(. . . σ . . .). The rules
= 1 and = 2 differ only in that in the former the equality ancestor is τ = σ
while in the latter it is σ = τ .

The rule is justified by the fact that if A, B, and τ = σ are as in the rule,
then

M |= A ∧ [τ = σ]⇒ B

for any modelM. And for any model and any term σ

M |= σ = σ

(In the TABLEAU program, the equality rule is invoked by typing the G
key at the node A to put A in the Get box, typing the S key ate the node
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τ = σ to put either τ = σ or σ = τ into the Sub box (pressing the S key
again toggles between these two), then going to the end of the branch and
typing the E key to extend the tableau.) The third rule is invoked by using
the = key.

The basic definitions are the same as before except for the addition of
these new rules. A branch Γ of a tableau is said to be contradictory iff Γ
contain a pair of wffs of the form A and ¬A.

The notions of a tableau confutation and a tableau proof are defined as
before. A tableau T is said to be a confutation of a set of sentences H if T
is a tableau with hypothesis set H and every branch of T is contradictory.
A tableau proof of A from H is a tableau confutation of H ∪ {¬A}.

Example 1. A tableau proof of ∀x∀y[x = y ⇒ f(x) = f(y)].

(1) ¬∀x∀y[x = y ⇒ f(x) = f(y)] ¬ to be proved

(2) ¬∀y[a = y ⇒ f(a) = f(y)] by (1)

(3) ¬[a = b⇒ f(a) = f(b)] by (2)

(4) a = b by (3)

(5) f(a) 6= f(b) by (3)

(6) f(b) 6= f(b) by (4) and (5)

(7) f(b) = f(b) by equality rule 3
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Example 2. A tableau proof of ∀x∀y∀z[x = y ∧ y = z ⇒ x = z].

(1) ¬∀x∀y∀z[x = y ∧ y = z ⇒ x = z]. ¬ to be proved

(2) ¬∀y∀z[a = y ∧ y = z ⇒ a = z]. by (1)

(3) ¬∀z[a = b ∧ b = z ⇒ a = z]. by (2)

(4) ¬[a = b ∧ b = c⇒ a = c]. by (3)

(5) a = b ∧ b = c. by (4)

(6) a 6= c by (4)

(7) a = b by (5)

(8) b = c by (5)

(9) a = c by (7) and (8)

3.3 Soundness

The proof of the soundness theorem for full predicate logic much as before.
We restate the theorem here, since we have now formulated our semantics
using constants from the model rather than valuations.

Lemma 3.3.1 Let H be a set of sentences of full predicate logic and T be a
finite tableau in predicate logic with hypothesis set H. IfM is a model of the
set of sentences of H, then there is a branch Γ such that M |= A for every
wff A on Γ, that is, M |= Γ
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Theorem 3.3.2 (Soundness Theorem.) If a sentence A has a tableau proof,
then A is valid. If A has a tableau proof from a a set H of sentences, then
A is a semantic consequence of H, i. e. every model of H is a model of A.

3.4 Completeness

The completeness theorem for full predicate logic is similar to the one for
predicate logic with some additional twists.

Theorem 3.4.1 (Completeness Theorem.) Let H be a set of sentences of
full predicate logic. If H has no models, then H has a tableau confutation. If
H does not have a tableau confutation, then H has a model.

Let ∆ be any set of sentences and denote by U∆ the set of all variable
free terms τ which have an occurrence in some wff of ∆.

We call a set ∆ of wffs closed under the equality rules iff any basic wff
obtained from two wffs of ∆ by an equality substitution is again a element
of ∆, in other words, iff for all terms τ and σ in U∆ and all basic wffs
B(. . . τ . . .) the following conditions hold:

[= 1] if [τ = σ] ∈∆ and B(. . . τ . . .) ∈∆ then B(. . . σ . . .) ∈∆.

[= 2] if [σ = τ ] ∈∆ and B(. . . τ . . .) ∈∆ then B(. . . σ . . .) ∈∆.

[= 3] [τ = τ ] ∈∆

A set ∆ of sentences is called contradictory iff it contains a pair of wffs
of form A, ¬A.

The definition of a finished set for full predicate logic is verbatim the
same as the definition of a finished set of wffs for pure predicate logic given
before except that now

• the set U∆ has its new meaning (the set of all variable free terms τ
which have an occurrence in some wff of ∆,

• the set ∆ must be closed under equality rules and the new quantifier
rules.

The complete definition may be found in section E.
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Lemma 3.4.2 (Finished Branch Lemma.) Suppose ∆ is finished set of sen-
tences. LetM be any model for full predicate logic such that each element of
the universe set UM of M is named by at least one term in U∆:

UM = {τM : τ ∈ U∆}.

If M |= B for every basic wff B ∈ ∆, then M |= A for every wff A ∈ ∆,
that is, M |= ∆.

The version of the finished branch lemma just given does not assert the
existence of the required model M. In the case of pure predicate logic this
point was trivial: we simply took UM = U∆ and definedM |= A for atomic
A byM |= A iff A ∈∆. The present situation is a bit more complicated, for
the set ∆ may contain a sentence of form τ = σ where τ and σ are distinct
terms. The model just described will not do since it will not respect equality.

To overcome this difficulty we need three lemmas. In all three lemmas
we assume that ∆ be a finished set of sentences. We also call terms τ and σ
in U∆ equivalent iff [τ = σ] ∈∆. We write τ ≡ σ as an abbreviation for “τ
and σ are equivalent”.

Lemma 3.4.3 Suppose that ∆ be a finished set of sentences. Then ≡ is an
equivalence relation. That is,

(reflexivity) τ ≡ τ ;

(symmetry) if τ ≡ σ then σ ≡ τ ;

(transitivity) if τ1 ≡ τ2 and τ2 ≡ τ3 then τ1 ≡ τ3;

for τ, σ, τ1, τ2, τ3 ∈ U∆.

Lemma 3.4.4 Let ∆ be a finished set of sentences. Suppose τ1, τ2, . . . , τn, σ1, σ2, . . . , σn ∈
U∆ and f ∈ Fn. If

τ1 ≡ σ1, τ2 ≡ σ2, . . . , τn ≡ σn,

then
f(τ1, τ2, . . . , τn) ≡ f(σ1, σ2, . . . , σn).
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Lemma 3.4.5 Let ∆ be a finished set of sentences. Suppose τ1, τ2, . . . , τn, σ1, σ2, . . . , σn ∈
U∆ and p ∈ Pn. If

τ1 ≡ σ1, τ2 ≡ σ2, . . . , τn ≡ σn,

then
p(τ1, τ2, . . . , τn) ∈∆⇐⇒ p(σ1, σ2, . . . , σn) ∈∆.

Lemma 3.4.6 Let ∆ be a finished set of sentences. Then there is a model
M such that for every atomic sentence A we have

M |= A⇐⇒ A ∈∆.

Proof: For each τ ∈ U∆ let [τ ] denote the equivalence class of τ :

[τ ] = {σ ∈ U∆ : τ ≡ σ}.

By lemma 3.4.3 we have

[τ ] = [σ]⇐⇒ τ ≡ σ.

We define the universe of our modelM to be the set of equivalence classes:

UM = {[τ ] : τ ∈ U∆}.

Now by lemma 3.4.4 each function symbol f ∈ Fn determines a function
fM ∈ FUNn(UM) by the condition

fM([τ1], [τ2], . . . , [τn]) = [f(τ1, τ2, . . . , τn)]

and by lemma 3.4.5 each predicate symbol p ∈ Pn determines a relation
pM ∈ REL(UM) by the condition

([τ1], [τ2], . . . , [τn]) ∈ pM ⇐⇒ p(τ1, τ2, . . . , τn) ∈ U∆.

This modelM obviously satisfies the conclusion of the lemma.
As in pure predicate logic, a tableau in full predicate logic is finished iff

every branch is either finished or else both finite and contradictory.

Lemma 3.4.7 Every finite set of sentences is the hypothesis set of a finished
tableau.
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Recall that a sentence A is valid iff it is true in every model, and is a
semantic consequence of a set of sentences H iff it is true in every model of
H.

Theorem 3.4.8 (Completeness Theorem, Second Form.) If a sentence A is
a semantic consequence of a set of sentences H then there is a tableau proof
of A from H. In particular, a valid sentence has a tableau proof.

Theorem 3.4.9 (Compactness Theorem.) Let H be any set of sentences of
full predicate logic. If every finite subset of H has a model, then H has a
model.

3.5 Peano Arithmetic

Peano arithmetic is a particular set of sentences in full predicate logic which
codifies the properties of the natural numbers and has a central role in math-
ematics. These sentences are called Peano’s axioms. The vocabulary consists
of a constant symbol 0, a unary function symbol s called the successor func-
tion, and two infix binary function symbols + and * called the sum and
product functions. The most important model of Peano arithmetic is the
model Nwith universe 0,1,2,... and the usual interpretations of the symbols
0, s, +, and *. This model is called the standard model of Peano arithmetic.
It will be seen in the last part of the course that there also exist other models
of Peano arithmetic.

Peano arithmetic is an infinite set of sentences, consisting of finitely many
basic axioms and an infinite collection of sentences called the induction prin-
ciple. Proofs using the induction principle are called proofs by induction on
the natural numbers. Throughout the course we have seen informal proofs
by induction on the natural numbers and on other objects such as wffs and
tableaus. Here are the Peano axioms.

BASIC AXIOMS

∀x¬s(x) = 0
∀x∀y[s(x) = s(y)⇒ x = y]
∀x x + 0 = x
∀x∀y x + s(y) = s(x + y)
∀x x ∗ 0 = 0
∀x∀y x ∗ s(y) = (x ∗ y) + x
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INDUCTION PRINCIPLE

The infinite set consisting of all sentences of the form

∀y1...∀yn[B(0) ∧ ∀x[B(x)⇒ B(s(x))]⇒ ∀xB(x)]

where B is a wff with free variables x, y1, ..., yn .
This sentence is called the induction principle for the wff B in the variable

x. To improve readability we wrote B(x) for B, B(0) for B(x//0), and B(s(x))
for B(x//s(x)). In a formal tableau proof, the cases of the induction principle
which are needed for the proof are included in the hypothesis list.

3.6 Computer problem

There are seven problems, called
GROUP1.TBU, GROUP2.TBU,
CALC1.TBU, CALC2.TBU, CALC3.TBU,
ZPLUS.TBU, AND PLUS.TBU.
You should load the problem in with the TABLEAU program, then make

a proof sketch on paper, and finally use your proof sketch as a guide to
make a formal tableau proof with the TABLEAU program. In many cases
your sketch will contain a string of equations. As usual, you should file your
answer on your diskette using the TABLEAU program, with the name of the
problem preceded by an A.

The problems use predicate logic with function symbols and equality sub-
stitutions. Here are some comments on the problems. You should try the
problems with shorter solutions (fewer nodes) first.

GROUP1. (16 nodes). The hypotheses are axioms from group theory
with a binary infix operation ∗ and a constant symbol e for the identity
element. The first hypothesis is the associative law, the second hypothesis is
that every element has a right inverse, and the other two hypotheses state
that e is a two sided identity element (it will be shown as an example in
class that the fourth hypotheses can be proved from the other three). The
sentence to be proved is that every element has a left inverse.

GROUP2. (21 nodes). The hypotheses are the axioms for groups. The
sentence to be proved is the cancellation law.
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CALC1. (6 nodes). The hypotheses state that the function f is onto and
that g is an inverse function of f. The sentence to be proved is that f is an
inverse function of g.

CALC2. (35 nodes). This is the theorem from calculus which states that
a bounded increasing real function f(x) approaches a limit as x approaches
infinity. The vocabulary has a constant c, a unary function f, and a binary
infix predicate <. The first hypothesis states that the function f is increasing,
the second and third hypotheses state that c is the least upper bound of the
range of f, and the last two hypotheses are needed facts about the order
relation. The sentence to be proved states that c is the limit of f(x) as x
approaches infinity.

CALC3. (87 nodes). This is the main part of the the Intermediate Value
Theorem from calculus. The vocabulary has constants c and o, a unary
function f, a binary infix predicate ≤, and a ternary predicate p. The first
two hypotheses are facts about the order relation. The next two hypotheses
state that c is the least upper bound of the set of all x such that f(x) ≤ 0.
The fifth hypothesis defines the relation p(x,y,z) to mean that y belongs to
the open interval (x,z). The long sixth hypothesis uses the relation p to state
that the function f(x) is continuous for all x. The sentence to be proved is
that f(c) ≤ 0.

(A similar proof will show that 0 ≤ f(c). This leads to the theorem that
if f is continuous and f(a) < 0 < f(b) then there is a point c between a and
b with f(c) = 0.)

The problems ZPLUS and PLUS are examples of proofs using the induc-
tion principle for the natural numbers. The vocabulary has a constant 0 for
zero, a unary function s for successor, and a binary function + (written in
infix notation x + y) for the sum. The hypotheses in each problem give the
rules for computing the sum. The other hypotheses are cases of the induction
principle for natural numbers.

ZPLUS. (12 nodes). The third hypothesis is the induction principle for
the wff 0+x=x in the variable x. The sentence to be proved is that for all x,
0+x=x.

PLUS. (38 nodes). The third and fourth hypotheses are the induction
principle for ∀y x + y = y + x in the variable x, and the induction principle
for x+y = y+x in the variable y. The last hypothesis is the sentence proved
in the preceding problem. The sentence to be proved is the commutative law
for the sum.
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If you get stuck, you may look at the hints below.
HINT FOR GROUP1: If a ∗ b = e and b ∗ c = e then

a = a ∗ e = a ∗ (b ∗ c) = (a ∗ b) ∗ c = e ∗ c = c,

so that b ∗ a = e.
HINT FOR GROUP2: If a ∗ c = b ∗ c and c ∗ d = e then

a = a ∗ e = a ∗ (c ∗ d) = (a ∗ c) ∗ d = (b ∗ c) ∗ d = b ∗ (c ∗ d) = b ∗ e = b.

HINT FOR PLUS: If ∀y [a + y = y + a] and s(a) + b = b + s(a), then

s(a) + s(b) = s(s(a) + b) = s(b + s(a)) = s(s(b + a)) = s(s(a + b)) =

= s(a + s(b)) = s(s(b) + a) = s(b) + s(a).

3.7 Exercises

1. Let B be the wff
y = s(x) ∧ ∃y x + y = z.

a) Write down the wff B(x//0)
b) Is the term s(x) free for x in B? If it is, write down the wff B(x//s(x))
c) Is the term x∗ y free for x in B? If it is, write down the wff B(x//x∗ y)
d) Is the term x∗y free for y in B? If it is, write down the wff B(y//x∗y)
e) Write down the sentence B(v) where v is a valuation such that v(x)=2,

v(y)=4, v(z)=6.

2. Give a tableau proof of the sentence

∀x [0 ∗ x = 0⇒ 0 ∗ s(x) = 0]

from the set of hypotheses
∀x x + 0 = x

∀x∀y x ∗ s(y) = x ∗ y + x

3. Give a tableau proof of the sentence

∀x 0 ∗ x = 0
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from Peano arithmetic. Here is a start (showing only the axioms of Peano
arithmetic which are needed for your proof).

¬∀x 0 ∗ x = 0

∀x x + 0 = x

∀x x ∗ 0 = 0

∀x∀y x ∗ s(y) = x ∗ y + x

0 ∗ 0 = 0 ∧ ∀x [0 ∗ x = 0⇒ 0 ∗ s(x) = 0]⇒ ∀x 0 ∗ x = 0

4. Suppose that:
T is a finite tableau in predicate logic.
H is the set of hypotheses of T.
A is a wff whose only free variable is x.
b is a constant symbol.
Every branch of T is either contradictory or contains the sentence A(x//b).
Describe a simple way to change T into a tableau proof of ∃x A from H.

5. Suppose that:

1. H is a finite set of sentences of predicate logic with no equality or
function symbols.

2. No constant symbols occur in H.

3. H has at least one model.

4. H has a finished tableau with fewer than 100 nodes.

Prove that H has a model whose universe has fewer than 100 elements.

6. Give an example of a single wff A in predicate logic with variables x,y,and
z such that x is free for y but not for z, y is free for z but not for x, z is not
free for x, and z is not free for y.

7. Give a tableau proof of the sentence

∀y [R(y)⇔ ∃x [R(x) ∧ x = y]].
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In the next two problems give informal direct proofs using the rules for
tableaus and the following additional rules:

a) If C follows from a branch Γ by propositional logic, then C may be
added to the end of Γ.

b) (To prove C ⇒ D) Temporarily assume C and prove D, then add
C ⇒ D to the end of the branch Γ .

c) (To prove ∀x C) Prove C(x//b) where b is new, then add ∀x C to
the end of the branch Γ .

8.

∀x∀y∀z [glb(x, y, z)⇔ z ≤ x ∧ z ≤ y ∧ ∀t [t ≤ x ∧ t ≤ y ⇒ t ≤ z]]

`
∀x∀y∀z∀t [glb(x, y, z) ∧ glb(x, y, t)⇒ z ≤ t]

9.
∀x∀y [x ⊂ y ⇔ ∀z [z ∈ x⇒ z ∈ y]]

∀x∀y∀z [z = x ∪ y ⇔ ∀t [t ∈ z ⇔ t ∈ x ∨ t ∈ y]]

`
∀x∀y∀z [z = x ∪ y ⇒ x ⊂ z]

10. Give a finished set for the set of sentences

∀x p(x, x)

∃x∀y p(x, y)

∃x∀y p(y, x)

∃x∃y [¬p(x, y) ∧ ¬p(y, x)]

with the four constants 0,1,2,3 and no free variables.

We say that a model (P,≤) is a linear order (where ≤ is a binary relation
on the universe P) iff

84



1. ∀x ∈ P x ≤ x

2. ∀x ∈ P∀y ∈ P∀z ∈ P [x ≤ y ∧ y ≤ z ⇒ x ≤ z]

3. ∀x ∈ P∀y ∈ P [x ≤ y ∧ y ≤ x⇒ x = y]

4. ∀x ∈ P∀y ∈ P [x ≤ y ∨ y ≤ x]

If (P,≤) satisfies only the first three it is called a partial order.

11. Let P be the set of all subsets of {0, 1} (there are eight). Let ≤ be the
subset relation on P. Show the this is a partial order. Draw a diagram of it.

12. Let S be the set of all strings in the alphabet {a, b, c, ..., z}. Let ≤ be
the binary relation on S defined by s ≤ t iff s is a substring of t. Show that
(S,≤) is a partial order.

Given a partial order define a strict partial order by x < y ⇔ x ≤ y∧x 6=
y. 13. Which of the above sentences are true if ≤ is replaced by <? 14.

Show that in a partial order x < y ⇔ x ≤ y∧ 6 y ≤ x. 15. Show that in a

linear order x < y ⇔6 y ≤ x. And show by example that this is not true in
a partial order.

16. Find a linear order (P,≤) which satisfies all of the following:

(P,≤) |= ∀x∃y x < y

(P,≤) |= ∀x∃y y < x

(P,≤) |= ∀x∀y [x < y ⇒ ∃z[x < z ∧ z < y]

17. Show by induction that for any finite partial order (P,≤) (i.e. P is finite)
there is a linear order (P,≤∗) which extendes ≤, i.e. for every a, b ∈ P if
a ≤ b, then a ≤∗ b.
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18. Use the Compactness Theorem for Propositional Logic and the last
problem to show that every partial order (finite or infinite) can be extended
to a linear order.
Hint: Let (P,≤) be any partial order. Let P0 = {Rab : a, b ∈ P}. Consider
interpreting the symbol Rab as “a ≤∗ b”. Keep in mind that you are not
given ≤∗; you must show that it exists.

19. Prove using the compactness theorem of propositional logic that for any
set X and binary relation R ⊂ X ×X if

1. for every finite X ′ ⊂ X there exists a 1-1 function f : X ′ 7→ X such
that ∀x ∈ X ′ < x, f(x) >∈ R; and

2. for every x ∈ X
{y ∈ X : < x, y >∈ R}

is finite;

then there exists a 1-1 function f : X 7→ X such that

∀x ∈ X < x, f(x) >∈ R.

Show that the second item above is necessary by giving a counterexample.
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4 Computable Functions

In this chapter we explore what it means for a function to be “computable”.

4.1 Numerical Functions.

A numerical function is a function f defined on a set of n-tuples of natural
numbers:

Dom(f) ⊂ Nn

and taking natural numbers as values:

Ran(f) ⊂ N.

The positive integer n is called the arity of the numerical function; it is the
number of inputs x1, x2, . . . , xn required to produce an output f(x1, x2, . . . , xn).
A numerical function with arity n is also called an n- ary numerical function.
(This usage arose from more traditional terminology where unary meant 1-
ary, binary meant 2 -ary, ternary meant 3-ary, etc.)

The function f is called totally defined or total iff f(x1, x2, . . . , xn) is
defined for all inputs (x1, x2, . . . , xn) i.e. iff

Dom(f) = Nn.

When we wish to emphasize that a numerical function is not assumed to
be total we call it partially defined or simply partial. (It is important
to remember that the adjective partial is redundant: a partial numerical
function and a numerical function are the same11 thing. When we call a
function partial we do not exclude the possibility that the function is total.)

4.2 Examples.

Some well known total numerical functions include

• The zero function (n = 1) defined by

0(x) = 0

for x ∈ N;

11At least one of the coauthor’s prefers that the default of numerical function (recursive
function, computable function, etc. ) is total function. It is better in most cases always
to be clear by saying “total” or “partial”.
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• The succesor function (n = 1) defined by

s(x) = x + 1

for x ∈ N;

• The addition function (n = 2) defined by

sum(x, y) = x + y

for (x, y) ∈ N2;

• The multiplication function (n = 2) defined by

product(x, y) = xy

for (x, y) ∈ N2;

• The projection functions defined by

In
k (x1, x2, . . . , xn) = xk

for (x1, x2, . . . , xn) ∈ Nn and k = 1, 2, . . . , n.

Some well known partial numerical functions which are not total include

• The subtraction function (n = 2) defined by

sub(x, y) = x− y

for (x, y) ∈ Dom(sub) = {(x, y) ∈ N2 : y ≤ x};

• The partial quotient and partial remainder functions characterized by

q = qt0(x, y)and r = rm0(x, y)⇐⇒ y = qx + rand 0 ≤ r < x

for (x, y) ∈ Dom(qt0) = Dom(rm0) = {((x, y) ∈ N2 : x 6= 0} and
q, r ∈ N.
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4.3 Extension.

We shall often extend partial functions to make them total. For example,
we define

• Cut-off subtraction by

x−̇y =

{
x− y if y ≤ x
0 if x < y

for (x, y) ∈ N2.

• The quotient function by

qt(x, y=

{
qt0(x, y) if x > 0
0 if x = 0

for (x, y) ∈ N2.

• The remainder function by

rm(x, y) =

{
rm0(x, y) if x > 0
0 if x = 0

for (x, y) ∈ N2.

WARNING: In the theory of computable functions the domain of a func-
tion plays an important role. Typically an n-tuple (x1, x2, . . . , xn) is not
in the domain of some computable function f because the program which
computes f(x1, x2, . . . , xn) does not terminate normally when the input is
(x1, x2, . . . , xn): it goes into an infinite loop. It can happen (as we shall
see) that the total function F defined from the partial function f by the
prescription

F (x1, x2, . . . , xn) =

{
f(x1, x2, . . . , xn) if (x1, x2, . . . , xn) ∈ Dom(f)
0 otherwise.

will not be computable, even though f is computable.
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4.4 Numerical Relations.

A numerical relation is a set R of n-tuples of natural numbers:

R ⊂ Nn.

The positive integer n is called the arity of the numerical relation; a numer-
ical relation with arity n is also called an n-ary numerical relation. (As
with functions unary means 1-ary, binary means 2 -ary, ternary means 3-ary,
etc.) The words predicate and relation are synonomous.

An n-ary numerical relation determines (and is determined by) its char-
acteristic function which is the numerical function cR defined by

cR(x1, x2, . . . , xn) =

{
1 if (x1, x2, . . . , xn) ∈ R
0 if (x1, x2, . . . , xn) /∈ R

for (x1, x2, . . . , xn) ∈ Nn.
An important difference between numerical functions and numerical rela-

tions is that by convention relations are always assumed to be totally defined;
i.e. the characteristic function cR of a numerical relation is always a total
numerical function.

4.5 The Unlimited Register Machine.

In this section we shall describe an abstract computer called the Unlimited
Register Machine (URM). It differs from real computers in two ways.

Firstly, the instruction set of a URM is much smaller than that of a real
computer. This makes the URM much easier to study than a real computer
(although it also makes the URM less efficient than a real computer), but
does not in principle restrict the computing power of the URM: we shall see
that the URM can compute anything a more complicated computer can.

Secondly, the URM has an infinite memory (i.e. has infinitely many data
registers and has program memory which can hold an arbitrarily large pro-
gram). Moreover any data register can hold an arbitrarily large number.
This idealization also makes the URM easier to study and is not as far re-
moved from reality as one might think: any particular calculation on a URM
will use only a finite amount of memory so no particular calculation which
can be done by a URM is in principle too difficult to be performed by a real
computer.
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Thirdly, program memory is disjoint from data.
The data registers of the URM are denoted by R1, R2, R3, . . . and the

URM recognizes the following five kinds of instructions:

• Halt Instruction. There is a single halt instruction H which causes the
URM to stop execution.

• Zero Instructions. For each n = 1, 2, . . . there is a zero instruction Z n
which causes the URM to set the register Rn to 0, leaving the other
registers unaltered.

• Successor Instructions. For each n = 1, 2, . . . there is a successor in-
struction S n which causes the URM to increment by 1 the contents of
the register Rn, leaving the other registers unaltered.

• Transfer Instructions. For each m = 1, 2, . . . and n = 1, 2, . . . there is a
transfer instruction T m n which causes the URM to replace the con-
tents of the register Rn by the contents of the register Rm (i.e. transfer
Rm to Rn ), leaving the other registers (including Rm) unaltered.

• Jump Instructions. For each m = 1, 2, . . ., each n = 1, 2, . . ., and each
q = 0, 1, 2, . . . there is a jump instruction J m n q which causes the
URM to jump to the q-th instruction if the contents of the registers
Rm and Rn are equal and execute the next instruction otherwise. A
jump instruction does not alter any registers. If a jump is made to an
invalide instruction number this is the same as a halt.

A URM-program is a finite sequence of such instructions. If a program P
is loaded into the URM’s program memory, the data registers R1, R2, . . . are
given initial values, and the URM is given the command to start computing,
the URM responds as follows. It executes the first instruction I0 modifying
the appropiate registers as required. If that instruction was not a jump in-
struction, or if it was a jump instruction J(m,n, q) but the contents of the
registers Rm and Rn are not equal, then the URM continues with the next
instruction; if it was a jump instruction J(m, n, q) and contents of the regis-
ters Rm and Rn are equal, then the URM continues with the q-th instruction.
It repeats this process until it is asked to execute a halt instruction at which
point the URM stops.
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Note that it is possible (even likely) that a program will not stop at all
(for example, the program consisting of the single instruction I0 = J(5, 5, 0)).

Note that program memory is indexed starting at 0, i.e. the program steps
are numbered I0, I1, I2, . . . whereas the data memory is indexed starting at
1, i.e. the registers are numbered R1, R2, . . ..

The program counter is the number of the next instruction to execute.
The program counter is incremented by one by a zero instruction Z n, suc-
cessor instruction S n, or transfer instruction T m n. On the other hand,
in a jump instruction J m n q the program counter is changed to q-th in-
struction if the contents of the registers Rm and Rn are equal and otherwise
incremented by one if they are not equal.

Note that there is no provision for input to or output from the URM.
Rather we consider the input to the URM to be the sequence of values in
the registers R1, R2, . . . when the URM starts and the output from the URM
to be the value in the register R1 when the URM stops. (Sometimes we
allow two outputs say R1 and R2 although this should really be regarded as
computing two different functions.)

An n-ary numerical function f is called URM-computable iff there is a
URM-program P which computes f in the following sense: if the registers of
the URM are initialized so that the register R1 holds the number a1, R2 holds
the number a2, . . ., and Rn holds the number an, all other registers hold zero,
and the program P is loaded in to the machine and executed (starting with
the first instruction of the program) then

if (a1, a2, . . . , an) ∈ Dom(f), then the program halts and the register R1

holds the value f(a1, a2, . . . , an) of the function;

and

if (a1, a2, . . . , an) /∈ Dom(f), then the program never halts, i.e. computes
forever.

4.6 Examples of URM-Computable Functions.

In this section we give some simple examples of URM-computable functions.

Example 4.6.1 The addition function defined by

add(x, y) = x + y
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for (x, y) ∈ N2 = Dom(sum) is URM-computable.

Example 4.6.2 The multiply function defined by

mult(x, y) = x ∗ y

for (x, y) ∈ N2 = Dom(mult) is URM-computable.

Example 4.6.3 The predescessor function defined by

pred(x) =

{
x− 1 if x > 0
0 if x = 0

is URM-computable.

Example 4.6.4 The cut-off subtraction function, dotminus, defined by

x−̇y =

{
x− y if y ≤ x
0 if x < y

for (x, y) ∈ N2 = Dom(−̇) is URM-computable.

Example 4.6.5 The divide with remainder function defined by div(x,y)=q
and remain(x,y)=r iff x = qy + r where 0 ≤ r < y for (x, y) ∈ N2 with y 6= 0
is URM-computable.
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Addition:

! input: x,y output: add = x + y

def add(x,y)

let counter = 0

do until counter = y

let x = x + 1

let counter = counter + 1

loop

let add = x

end def

Figure 4: flowchart for add
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add assembly code

Z counter
loop: J counter y done

S x
S counter
J 1 1 loop

done: H

register assignment and instruction numbering

x R1
y R2
counter R3
add R1
loop: 1
done: 5

0 Z 3
1 J 3 2 5
2 S 1
3 S 3
4 J 1 1 1
5 H

Figure 5: ADD.GN
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Multiplication:

! input: x,y output: mult = x * y

def mult(x,y)

let accum = 0

let i = 0

do until i = y

let accum = add(accum,x)

let i = i + 1

loop

let mult=accum

end def

Figure 6: flowchart for multiplication
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Z accum
Z i

loop: J y i done
macro accum := add(accum,x)
S i
J 1 1 loop

done: T accum mult
H

Expanding macro accum := add(accum,x)

Z accum
Z i

loop: J y i done
Z counter

loop2: J counter x done2
S accum
S counter
J 1 1 loop2

done2: S i
J 1 1 loop

done: T accum mult
H

Figure 7: assembly program for mult
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register assignment and instruction numbering

x R1
y R2
mult R1
accum R3
i R4
counter R5
loop: 2
done: 10
loop2: 4
done2: 8

0 Z 3
1 Z 5
2 J 2 4 10
3 Z 5
4 J 5 1 8
5 S 3
6 S 5
7 J 1 1 4
8 S 4
9 J 1 1 2

10 T 3 1
11 H

Figure 8: MULT.GN
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Predescessor:

! input: x output: pred = x - 1 if x > 1

! 0 otherwise

def pred(x)

if x = 0 then

let pred = 0

else

let prev = 0

let next = 1

do until x = next

let next = next + 1

let prev = prev + 1

loop

let pred = prev

end if

end def

Figure 9: Psuedocode for Predescessor
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pred assembly code

Z prev
J x prev done
Z next
S next

loop: J x next done
S next
S prev
J 1 1 loop

done: T prev pred
H

register assignment and instruction numbering

x R1
prev R2
next R3
pred R1
loop: 4
done: 8

0 Z 2
1 J 1 2 8
2 Z 3
3 S 3
4 J 1 3 8
5 S 3
6 S 2
7 J 1 1 4
9 T 2 1

10 H

Figure 11: PRED.GN
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Dotminus:

! input: x,y output: dotminus = x-y if x>y

! 0 otherwise

def dotminus(x,y)

let counter = 0

let dot=x

do until counter = y

let dot = pred(dot)

let counter = counter + 1

loop

let dotminus = dot

end def

Figure 12: flowchart for dotminus�
�
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-

102



Z counter
T x dot

loop: J counter y done
macro dot := pred(dot)
S counter
J 1 1 loop

done: T x dotminus
H

Expanding macro x := pred(x)

Z counter
T x dot

loop: J counter y done
Z prev
J x prev done2
Z next
S next

loop2: J dot next done2
S next
S prev
J 1 1 loop2

done2: T prev dot
S counter
J 1 1 loop

done: T dot dotminus
H

Figure 13: dotminus assembly code

103



register assignment and instruction numbering

x R1
y R2
dotminus R1
dot R1
counter R3
prev R5
next R4
loop: 1
done: 13
done2: 10
loop2: 6

0 Z 3
1 J 3 2 13
2 Z 5
3 J 1 5 10
4 Z 4
5 S 4
6 J 1 4 10
7 S 4
8 S 5
9 J 1 1 6

10 T 5 1
11 S 3
12 J 1 1 1
13 H

Figure 14: DOTMINUS.GN
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Divide with remainder:

! input:n,m output: q,r such that n = qm + r

! where 0 <= r < m undefined if m = 0.

sub divrem(n,m,q,r)

let q = 0

let r = n

do until r < m

let r = dotminus(r,m)

let q = q + 1

loop

end sub

Figure 15: divide with remainder (divrem)
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Figure 16: expanding part of the flowchart for divrem
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Figure 17: divrem assembly code
Z zero
Z q
T n r

loop: macro temp := dotminus(r,m)
J temp zero exit

again: T temp r
S q
J 1 1 loop

exit: J r m again
H

Expanding temp := dotminus(r,m)
Z zero
Z q
T n r

loop: T r dot
Z counter

loop1: J counter m done
Z prev
J dot prev done2
Z next
S next

loop2: J dot next done2
S next
S prev
J 1 1 loop2

done2: T prev dot
S counter
J 1 1 loop1

done: T dot temp
J temp zero exit

again: T temp r
S q
J 1 1 loop

exit: J r m again
H
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Figure 18: DIVREM.GN

zero R20 loop: 4
q R7 loop1: 5
n R1 loop2: 10
r R8 done2: 14
counter R3 done: 17
m R2 again: 19
prev R5 exit: 22
next R4
temp R6
dot R9

0 Z 20
1 Z 7
2 T 1 8
3 T 8 9
4 Z 3
5 J 3 2 17
6 Z 5
7 J 9 5 14
8 Z 4
9 S 4

10 J 9 4 14
11 S 4
12 S 5
13 J 1 1 10
14 T 5 9
15 S 3
16 J 1 1 5
17 T 9 6
18 J 6 20 22
19 T 6 8
20 S 7
21 J 1 1 3
22 J 8 2 19
23 H
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4.7 Universal URM machines

An URM machine U with two inputs is universal iff for all other URM ma-
chines P with one input there is a number e such that for all inputs x the
output of U computing on input e,x is the same as the ouput of P computing
on input x. (U diverges on e,x just in case P diverges on x.)

It is the aim of this section to outline the construction of a universal URM
machine. We begin with the high level description of U (or univ).
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dim reg(1 to 100) ! 100 registers

dim gnum(0 to 100,1 to 4) ! 100 instructions start=0

! reg array : holds the simulated machine’s sequence

! of registers. e.g. reg(3) is the number in register 3

!

! gnum array : holds the simulated machine’s sequence of

! instructions. e.g. gnum(2,3) holds the third number

! in instruction 2

!

! done : will be a flag (true=1 false=0) which

! will be initialized at zero and set to 1 when

! the HALT instruction is executed.

!

! pc : program counter- the number of the

! instruction currently being executed.

sub univ

let pc=0 ! start with instruction 0

let done=0 ! not yet done

do

call nextstate ! nextstate returns done

loop until done=1

end sub
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! r1,r2 : scratch register numbers

sub nextstate ! The state of the machine is

let i=gnum(pc,1) ! the pc and the register array.

select case i

case 1 ! H halt

let done=1

case 2 ! Z zero the register

let r1=gnum(pc,2)

let reg(r1)=0

let pc=pc+1

case 3 ! S successor the register

let r1=gnum(pc,2)

let reg(r1)=reg(r1)+1

let pc=pc+1

case 4 ! T transfer the register contents

let r1=gnum(pc,2)

let r2=gnum(pc,3)

let reg(r2)=reg(r1)

let pc=pc+1

case 5 ! J jump if the register contents

let r1=gnum(pc,2) ! are equal

let r2=gnum(pc,3)

if reg(r1)=reg(r2) then

let pc=gnum(pc,4)

else

let pc=pc+1

end if

end select

end sub
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Figure 19: flowchart for univ
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Figure 20: flowchart for nextstate
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Figure 21: Jump: magnification of J box
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The branch i =? in nextstate is coded by:

J i two zero
J i three succ
J i four trans
J i five jump

halt: HALT code goes here
J 1 1 exit

zero: ZERO code goes here
J 1 1 exit

succ: SUCCESSOR code goes here
J 1 1 exit

trans: TRANSFER code goes here
J 1 1 exit

jump: JUMP code goes here
exit:

The array assignment statements are handled as follows:

let i=gnum(pc,4) let temp=extract(gnum,pc) E gnum pc temp
let i =extract(temp,4) E temp 4 i

let reg(r1)=reg(r2)+1 let temp=extract(reg,r2) E reg r1 temp
let temp=temp+1 S temp
let reg=put(reg,r1,temp) P reg r1 temp

The computability of the extract and put functions will be shown in
section 4.8. The two new operations P and E are added to the basic set,
H Z S T J, and are described in section 6.6. The URM code (see section
4.9) for the universal machine will be in this extended language and will also
simulate the two new operations P and E.

4.8 Extract and Put

The Godel numbering scheme uses the even decimal positions (starting from
0 on the left) as markers to show where a new term begins, and uses the odd
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decimal positions for the digits of the terms in the sequence to be coded. A
2 marker means that a new term is beginning, and a 1 marker means that
the old term is continuing. For example, the Godel number of the sequence
(G.N.)

54 6 217

is (with the original digits underlined)

251426221117.

This is a Godel number in standard form. In order to make every number
the Godel number of some sequence, the initial marker can be any digit except
0, a marker > 2 is identified with a 2, a 0 marker is identified with a 1, and
an extra digit at the end is ignored.

The following functions:

LENGTH(x),DIGIT(x,i),TERMS(x), START(x,y), and PUTEND(x,y)

are register machine computable. They will be used only to show that the two
functions EXTRACT(x,y),and PUT(x,y,z) are register machine computable.

At this point the reader should be convinced that given psuedocode for a
new function in terms of old functions, and given URM programs for the old
function, one can routinely construct an URM program for the new function.

LENGTH(x)= number of decimal digit in x.

LENGHT(0)=LENGTH(1)= . . . =LENGTH(9)=1,
LENGHT(10)=LENGTH(11)= . . . =LENGTH(99)=2,

LENGHT(100)=LENGTH(101)= . . . =LENGTH(999)=3, etc.

DIGIT(x,i)= the ith decimal digit of x starting from i=zero on the left.

DIGIT(907,0)=9,
DIGIT(907,1)=0,
DIGIT(907,2)=7,
DIGIT(907,3)=0,

DIGIT(907,n)=0 for all n ≥ 3
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TERMS(x) = number of terms in the sequence with G.N. x, with the
empty sequence having 0 terms. TERMS(251426221117)=3

START(x,y) = position of marker for the start of the yth term in the
sequence with G.N x, undefined if TERMS(x) ≤ y. (Count terms from 0 on
the left).

START(251426221117,0)=0,
START(251426221117,1)= 4, and

START(251426221117,1)= 6.

PUTEND(x,y) = the G.N. of the sequence formed by adding y as one
more term to the end of the sequence with G.N x.

PUTEND(251426221117,98)=2514262211172918

EXTRACT(x,y) = the yth term of the sequence with G.N. x if y <
TERMS(x), 0 otherwise.

EXTRACT(251426221117,0)=54
EXTRACT(251426221117,1)=6

EXTRACT(251426221117,2)=217
EXTRACT(251426221117,3)=0

PUT(x,y,z) = the G.N. of the sequence formed by putting x into the yth
term of the sequence with G.N. z (first adding as many 0 terms as necessary
if z has fewer than y terms).

PUT(251426221117,2,99)=25142622919
PUT(251426221117,4,99)=251426221117202029191

The URM programs for LENGTH and DIGIT are assigned as exercises for
the student. The others are too long to fit into the 92 instruction limitation
of GNUMBER.COM.
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def length(number) ! Returns the number of decimal digits

let len = 1 ! e.g. length(0)=length(9)=1

let num = div(number,10) ! length(10)=length(99)=2

do until num = 0

let num = div(num,10) ! div is the quotient q output

let len = len+1 ! of divrem.

loop

let length = len

end def

def digit(number,position) ! digit(7406,0)=7

let dig = length(number)-position-1 ! digit(7406,1)=4

let num = number ! digit(7406,2)=0

if dig < 0 then ! digit(7406,3)=6

let digit = 0 ! digit(7406,n)=0 for n>3

else

let times = 0

do until times = dig

let num = div(num,10) ! div is quotient q output

let times = times + 1 ! of divrem.

loop

let digit = remain(num,10) ! remain is remainder r output

end if ! of divrem

end def
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def terms(array) ! Returns the number of terms in array,

let count = 0 ! if array is a valid godel number.

let pos = 0 ! terms(212223)=3

do ! terms(271819)=1

if digit(array,pos) = 2 then let count = count + 1

let pos = pos + 2

loop until pos > length(array)

let terms=count

end def

def start(array,index) ! Returns the position of start marker

let pos = 0 ! of the term of array with given index.

let count = 0 ! Undefined if index > terms(array)

do until count = index ! start(272829,0)=0

let pos = pos + 2 ! start(272929,1)=2

let d = digit(array,pos) ! start(272929,2)=4

if d = 2 then let count = count + 1

loop

let start=pos

end def

def putend(array,x) ! Returns the array with number x

let arrayx = array ! concatenated onto end of array.

let arrayx = arrayx*10 +2 ! putend(2728,9)=272829

let digx = 0 ! digit of x

do until digx = length(x)

let arrayx = arrayx*10 + digit(x,digx)

let digx = digx+1

if digx < length(x) then let arrayx = arrayx*10 +1

loop

let putend = arrayx

end def
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def extract(array,index) ! Returns array[index]

if index >= terms(array) then ! extract(272829,0)=7

let extract = 0 ! extract(272829,1)=8

else ! extract(272829,2)=9

let position=start(array,index)

let term = 0 ! extract(272829,n)=0 for n>2

do ! extract(271819,0)=789

let position = position + 1

let d = digit(array,position)

let term = 10 * term + d

let position = position + 1

loop while digit(array,position) = 1

let extract = term

end if

end def

def put(array,index,x) ! Returns outarray with

let inarray = array ! outarray[i]=x if i=index

let outarray = 0 ! outarray[i]=array[i] otherwise.

let i = 0 ! If index > terms(array) then

do until i = index ! 0 terms are added as

let term = extract(inarray,i) ! necessary.

let outarray = putend(outarray,term)

let i = i + 1 ! put(2728,4,99)=272820202919

loop

let outarray = putend(outarray,x)

let i=i+1

do while i < terms(inarray)

let term = extract(inarray,i)

let outarray = putend(outarray,term)

let i = i + 1

loop

let put = outarray

end def
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4.9 UNIV.GN commented listing

121



Instruction types :
H :1: halt
Z a :2: set Ra = 0
S a :3: increment Ra (add 1 to Ra)
T a b :4: transfer Ra to Rb
J a b c :5: if Ra = Rb then jump to instruction c
E a b c :6: extract (Rb)-th term of Ra and put in Rc
P a b c :7: put Ra into (Rb)-th term of Rc

Register usage
R1 : Gödel number of simulated instruction list
R2, R3 : inputs for simulated machine
R4 : Gödel number of simulated register list
R5 : simulated program counter, n

Special notation:
r(m) : m-th term of R4 – m-th simulated register
i : R5-th term of R1 – Gödel number of n-th simulated

instruction where n = R5. Has 4 coordinates i(0) .. i(3).
R6 : Gödel number of n-th simulated instruction, i
R7 - R10 : coordinates of n-th simulated instruction, i(0) .. i(3)
R11 : i(1)-st term of R4, r(i(1))
R12 : i(2)-nd term of R4, r(i(2))
R13 : i(3)-rd term of R4, r(i(3))
R14 : used as counter from 0 to 6 to fill R20 - R26, then holds 7
R15 : time count for simulated machine
R20 : holds 0
R21 : holds 1
R22 : holds 2
R23 : holds 3
R24 : holds 4
R25 : holds 5
R26 : holds 6
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00 J 20 20 50 jump to initial constant-setting sequence
01 Z 15 set time counter to zero
02 Z 4 clear simulated register sequence, R4:=0
03 P 2 21 4 put R2 into 1st term of R4, r(1):=R2
04 P 3 22 4 put R3 into 2nd term of R4, r(2):=R3
05 Z 5 point to 0-th instruction
06 P 5 20 4 b put instruction number into 0th term of R4,

r(0):=R5
07 E 1 5 6 put code of R5th instruction into R6, R6:=i
08 E 6 20 7 put 0th term of instruction R6 into R7,

R7:=i(0)
09 E 6 21 8 put 1st term of instruction R6 into R8,

R8:=i(1)
10 E 6 22 9 put 2nd term of instruction R6 into R9,

R9:=i(2)
11 E 6 23 10 put 3rd term of instruction R6 into R10,

R10:=i(3)
12 E 4 8 11 put i(1)-st term of R4 into R11,

R11:=r(i(1))
13 E 4 9 12 put i(2)-st term of R4 into R12,

R12:=r(i(2))
14 E 4 10 13 put i(3)-st term of R4 into R13,

R13:=r(i(3))
15 J 7 22 z if i(0) = 2 then jump to zero routine
16 J 7 23 s if i(0) = 3 then jump to successor routine
17 J 7 24 t if i(0) = 4 then jump to transfer routine
18 J 7 25 j if i(0) = 5 then jump to jump routine
19 J 7 26 e if i(0) = 6 then jump to extract routine
20 J 7 14 p if i(0) = 7 then jump to put routine
21 J 20 20 h if i(0) = 1 then jump to halt routine
22 P 11 12 13 p put r(i(1)) into r(i(2))-nd position of R13
23 J 20 20 u skip next line
24 E 11 12 13 e (extract) put r(i(2))-nd position of

r(i(1)) in R13
25 P 13 10 4 u put new R13 into position i(3) of R4,

r(i(3)):=R13

Figure 22: UNIV2.GN part1
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26 J 20 20 x jump to routine to add one to instruction
pointer

27 Z 11 z (zero) set R11:=0
28 J 20 20 v skip next line
29 S 11 s (successor) add one to R11, R11:=R11+1
30 P 11 8 4 v put new R11 into position i(1) of R4,

r(i(1)):=R11
31 J 20 20 x jump to routine to add one to

instruction pointer
32 P 11 9 4 t (trans) put R11 into position i(2) of R4,

r(i(2)):=R11
33 J 20 20 x jump to routine to add one to

instruction pointer
34 J 11 12 y j (jump) if r(i(1)) = r(i(2)) then jump to y
35 E 4 20 5 x put r(0) into instruction pointer R5,

R5:=r(0)
36 S 5 add one to instruction pointer, R5:=R5+1
37 J 20 20 w skip next line
38 T 10 5 y put i(3) into instruction pointer R5,

R5:=i(3)
39 S 15 w increase time count by one
40 J 20 20 b jump to b to begin next

simulated instruction
41 E 4 21 1 h (halt) put output of simulated machine

into R1, R1:=r(1)
42 H halt
.
.

Figure 23: UNIV.GN part 2
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49 H
50 Z 14 use R14 as counter, R14:=0
51 T 14 20 R20 holds 0
52 S 14 R14 holds 1
53 T 14 21 R21 holds 1
54 S 14 R14 holds 2
55 T 14 22 R23 holds 2
56 S 14 R14 holds 3
57 T 14 23 R23 holds 3
58 S 14 R14 holds 4
59 T 14 24 R24 holds 4
60 S 14 R14 holds 5
61 T 14 25 R25 holds 5
62 S 14 R14 holds 6
63 T 14 26 R26 holds 6
64 S 14 R14 holds 7
66 J 20 20 1 jump to main body of program

Figure 24: UNIV.GN initialization routine
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4.10 Primitive Recursion.

In this section we define the family of primitive recursive functions and show
that every primitive recursive function is URM computable. We say that
a relation is primitive recursive iff its characteristic function is primitive
recursive.

The set of primitive recursive functions is the smallest class of functions
which contains the zero function, succesor function, and projection functions
and is closed under composition and primitive recursion.

Proposition 4.10.1 The zero function defined by

0(x) = 0

for x ∈ N = Dom(0) is URM-computable.

Proposition 4.10.2 The succesor function defined by

s(x) = x + 1

for x ∈ N = Dom(s) is URM-computable.

Proposition 4.10.3 For each n = 1, 2, . . . and each k = 1, 2, . . . , n the
projection functions defined by

In
k (x1, x2, . . . , xn) = xk

for (x1, x2, . . . , xn) ∈ Nn = Dom(In
k ) is URM-computable.

Let h be an m-ary numerical function and g1, g2, . . . , gm be n-ary numer-
ical functions. The function n-ary function f defined by the equation

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) (5)

for (x1, x2, . . . , xn) ∈ Dom(f) is called the function defined from h and
g1, g2, . . . , gm by composition; here the domain Dom(f) of f is the largest
set of n-tuples for which the right hand side of (5) is meaningful, i.e.

(x1, . . . , xn) ∈ Dom(f)
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if and only if
(x1, . . . , xn) ∈ Dom(gk)

for k = 1, . . . , n and

(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ Dom(h).

Note in particular that f is totally defined (i.e. Dom(f) = Nn ) if all the
functions h, g1, . . . , gm are totaly defined.

Theorem 4.10.4 If h, g1, . . . , gm are URM-computable and f is defined from
them by composition, then f is URM-computable.

The following concept and lemma are usefull for proving this and other
results. A program P neatly computes a function f of n variables if

1. When P starts with x1, . . . , xn in registers R1, . . . , Rn and arbitrary
contents in other registers, P halts with f(x1, . . . , xn) in R! if the func-
tion is defined there, and never halts if the function is undefined.

2. P halts at the instruction number just after the last instruction of P.

Lemma 4.10.5 A function f of n-variables is computable iff it is neatly com-
putable.

Let g be a totally defined n-ary total numerical function and h be a totally
defined (n+2)-ary numerical function. Then there is a unique totally defined
(n + 1)-ary numerical function f which satisfies the equations

f(x1, . . . , xn, 0) = g(x1, . . . , xn)

and
f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y))

for (x1, . . . , xn, y) ∈ Nn; this function f is called the function defined from
g and h by primitive recursion.
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Note that the function f is computed by iteration: thus, if n = 1 we have

f(x, 0) = g(x)

f(x, 1) = h(x, 0, f(x, 0))
= h(x, 0, g(x))

f(x, 2) = h(x, 1, f(x, 1))
= h(x, 1, h(x, 0, g(x))

f(x, 3) = h(x, 2, f(x, 2))
= h(x, 2, (h(x, 1, h(x, 0, g(x))

and so on.

Theorem 4.10.6 If g and h are totally defined URM-computable functions,
and f is defined from them by primitive recursion, then f is also URM-
computable.

Some examples of functions which can be seen to be primitive recursive
are:

addition, multiplication, exponentiation, predescessor, dotminus, and di-
vide with remainder.

Thus by the preceding results we see that every primitive recursive func-
tion is URM computable.

4.11 Recursive functions

The class of recursive functions is the smallest class of functions contain-
ing the primitive recursive functions and closed under the operation of un-
bounded minimalization.

Let R be an (n + 1)-ary numerical relation. The equation

w = (µy)R(x1, x2, . . . , xn, y)

shall mean
R(x1, x2, . . . , xn, w)
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and
notR(x1, x2, . . . , xn, y) for v = 0, 1, . . . , w − 1,

i.e. that w is the smallest y for which R(x1, x2, . . . , xn, w) holds. It is clear
that the condition w = (µy)R(x1, x2, . . . , xn, y) determines w uniquely i.e.
that w1 = (µy)R(x1, x2, . . . , xn, y) and w2 = (µy)R(x1, x2, . . . , xn, y) im-
ply w1 = w2. Of course it can happen that notR(x1, x2, . . . , xn, y) holds
for every y; when this happens there will not exist a w satisfying w =
(µy)R(x1, x2, . . . , xn, y). Thus the equation

f(x1, x2, . . . , xn) = (µy)R(x1, x2, . . . , xn, y)

can be interpreted as defining an n-ary function f with

Dom(f) = {(x1, x2, . . . , xn) ∈ Nn : (∃y)R(x1, x2, . . . , xn, y)}.

This function f is called the numerical function determined from R by
(unbounded) minimalization. It is important to remember that this function
might not be totally defined.

Proposition 4.11.1 If R is a URM-computable numerical relation, then the
numerical function determined from R by minimalization is URM-computable.

As a corollary we have that every recursive function is URM computable.
We now prove that the class of recursive functions has several other nice

closure properties.
Definition by Cases.

Proposition 4.11.2 Let R1, R2, . . . , Rm be n-ary recursive relations and g1, g2, . . . , gm

be nary recursive functions. Assume that the relations R1, R2, . . . , Rm are
mutually exclusive and exhaustive, i.e.

i 6= j =⇒ Ri ∩Rj = ∅

and

Nn =
m⋃

i=1

Ri.

Then the n-ary numerical function f defined by

Dom(f) =
m⋃

i=1

Dom(gi) ∩Ri
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and

f(x1, x2, . . . , xn) =


g1(x1, x2, . . . , xn) if (x1, x2, . . . , xn) ∈ Dom(g1) ∩R1

g2(x1, x2, . . . , xn) if (x1, x2, . . . , xn) ∈ Dom(g2) ∩R2

. . .
gm(x1, x2, . . . , xn) if (x1, x2, . . . , xn) ∈ Dom(gm) ∩Rm

is recursive.

Bounded Quantification.

Proposition 4.11.3 Let R be a recursive (n + 1)-ary numerical relation.
Then the (n + 1)-ary numerical relations A and E defined by

A(x1, x2, . . . , xn, z)⇐⇒ (∀y ≤ z)R(x1, x2, . . . , xn, y)

and
E(x1, x2, . . . , xn, z)⇐⇒ (∃y ≤ z)R(x1, x2, . . . , xn, y)

for (x1, x2, . . . , xn, z) ∈ Nn are also recusive.

Bounded Minimalization.
Let R be an (n + 1)-ary numerical relation. For x1, . . . , xn, z ∈ N define

(µy ≤ z)R(x1, . . . , xn, y) by the conditions

(µy ≤ z)R(x1, . . . , xn, y) =


w if w ≤ z, R(x1, . . . , xn, w),

and notR(x1, . . . , xn, v) for v = 0, 1, . . . , w − 1;
0 otherwise.

Then the equation

f(x1, . . . , xn, z) = (µy ≤ z)R(x1, . . . , xn, y)

for x1, . . . , xn, z ∈ N determines a totally defined (n+1)-ary numerical func-
tion f which is called the numerical function determined from R by
bounded minimalization.

Proposition 4.11.4 If R is a recursive relation, then the numerical func-
tion determined from R by bounded minimalization is (totally defined and)
recursive.
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Coding Finite Sequences.

Proposition 4.11.5 For each n = 1, 2, . . . and each k = 1, 2, . . . , n there
there are total recursive functions ω(n), π

(n)
1 , π

(n)
2 , . . . , π(n)

n (with ω(n) n-ary

and π
(n)
1 , π

(n)
2 , . . . , π(n)

n unary) satisfying

π
(n)
k (ω(n)(x1, x2, . . . , xn)) = xk

for k = 1, 2, . . . , n and (x1, x2, . . . , xn) ∈ Nn and

ω(n)(π
(n)
1 (x), π

(n)
2 (x), . . . , π(n)

n (x)) = x

for x ∈ N.

We remark that in the lingo of “mappings” the conditions on ω(n), π
(n)
1 , π

(n)
2 , . . . , π(n)

n

assert that the mapping
ω(n) : Nn −→ N

is bijective with inverse

(ω(n))−1 : N −→ Nn

given by
(ω(n))−1(x) = (π

(n)
1 (x), π

(n)
2 (x), . . . , π(n)

n (x))

for x ∈ N.
Let N∞ to be the set of all infinite numerical sequences which eventually

vanish:
N∞ = {ρ ∈ NN : ∃k∀i ≥ k : ρi = 0}

Define the projection mapping

proj : N×N∞ −→ N

by
proj(i, ρ)) = ρi

Define the redefinition map

redef : N×N∞ ×N −→ N∞
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by
redef(i, ρ, u) = s

where

sj =

{
ρj if j 6= i
u if j = i.

Define the extension by zero map

extn : Nn −→ N∞

by
extn(a1, a2, . . . , an) = ρ

where

ρj =

{
aj+1 if j = 0, 1, . . . , n− 1
0 if j ≥ n

Proposition 4.11.6 There is a bijective map

ω(∞) : N∞ −→ N

and recursive functions π(∞), r, e1, e2, . . . such that

π(∞)(i, ω(ρ)) = proj(i, ρ),

r(i, ω(ρ), u) = ω(redef(i, ρ, u))

for ρ ∈ N∞ and i, u ∈ N, and

en(a1, a2, . . . , an) = ω(extn(a1, a2, . . . , an))

for (a1, a2, . . . , an) ∈ Nn.

4.12 The URM-Computable Functions are recursive.

In this section we shall define the URM in purely mathematical terms and
use this definition to show that every URM-computable function is recursive.

Firstly, the URM instructions Z(n), S(n), T (m, n), and J(m, n, q) are
to be viewed as mathematical objects; if it helps the reader can think of H
as an abbreviation for the number 0, Z(n) as an abbreviation for the pair
(1, n), S(n) as an abbreviation for the pair (2, n), T (m,n) as an abbreviation
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for the triple (3, m, n), and J(m,n, q)) as an abbreviation for the quadruple
(4, m, n, q). A URM program is an infinite sequence

P = (I0, I1, I2, . . .)

of URM instructions such that all but finitely many of the instructions are
halt instructions.

A URM state is a sequence

ρ = (ρ0, ρ1, ρ2, . . .)

of natural numbers such that ρk = 0 for all but finitely many k. The element
ρ0 of the sequence ρ is called the value of the program counter in the
state ρ and for k = 1, 2, . . . the number ρk is called the value of the
register Rk in the state ρ. In the notation of section on coding a URM
state is nothing more than an infinite sequence of natural numbers which is
eventually 0; i.e. an element of N∞.

The Next State.
For each URM program P = (I0, I1, I2, . . .) and each URM-state ρ we

define a new URM-state
σ = SP (ρ)

called the next state obtained from the program P and the URM-state ρ

Iρ0 = H =⇒ σ = ρ

Iρ0 = Z(n) =⇒ σk =


ρ0 + 1 if k = 0
0 if k = n
ρk otherwise

Iρ0 = S(n) =⇒ σk =


ρ0 + 1 if k = 0
ρn + 1 if k = n
ρk otherwise

Iρ0 = T (m, n) =⇒ σk =


ρ0 + 1 if k = 0
ρm if k = n
ρk otherwise

Iρ0 = J(m,n, q) =⇒ σk =


ρ0 + 1 if k = 0 and ρn 6= ρm

q if k = 0 and ρn = ρm

ρk if k > 0
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for ρ ∈ N∞. Thus we have defined for each program P a map

SP : N∞ −→ N∞.

This map is called the next state map of the program P .
The Computation Determined by a Program and URM-State.

Given a1, a2, . . . , an ∈ N and a URM-program P we define a sequence

P (a1, a2, . . . , an) = (ρ(0), ρ(1), ρ(2), . . .)

inductively by the prescription

ρ
(0)
i =


0 for i = 0
ai for i = 1, 2, . . . , n
0 for i > n.

and
ρ(k+1) = SP (ρ(k)).

This sequence is called the computation determined by P with initial
configuration (a1, a2, . . . , an) ∈ Nn The computation is said to terminate

in case ρ
(k)
0 = H for some k and is called non-terminating in the contrary

case.
The n-ary Function Computed by a Program.

We then define

• P (a1, a2, . . . , an) ↑ iff the computation P (a1, a2, . . . , an) never stops, i.e.
is non-terminating. One also says that the computation diverges in
this case.

• P (a1, a2, . . . , an) ↓ iff the computation P (a1, a2, . . . , an) terminates.
One also says that the computation converges in this case.

• P (a1, a2, . . . , an) ↓ b iff the computation P (a1, a2, . . . , an) is terminates,

say with ρ
(l)
0 /∈ {1, 2, . . . , s} and we have

ρ
(l)
1 = b.

One also says that the computation converges to b in this case.
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The definitions entail that P (a1, a2, . . . , an) ↓ iff P (a1, a2, . . . , an) ↓ b for
some b ∈ N.

We now define for each URM-program P and each natural number n a
function Φ

(n)
P by the conditions

Dom(Φ
(n)
P ) = {(a1, a2, . . . , an) ∈ Nn : P (a1, a2, . . . , an) ↓}

and for (a1, a2, . . . , an) ∈ Dom(Φ
(n)
P ) and b ∈ N

b = Φ
(n)
P (a1, a2, . . . , an)⇐⇒ P (a1, a2, . . . , an) ↓ b.

Φ
(n)
P is called the n-ary numeric function computed by the URM pro-

gram P .
Note that the definitions entail the simple identity

Φ
(n)
P (a1, a2, . . . , an) = Φ

(n+1)
P (a1, a2, . . . , an, 0).

An n-ary partial numerical function f is called URM-computable iff there
is a URM program P such that

f = Φ
(n)
P .

This means that f(a1, a2, . . . , an) is defined precisely for those n-tuples (a1, a2, . . . , an)
for which the computation P (a1, a2, . . . , an) is finite and that f(a1, a2, . . . , an)
is the result of that computation in the sense that it is the value left in the
register R1 when the computation stops.

Gödel Numbers.
Let I denote the set of all URM instructions and define a bijection

β : I −→ N \ {0}

by
β(H) = 0
β(Z(n)) = 4(n− 1) + 1
β(S(n)) = 4(n− 1) + 2
β(T (m,n)) = 4ω(2)(m− 1, n− 1) + 3
β(J(m, n, q)) = 4ω(3)(m− 1, n− 1, q) + 4

for m, n, q = 1, 2, . . ..
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Recall that a URM program is a sequence

P = (I0, I1, I2, . . .)

of URM instructions such that β(Ij) = 0 for all but finitely may j. Let P
denote the set of all URM programs and define a bijection

γ : P −→ N

by
γ(P ) = ω(∞)(β(I0), β(I1), β(I2), . . .)

When P = γ(e) we say that e is the Gödel number of the program P .
Universal Recursive Functions.

Recall from section 4.12 that each URM-program P and each natural
number n determine a function Φ

(n)
P by the conditions

Dom(Φ
(n)
P ) = {(a1, a2, . . . , an) ∈ Nn : P (a1, a2, . . . , an) ↓}

and for (a1, a2, . . . , an) ∈ Dom(Φ
(n)
P ) and b ∈ N

b = Φ
(n)
P (a1, a2, . . . , an)⇐⇒ P (a1, a2, . . . , an) ↓ b.

The (n + 1)-ary function φ(n) determined by

Dom(φ(n)) = {(e, a1, a2, . . . , an) : P (a1, a2, . . . , an) ↓ where P = γ(e)}

and
φ(n)(e, a1, a2, . . . , an) = Φ

(n)
P (a1, a2, . . . , an)

for P = γ(e) and (e, a1, a2, . . . , an) ∈ Dom(φ(n)) is called the universal
function for n-ary computable functions. We also denote by φ(n)

e the function
computed by the URM program with Gödel number e, i.e.

φ
(n)
γ(P ) = Φ

(n)
P

for each URM program P . Note that

(a1, a2, . . . , an) ∈ Dom(φ(n)
e )⇐⇒ (e, a1, a2, . . . , an) ∈ Dom(φ(n))

and
φ(n)

e (a1, a2, . . . , an) = φ(n)(e, a1, a2, . . . , an)

for (e, a1, a2, . . . , an) ∈ Dom(φ(n)).
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Theorem 4.12.1 For each n the universal function φ(n) is recursive.

Lemma 4.12.2 The binary numerical function S determined by the condi-
tion

S(γ(P ), ω(ρ)) = ω(SP (ρ))

for P ∈ P and ρ ∈ N∞ is recursive.

Let St
P be the t-th iterate of SP . Thus

S0
P (ρ) = ρ

and
St+1

P (ρ) = SP (St
P (ρ)).

Thus if the URM is running the program P and is started in the state ρ it
will be in the state St

P after computing t steps of the program.

Lemma 4.12.3 The ternary numerical function R determined by the con-
dition

R(t, γ(P ), ω(ρ)) = ω(St
P (ρ))

for P ∈ P,ρ ∈ N∞, and t ∈ N is recursive.

Now for each URM program P define

TP : N∞ −→ N ∪ {∞}

by setting TP (ρ) = to the number of steps executed by the URM if it is
started in state ρ and running the program P . (We set TP (ρ) = ∞ if the
machine computes forever.)

Lemma 4.12.4 The binary numerical function T determined by the condi-
tions

Dom(T ) = {(γ(P ), ω(ρ)) : TP (ρ)) 6=∞}
T (γ(P ), ω(ρ)) = ω(TP (ρ))

for P ∈ P and (γ(P ), ω(ρ)) ∈ Dom(T ) is URM computable.

Now an explicit formula for the universal function φ(n) is given by

φ(n)(e, a1, . . . , an) = π(1, R(T (e, en+1(1, a1, . . . , an)), en+1(1, a1, . . . , an))).

Theorem 4.12.5 The class of recursive functions and the class of URM-
computable functions is the same.
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4.13 Decidable Relations.

Let R ⊂ Nn be an n-ary numerical relation. We call R a URM- decidable
relation iff the characteristic function cR or R is URM-computable. Recall
that the characteristic function cR of R is the numerical function defined by

cR(x1, x2, . . . , xn) =

{
1 if (x1, x2, . . . , xn) ∈ R
0 if (x1, x2, . . . , xn) /∈ R

for (x1, x2, . . . , xn) ∈ Nn; it is always a totally defined function.
We often write R(x1, x2, . . . , xn) as an abbreviation for (x1, x2, . . . , xn) ∈

R:
R(x1, x2, . . . , xn)⇐⇒ (x1, x2, . . . , xn) ∈ R.

Proposition 4.13.1 The intersection, union, and difference of two URM-
decidable relations is a URM-decidable relation.

4.14 Partial decidability

A numerical relation R(x1, ..., xn) is said to be partially decidable, or recur-
sively enumerable, if there is an RM program P such that for each n-tuple
of inputs (x1, ..., xn), P has output 1 if R(x1, ..., xn) is true and P diverges
(never halts) if R(x1, ..., xn) is false.

For example, for every RM program P, the set of x such that P halts with
input x is partially decidable.

Theorem 4.14.1 Every decidable relation is partially decidable.

Theorem 4.14.2 If both R(×) and ¬R(×) are partially decidable, then R(×)
is decidable.

4.15 The Diagonal Method

We begin Cantor’s proof that the set of all functions from Nto Ncannot be
enumerated.

Theorem 4.15.1 (Cantor) Suppose that {fn : n ∈ N} is a sequence of
function each from Nto N. Then there exists a function f : N 7→ N which is
not equal to any of the fn.
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proof: Let f be defined as follows:

f(n) = fn(n) + 1

This result proves that the set of all numerical functions is uncountable.

Theorem 4.15.2 The total binary function F defined by

F (e, x) =

{
φ(1)(e, x) if (e, x) ∈ Dom(φ(1))
0 otherwise

is not URM computable.

Proof: Suppose not, i.e. that the binary function F is computable. Then the
unary function g defined by

g(x) = F (x, x) + 1

for x ∈ N is also URM computable. The function F is by definition total
(that’s the whole point) and hence so is g. Let P be a program which
computes g and let e = γ(P ) be its Gödel number. Thus

(e, x) ∈ Dom(φ(1))

for every x ∈ N and
g(x) = φ(1)(e, x).

In particular,
(e, e) ∈ Dom(φ(1))

and
g(e) = φ(1)(e, e).

Hence
φ(1)(e, e) = g(e)

= F (e, e) + 1
= φ(1)(e, e) + 1

which is a contradiction. Thus the assumption that F is URM computable
is wrong; i.e. F is not URM computable.
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4.16 The Halting Problem.

For each n define the halting problem to be the relation H(n) ⊂ Nn+1 defined
by

(e, a1, a2, . . . , an) ∈ H(n) ⇐⇒ (a1, a2, . . . , an) ∈ Dom(φ(n)
e )

is Thus (e, a1, a2, . . . , an) ∈ H(n) says that the program with Gödel number
e halts on input (a1, a2, . . . , an).

Theorem 4.16.1 The halting problem is undecidable.

Proof: We shall do the case n = 1. If the relation H(1) is decidable then by
the theorem on definition by cases (see 4.11.2) the total binary function F
defined by

F (e, x) =

{
φ(1)(e, x) if (e, x) ∈ H(1)

0 otherwise

is also URM computable. But this is the function F of 4.15.2.

Corollary 4.16.2 There is a URM program P such that the predicate

HP = {a ∈ N : P (a) ↓}

is not decidable.

For12 another view of the halting problem see footnote 12.

4.17 The Gödel Incompleteness Theorem

The Gödel incompleteness theorem shows that Peano arithmetic is not com-
plete, that is, there are sentences which are true in the standard model of
number theory but are not provable from Peano arithmetic. The proof of the
theorem uses Gödel numbers of formulas and of tableau proofs.

Throughout this section, all formulas and sentences will be understood
to be in the vocabulary of Peano arithmetic. We shall say that a sentence A
is true if A is true in the standard model of arithmetic, (which has the set
N of natural numbers as a universe and the usual functions 0, s, +, and ∗).

12for another view of the halting problem see footnote 12
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Gödel numbers of formulas: We first identify each symbol of predicate
logic with the vocabulary of Peano arithmetic with a positive integer. Let us
identify the symbols

¬,∨,∧,⇒,⇔, [, ],∀,∃, (, ), =, 0, s, +, ∗

with the integers 1 through 16, and identify the variables in order with the
integers from 17 on. Each finite sequence13 of symbols, and in particular each
wff, then has a Gödel number.

Gödel numbers of finite tableaus. Let T be a finite tree with parent
function π, and for each nonroot node t of T let Φ(t) be a wff. Identify the
nodes of T with the numbers 1, . . . , n, with 1 being the root. We give the
labeled tree (T,Φ) the Gödel number of the sequence of Gödel numbers of
the triples

(2, π(2), φ(2)), ..., (n, π(n), φ(n))

where φ(i) is the Gödel number of Φ(i). If n = 1, that is, T has only a
root, the Gödel number is 0.

A set S of sequences of symbols is said to be decidable if the set of Gödel
numbers of elements of S is decidable. Similarly for sets of finite labelled
trees.

EXAMPLES. Each of the following sets is decidable:
The set of wffs.
The set of sentences.
The set of axioms of Peano arithmetic.
The Church-Turing Thesis is the statement that every computable func-

tion is URM-computable. One evidence for this Thesis is that all models
of computation that have been considered (e.g. URM’s, recursive functions,
Turing machines, lambda calculus, etc.) yield the same class of of functions.
It can be used to prove that the set of wffs of a predicate logic with finite
vocabulary is decidable.

13In fact we can Gödel number this book by assigning a number to each symbol
(one popular method is called ASCII coding). The Gödel number of the book is then:
27172 . . . 21010 which codes: 77, 97, 116, 104 . . . 101, 110, 100 which codes: Math . . . end.
Note that we can refer to the Gödel number of this book but we can’t actually include it
here!
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Lemma 4.17.1 Let R(x) be a partially decidable relation. There is a wff A
with only x free such that

R = {n ∈ N : A(x//n)is true}.

Lemma 4.17.2 The set of all true sentences of arithmetic is undecidable,
and is not even partially decidable.

From now on let H be any set of sentences such that:
(i) H is decidable.
(ii) H contains the set of axioms of Peano arithmetic.
(iii) Every sentence in H is true.
For instance, properties (i) - (iii) hold for Peano arithmetic itself, and

also for Peano arithmetic plus one more true sentence.

Lemma 4.17.3 The set of pairs (T,A) such that T is a tableau proof of A
from H is decidable.

Lemma 4.17.4 The set of sentences A which are tableau provable from H
is partially decidable.

Theorem 4.17.5 GODEL INCOMPLETENESS THEOREM. For any set
H with properies (i) - (iii) above, there is a sentence A which is true but is
not provable from H.

4.18 The Undecidability of Predicate Logic.

Theorem 4.18.1 (Church) For every URM program there is a wff σP (x)
such that for every a ∈ N the sentence σP (a) is valid if and only if P halts
on input a:

` σP (a)⇐⇒ P (a) ↓ .

(Here a is the constant symbol corresponding to a.

For contrast, it should also be stated that the set of valid wffs of propo-
sitional logic is decidable.

The Completeness theorem can be used to prove that the set of valid
sentences of full predicate logic is partially decidable.
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4.19 Computer problem

This is the first of two problem sets using the GNUMBER program. In this
assignment you only need the SIMPLE form of the program, which you start
by pressing the space bar when you see the title screen.

Your diskette has the following sample register machine programs:
ADD, MULT, PRED, DOTMINUS, and DIVREM.
Your problem assignment is to type in register machine programs which

compute the following functions. Test your answers out using the GNUM-
BER program, then file your answers on your diskette and give them the
names indicated.

In the formulas, x,y are the numbers in registers R1,R2 before running
the program, and a,b are the numbers in these registers after running the
program.

EQUAL: a = 1 if x = y, a = 0 if not x = y
SQUARE: a = x ∗ x
ROOT: a = square root of x if x is a perfect square,

undefined otherwise
LESS: a = 1 if x < y, a = 0 otherwise.
FACTRL: a = x! (a = 1 ∗ 2 ∗ ... ∗ x if x > 0, a = 1 if x = 0)
EXP: a = x raised to the y-th power if x > 0, a = 0 if x = 0

undefined if x = y = 0
PRIME: a = 1 if x is prime (2, 3, 5, 7, 11, . . .), otherwise a = 0
LENGTH: a = the number of decimal digits in x

(For example, 7402 has length 4)
DIGIT: a = the y-th digit in x, counting from 0 on the left

(For example, the 0-th digit of 7402 is 7)

In solving your problems, you may load in the sample programs and use
them as building blocks if you wish.

4.20 Computer problem

This assignment uses the ADVANCED form of the GNUMBER program,
which you start by pressing the G key when you see the title screen.
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The problems in this assignment deal with Godel numbers (G.N.’s) of
Register machine programs. Each RM instruction is a sequence consisting
of an instruction letter and up to four numbers. The instruction letters are
identified with numbers as follows:

H = 1, Z = 2, S = 3, T = 4, J = 5, E = 6, P = 7.

Each instruction, being a finite sequence of numbers, has a Godel num-
ber. An RM program P is a finite sequence of instructions p1, . . . , pn. If
instruction pm has Godel number gm, then the Godel number of the whole
program P is the Godel number of the sequence g1, . . . , gn.

Your diskette has the following sample register machine programs. In the
formulas, x,y,z,t are the numbers in registers R1,R2,R3,R4 before running
the program, and a,b are the numbers in these registers after running the
program.

TERMS: If x is the G.N. of a sequence in standard form, then a is the
number of terms of the sequence.

FIVE: Puts the constants 0 through 5 in registers 20 through 25. (It is
often convenient to put this at the start of a program).

JOIN: If x and y are G.N.’s of RM programs P and Q in standard form,
z and t the numbers of instructions in P and Q, and registers 20 through 25
already contain 0 through 5, then a is the GN of the program P followed by
Q with each jump target of Q increased by the number of instructions in P.
Extra bonus: this program ends with z + t in R8.

PARAM: If x is the G.N. of a program which neatly computes a function
f(., .) of two variables, then a is the G.N. of a program which neatly computes
the function g(.) = f(y, .) of one variable. A commented listing is in section
F.

NXSTATE: If x is the G.N. of an RM program in standard form, and y
is the G.N. of a sequence representing the register state, then b will be the
next state. (y and b are in R4)

UNIV2: The universal program in 2 variables. If x is the G.N. of a RM
program P, then a is the output of the program P with inputs y and z in R1
and R2 and zero inputs elsewhere. A commented listing of this program is
in section 4.9.

Your problem assignment is to type in register machine programs which
compute the following functions. Test your answers out using the GODEL
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and UNGODEL commands in the GNUMBER program, then file your an-
swers on your diskette and give them the names indicated. The approximate
number of steps required for the program is shown. When you need small
constants, it is recommended that you start your program with FIVE to put
0 through 5 in registers 20 through 25.

CONCAT: If x and y are G.N.’s of sequences of numbers in standard
form, and z and t are the numbers of terms in these sequences, then a is the
G.N. of the first sequence followed by the second sequence. (Concatenation
of two sequences). (7 steps)

CONST: a is the G.N. of an RM program which puts the constant x in
R1. (19 steps)

SUCC: If x is the G.N. of a program in standard form which computes a
function f(.), then a is the G.N. of a program which computes the function
f(.) + 1. (23 steps)

TOPREG: If x is the G.N. in standard form of a program P, then a is the
largest number of a register mentioned in the first y instructions of x. (28
steps)

COMPOSE: If x and y are G.N.’s in standard form of programs which
neatly compute functions g(.) and h(.) of one variable, then a is the G.N. of
a program which neatly computes the composition function f(.) = g(h(.)).
(61 steps)

BEFORE: a = 1 if the RM program with G.N. x, inputs y and z in R1
and R2, and zero inputs elsewhere, halts before t steps, and a = 0 otherwise.
(Hint: This can be done by slightly modifying the RM program UNIV2.
UNIV2 puts the time in R15.) (63 steps)

RECUR: If x is the G.N. in standard form of a program P which neatly
computes a total function h(., .), y is the largest register mentioned by P,
and z is the number of instructions of P, then a is the G.N. of a program
which computes the function f(.) obtained from h by primitive recursion in
the form

f(0) = 1, f(u + 1) = h(f(u), u).

(It is possible but difficult to do this in 92 or fewer steps. If you run out of
space, write the shorter program RECUR0 which does what RECUR should
do provided that registers 20 through 27 already contain the constants 0
through 7.)

In solving your problems, you may load in the sample programs and use
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them as building blocks if you wish. Remember that the LOAD command
has been improved so that you can load RM programs from the diskette
without erasing the old instruction list.

4.21 Exercises

1. a) Write a register machine program which diverges for every input.
b) Write a register machine program P such that: P (x, y) ↑ if x = y,

P (x, y) ↓ 0 if x 6= y.

2. Write a register machine program which uses only the instructions Z, S,
and J, and has the effect of placing the number in register 3 into register 7.
(This shows that the T command can always be avoided in register machine
programs).

3. Suppose instead of using the URM instruction set we use JN,S,Z,T,H
where

JN 1 2 6

would mean Jump to instruction 6 if the contents of register 1 is not equal
to the contents of register 2. Prove that every computable function is com-
putable in this new sense.

4. Suppose we consider programs that only use the instructions S,Z,T,H;
i.e. no jump instructions at all. Show that not every computable function is
computable in this sense.

5. Write a register machine program which computes the function
f(x) = Gödel number of the sequence (0,1,...,x).
(You may use the Extract or Put instructions in this problem).

6. Suppose R(x,y) is a decidable relation, and f(x) is the function obtained
from R by unbounded minimalization,

f(x) = y ⇔ [R(x, y) ∧ ∀z < y¬R(x, z)].
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Prove that f is computable by drawing a diagram showing how to get an RM
program for f from an RM program for the characteristic function of R.

7. Prove that the undecidable relation

{(x, y) : the RM program with G.N. x and input y halts}

is partially decidable.

8. Prove that the relation

{x : for some y, the RM program with G.N. x and input y halts}

is partially decidable.

9. Suppose the numerical relation R(x,y) is decidable. Use a flow diagram
to show that the relation

∃z[z ≤ y ∧R(x, z)]

is also decidable.

10. Prove that the relation

R = {(x, y) : UNIV (x, y) ↓ 0}

is undecidable, where UNIV is the universal program which computes the
ouput of the register machine program with Gödel number x and input y.

11. Let A be a sentence which is true in the standard model N of Peano
arithmetic, (i.e. the model with universe {0, 1, 2, ...} and the usual 0, S, +, ∗).
Using both the Gödel completeness and incompleteness theorems, prove that
there is a model M of A and a sentence B such that B true in N and false in
M.

12. Prove that the relation
[ U(x) iff x is the G.N. of a program which computes the characteristic

function of a unary relation ]
is undecidable.
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13. Suppose P : N 7→ N is a partial recursive function and X is the domain
of P, i.e.

X = {n : P (n) ↓}

Show that if X is nonempty, then there exists a total recursive function
f : N 7→ N such that X is the range of f, i.e.

X = {f(n) : n ∈ N}.

[Recursion theorists would say that X is recursively enumerable.]

14. Define D(x)
.
= U(x, x) + 1 where U is the universal program. Let e be a

Gödel number of D. Prove that D(e) ↑.

15. Define E(x)
.
= U(x, x). Let e be a Gödel number of E. Prove that E(e) ↑.

Prove or disprove: U(e, e) ↓.

16. Do not do this problem.

17. Prove that no one will be able to do this problem set completely. (Hint:
see the previous problem.)

18. Give a tableau proof of that the Halting problem is undecidable.

19. Reading assignment: Gödel, Escher, Bach: an Eternal Golden
Braid, Douglas R. Hofstadter, Basic Books 1979.
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5 Mathematical Lingo

This chapter defines the most fundamental terminology used by modern
mathematicians. The treatment is informal and descriptive. The impor-
tance of this lingo cannot be overestimated: it forces us to make certain vital
distinctions without which confusion reigns. In this chapter we explain most
of the notations and terminology which are in common use and indicate those
which are synonomous with those used in this book. The reader should use
the index to find the definition of a new term.

There are three kinds of mathematical objects: individuals, sets, and
functions. Loosely speaking, an individual is an object (like a number or
point) which has no further structure, a set is an object (like the set of
integers or the set of odd integers) which is comprised of other (simpler)
objects called its elements, and a function is an operation (like addition)
which assigns to one or more “input” objects (called the arguments of the
function) an “output” object (called the value of the function for the given
arguments).

5.1 Sets.

A set X divides the mathematical universe into two parts: those objects x
which belong to X and those which don’t. The notation x ∈ X means x
belongs to X, the notation x /∈ X means that x does not belong to X. The
objects which belong to X are called the elements of X or the members of
X. Other words which are roughly synonmous with the word set are class,
collection, and aggregate. These longer words are generally used to avoid
using the word set twice in one sentence. (The situation typically arises
when an author wants to talk about sets whose elements are themselves sets;
he/she might say “ the collection of all finite sets of integers” rather than
“the set of all finite sets of integers”.) Authors typically try to denote sets
by capital letters (e.g. X) and their elements by the corresponding small
letters (e.g. x ∈ X) but are not required to do so by any commonly used
convention. Thus when reading a mathematics book which is discussing a set
X and individuals x and y you should never assume that x ∈ X and y /∈ X
unless the author has explicitly asserted (or assumed) these relations.

The simplest sets are finite and these are often defined by simply listing
(enumerating) their elements between curly brackets. Thus if X = {2, 3, 8}
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then 3 ∈ X and 7 /∈ X. Often an author uses dots as a notational device to
mean “et cetera” and indicate tha the pattern continues. Thus if

A = {a1, a2, . . . , an} (6)

then for any object b, the phrase “b ∈ A” and the phrase “b = ai for some
i = 1, 2, . . .” have the same meaning; i.e. one is true if and only if the other
is. Having defined A by (6) we have

b ∈ A⇐⇒ b = a1 or b = a2 or . . . or b = an,

i.e. the shorter phrase “b ∈ A” has the same meaning as the more cumber-
some phrase “b = a1 or b = a2 or . . . b = an”.

The device of listing some of the elements with dots between curly brack-
ets can also be used to define infinite sets provided that the context makes it
clear what the dots stand for. For example we can define the set of natural
numbers by

N = {0, 1, 2, 3, . . .}

and the set of integers by

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

and hope that the reader understands that 0 ∈ N, 5 ∈ N, −5 /∈ N , 3
5

/∈ N,
0 ∈ Z, 5 ∈ Z, −5 ∈ Z, 3

5
/∈ Z, etc..

Certain sets are so important that they have names:

∅ (the empty set)
N (the natural numbers)
Z (the integers)
Q (the rational numbers)
R (the real numbers)
C (the complex numbers)

These names are almost universally used by mathematicians today, but in
older books one may find other notations. Here are some true assertions:
0 /∈ ∅, 3

5
∈ Q,

√
2 /∈ Q,

√
2 ∈ R, x2 6= −1 for all x ∈ R, and x2 = −1 for

some x ∈ C (namely x = ±i).

150



If X is a set and P (x) is a property which either holds or fails for each
element x ∈ X, then we may form a new set Y consisting of all x ∈ X for
which P (x) is true. This set Y is denoted by

Y = {x ∈ X : P (x)} (7)

(some authors write | instead of : here) and called “the set of all x ∈ X such
that P (x)”. For example, if Y = {x ∈ N : x2 < 6 + x}, then 2 ∈ Y (as
22 < 6 + 2), 3 /∈ Y (as 32 6< 6 + 3), and −1 /∈ Y (as −1 /∈ N). This is a very
handy notation. Having defined Y by (7) we may assert that for all x

x ∈ Y ⇐⇒ x ∈ X and P (x)

and that for all x ∈ X
x ∈ Y ⇐⇒ P (x).

Since the property P (x) may be quite cumbersome to state, the notation
x ∈ Y is both shorter and easier to understand.

Let Y and X be two sets. Then Y is a subset of X, written Y ⊂ X iff
every element of Y is an element of X; i.e. iff for all x, x ∈ Y implies x ∈ X.
Symbolically:

Y ⊂ X ⇐⇒ ∀x [x ∈ Y ⇒ x ∈ X].

Two sets are equal, written X = Y iff X ⊂ Y and Y ⊂ X, i.e. iff every
element of X is an element of Y and every element of Y is an element of X.
Symbolically:

X = Y ⇐⇒ ∀x [x ∈ X ⇔ x ∈ Y ].

Example 5.1.1 Let X = {x ∈ N : x2 + 7 < 6x} and Y = {2, 3, 4}. Then 14

X = Y .

It follows from the definitions that the set defined by an enumeration is
unaffected by the order of the enumeration and by any repetitions in the
enumeration. Thus

{1, 3, 7} = {3, 1, 7} = {3, 1, 7, 1, 3}.
14See section A for detailed proof.
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5.2 Functions.

A function is a mathematical object f consisting of a set X called the
domain of f , a set Y called the codomain of f , and an operation which
assigns to every element x ∈ X a unique value f(x) ∈ Y . This is summarized
by the notation

f : X −→ Y

A function is also called a map or mapping and sometimes a transfor-
mation, while domain and codomain are often called source and target
respectively. (Note that the arrow goes from source to target.) The unique
value assigned to x ∈ X is usually denoted by f(x) but in some contexts
other notations such as fx or fx are customary. One calls f(x) the value of
f for argument x. The function f can be viewed as a computer program
which takes an input x ∈ X and produces an output f(x) ∈ Y . The input
must be an element of the set X = Dom(f) or the program bombs (either
produces an error message or goes into an infinite loop).

When we don’t want to give it a seperate name we denote the domain of
a function f by Dom(f). Some authors call a function Y -valued when its
target is Y . (For these authors e.g. a “real valued function f defined on X ”
is a function f : X −→ R.) The set of values actually assumed by f is called
the range of f and denoted Ran(f):

Ran(f) = {f(x) ∈ Y : x ∈ Dom(f)}.

Thus

f : X −→ Y ⇐⇒


f is a function,
Dom(f) = X,
Ran(f) ⊂ Y.

The notation f : X −→ Y conveys the idea that f(x) ∈ Y when x ∈ X
i.e. that f takes its input from X and returns as output an element of Y .
It is important to note that the notation f : X −→ Y entails that Dom(f)
is equal to X (i.e. that f(x) is defined for every x ∈ X) but does not entail
that Ran(f) is all of Y but only a subset. Thus if x ∈ X we may conclude
that f(x) ∈ Y and if y ∈ Ran(f) we may conclude that y = f(x) for some
x ∈ X but from y ∈ Y we should not conclude that y = f(x) without further
hypothesis.
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Any numerical expression involving a real variable defines a function. For
example, the equation

f(x) =
1

1− x

defines a function f : X −→ R whose domain is given by

X = Dom(f) = {x ∈ R : x 6= 1}

and whose output is 5 ∈ R when the input is 4
5
∈ X. (In elementary

mathematics books the domain of a function defined by an explicit formula
in this fashion is always assumed to be the largest set where the formula is
meaningful and the codomain is assumed to be the set R of real numbers.
In more advanced books it is customary to specify domain and codomain as
part of the definition.)

Sometimes one wishes to refer to a function without giving it a name.
A good way to do this is with the symbol 7→. Thus one could refer to the
function f defined above as the map

{x ∈ R : x 6= 1} −→ R : x 7→ 1

1− x
.

Two points must be emphasized. First, the value of the function is unique.
15 For x1, x2 ∈ Dom(f) we have

x1 = x2 =⇒ f(x1) = f(x2).

For example, by convention,
√

x is defined for real numbers x ≥ 0 and denotes
the non-negative square root of x. Thus y
sqrtx⇐⇒ x2 = y and x ≥ 0. In particular,

√
4 = 2 and

√
4 6= −2. Secondly,

the notation f(x) is meaningful if and only if x ∈ Dom(f); it is wrong to
write f(x) without proving or assuming that x ∈ Dom(f). (Some authors
will not specify Dom(f) explicitly but will note that f(x) is “not defined”
for certain values of x: what they mean is that such values of x are not in
Dom(f).)

Two functions f1 : X1 −→ Y1 and f2 : X2 −→ Y2 are equal iff their
domains and codomains are equal: X1 = X2 Y1 = Y2 and they return

15In older mathematics books this convention was not always followed, leading to so-
called “multi-valued” functions. In effect such books declared that the meaning of y =

√
x

is y2 = x. But how do you avoid the conclusion that
√

4 = 2 and
√

4 = −2 so that 2 = −2?
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the same output for any input: f1(x) = f2(x) for all x ∈ X1. This may be
summarized symbolically by:

f1 = f2 ⇐⇒
{

X1 = X2, Y1 = Y2, and
f1(x) = f2(x) for all x ∈ X1.

We caution the reader that according to this definition of equality the
two functions f : Z −→ Z and g : Z −→ N defined by

f(x) = g(x) = x2

for x ∈ Z are not equal since their targets are not equal. It may seem like
nit-picking to distinguish these two (and indeed until recently most authors
did not) but failure to make the distinction sometimes leads to confusion.

5.3 Inverses.

Given functions f : X −→ Y and g : Y −→ Z the composition of f and g
is denoted g ◦ f (read “ g after f”) and defined by g ◦ f : X −→ Z with

(g ◦ f)(x) = g(f(x))

for x ∈ X.
A function which returns its argument unchanged is called an identity

function; more precisely the function

idX : X −→ X

defined by
idX(x) = x

for x ∈ X is called the identity function of X.
A function f : X −→ Y is a injection (adjective: injective) iff its

output determines its input uniquely; 16 i.e. iff for all x1, x2 ∈ X we have
x1 = x2 whenever f(x1) = f(x2). A function f : X −→ Y is a surjection
(adjective: surjective) iff every point of Y is the output of some input; i.e.

16Of course, for any function its input determines its output uniquely; that is the defi-
nition of a function.
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iff for every y ∈ Y there is an x ∈ X such that f(x) = y. A function is a bi-
jection (adjective: bijective) iff it is both injective and surjective. In older
terminology an injective function is called one-to-one, a surjective function
is called onto, and a bijection is called a one-to-one correspondence.

For example, let R+ denote the set of non-negative real numbers:

R+ = {x ∈ R : x ≥ 0}

and consider the four functions:

f1 : R −→ R f1(x) = x2 for x ∈ R;
f2 : R −→ R+ f2(x) = x2 for x ∈ R;
f3 : R+ −→ R f3(x) = x2 for x ∈ R+;
f4 : R+ −→ R+ f4(x) = x2 for x ∈ R+.

Then f1 is neither injective nor surjective, f2 is surjective but not injective,
f3 is injective but not surjective, and f4 is bijective.

Let f : X −→ Y . A left inverse to f is a map g : Y −→ X such that

g ◦ f = idX

and a right inverse to f is a map g : Y −→ X such that

f ◦ g = idY .

A two-sided inverse to f is a map which is both a left inverse to f and a
right inverse to f . The word inverse unmodified means two-sided inverse.

Proposition 5.3.1 The following three assertions relate the notions of in-
verse functions to the notions of injective, surjective, and bijective.

injective A map f : X −→ Y is injective if and only if there is a left inverse
g : Y −→ X to f . If f is injective but not surjective the left inverse is
not unique.

surjective A map f : X −→ Y is surjective if and only if there is a right
inverse g : Y −→ X to f . If f is surjective but not injective the right
inverse is not unique.
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bijective A map f : X −→ Y is bijective if and only if there is a two-sided
inverse g : Y −→ X to f . If f is bijective then the inverse is unique
since it is characterized by the condition that

y = f(x)⇐⇒ x = g(y)

for x ∈ X and y ∈ Y . (In fact, when f is bijective, the only left
inverse is the inverse g and the only right inverse is g.) The inverse of
a bijective map f : X −→ Y is often denoted by f−1 : Y −→ X:

y = f(x)⇐⇒ x = f−1(y).

To understand the meaning of this proposition think of the equation y =

f(x) as a problem to be solved for x. Then the function


injective
surjective
bijective

 iff for

every y ∈ Y the equation y = f(x) has


at most
at least
exactly

 one solution x ∈ X.

Now if g : Y −→ X is a right inverse to f the problem y = f(x) has at
most one solution for if y = f(x1) = f(x2) then g(y) = g(f(x1)) = g(f(x2))
whence x1 = x2 since g(f(x) = idX(x) = x. Conversely, if the problem
y = f(x) has at most one solution, then any map g : Y −→ X which assigns
to y ∈ Y a solution x of y = f(x) (when there is one) is a left inverse to f .
(It does not matter what value g assigns to y when there is no solution x.)
Similarly, if g : Y −→ X is a right inverse to f : X −→ Y then x = g(y) is
a solution to y = f(x) since f(g(y)) = idY (y) = y. The converse assertion
that there is a right inverse g : Y −→ X to any surjective map f : X −→ Y
may not seem obvious to someone who thinks of a function as a computer
program: even though the problem y = f(x) has a solution x, it may have
many, and how is a computer program to choose? (If X ⊂ N one could
define g(y) to be the smallest x ∈ X which solves y = f(x) but this will
not work if X = Z for in this case there may not be a smallest x.) In fact,
this converse assertion is generally taken as an axiom: the so called axiom of
choice, and cannot be proved from the other axioms of mathematics. 17

Here are some familiar bijections and their inverses. (Note how carefully
the source and target of each function are specified.)

17Although it can be proved in certain cases; e.g. when X ⊂ N.
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1. The linear map R −→ R : x 7→ ax + b is bijective if a 6= 0; its inverse
is the map R −→ R : y 7→ (y − b)/a. For x, y ∈ R:

y = ax + b⇐⇒ x = (y − b)/a.

2. The restricted square function R+ −→ R+ : x 7→ x2 is bijective;
its inverse is the square root function R+ −→ R+ : y 7→ √y. For
x, t ∈ R+:

y = x2 ⇐⇒ x =
√

y.

3. The cube function R −→ R : x 7→ x3 is bijective; its inverse is the
cube root function R −→ R : y 7→ y

1
3 . For x, y ∈ R:

y = x3 ⇐⇒ x = y
1
3

4. The exponential map R −→ R \ {0} : x 7→ ex is bijective; its inverse
is the natural logarithm R \ {0} −→ R : y 7→ ln(y). For x, y ∈ R with
y > 0:

y = ex ⇐⇒ x = ln(y).

5. The restricted sine function sin : {θ ∈ R : −π
2
≤ θ ≤ π

2
} −→ {y ∈

R : −1 ≤ y ≤ 1} is bijective; its inverse is the inverse sine function
18 sin−1 : {y ∈ R : −1 ≤ y ≤ 1} −→ {θ ∈ R : −π

2
≤ θ ≤ π

2
}. For

−π
2
≤ θ ≤ π

2
} and −1 ≤ y ≤ 1:

y = sin(θ)⇐⇒ θ = sin−1(y).

6. The restricted cosine function cos : {θ ∈ R : 0 ≤ θ ≤ π} −→ {x ∈
R : −1 ≤ x ≤ 1} is bijective; its inverse is the inverse cosine function
19 cos−1 : {x ∈ R : −1 ≤ x ≤ 1} −→ {θ ∈ R : 0 ≤ θ ≤ π}. For
0 ≤ θ ≤ π and −1 ≤ x ≤ 1:

y = sin(θ)⇐⇒ θ = sin−1(y).

7. The restricted tangent function tan : {θ ∈ R : −π
2
≤ θ ≤ π

2
} −→ R

is bijective; its inverse is the inverse tangent function 20 tan−1 : R −→
{θ ∈ R : −π

2
≤ θ ≤ π

2
} For −π

2
≤ θ ≤ π

2
and u ∈ R

u = tan(θ)⇐⇒ θ = tan−1(u).

18Sometimes called the arcsine and denoted arcsin.
19Sometimes called the arccosine and denoted arccos.
20Sometimes called the arccosine and denoted arctan.
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5.4 Cartesian Product.

Let n ∈ N be a natural number and X be a set. An n-tuple of elements of
X is a finite sequence

x = (x1, x2, . . . , xn)

where x1, x2, . . . , xn ∈ X. The set of all n-tuples of elements of X is denoted
by Xn. More generally, if X1, X2, . . . , Xn are sets then the cartesian prod-
uct X1×X2× . . .×Xn is the set of all n-tuples (x1, x2, . . . , xn with x1 ∈ X1,
x2 ∈ X2, . . ., xn ∈ Xn:

X1 ×X2 × . . .×Xn = {(x1, x2, . . . , xn) : xi ∈ Xi for i = 1, 2, . . . , n}.

Thus
Xn = X ×X × . . .×X︸ ︷︷ ︸

n

The Cartesian product is also called the direct product by some authors.
Let X be a set. A subset R ⊂ Xn is called an n-ary relation 21 unary

means 1-ary, binary means 2-ary, ternary means 3-ary. (The word “rela-
tion” unmodified usually means “binary relation”.) In some contexts it is
customary to write R(x1, x2, . . . , xn) rather than (x1, x2, . . . , xn) ∈ R.

Similarly, a function f : Xn −→ Y is sometimes called an n-ary function.
When X = Y the word operation is often used in place of the word function;
thus a unary operation on a set X is a function with domain and codomain
X, a binary operation on X is a function with domain X2 and codomain
X, a ternary operation on X is a function with domain X3 and codomain
X, etc..

Given a function f : X1 × X2 × . . . × Xn −→ Y it is customary to
denote the value of f for argument (x1, x2, . . . , xn) by f(x1, x2, . . . , xn) rather
than f((x1, x2, . . . , xn)). More generally, one often tacitly omits or inserts
parantheses to promote legibility.

Sometimes the value of a function or relation for given arguments is de-
noted in other ways. For example, we write x + y rather than +(x, y) (+
is really a binary function) and x < y rather than < (x, y) (< is really a
binary relation). Here, parentheses play the crucial role of indicating the
order in which the operations are performed (x− (y + z) 6= (x− y) + z) and

21Logicians would say that a predicate denotes a relation in the same way that a numeral
denotes a number.
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when parentheses are omitted this order is determined according to some em
convention (e.g. x− y + z means (x− y) + z and not x− (y + z)).

The notation where the name of a binary function is placed between
(rather than in front of) the arguments is called infix notation. Occassion-
ally, the name of the function is placed after the operation – one writes (x, y)f
rather than f(x, y) – this is called postfix notation. The notation f(x, y)
is thus called prefix notation. It is possible to omit parantheses unambigu-
ously when using postfix (or prefix notation) and some calculators (e.g. those
made by Hewlett-Packard) and programming languages (e.g. APL) do this.
(Thus x− y + z is denoted xy − z+ in postfix notation.) 22

Given a subset A ⊂ X the function

χA : X −→ {0, 1}

defined by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A

is called the characteristic function of A in X. (Some authors call it the
indicator function.)

Given a function f : X −→ Y the graph of f is the set of all pairs
(x, f(x)) with x ∈ X:

graph(f) = {(x, y) ∈ X × Y : y = f(x)}.

Remark 5.4.1 Let G ⊂ X × Y . Then there is a function f : X −→ Y such
that G = graph(f) if and only for every x ∈ X there exists a unique y ∈ Y
with (x, y) ∈ G. Moreover, given f1, f2 : X −→ Y we have that f1 = f2 if
and only if graph(f1) = graph(f2).

The remark is obvious. When G = graph(f) the unique y ∈ Y such that
(x, y) ∈ G is f(x) and conversely given G and x ∈ X we may define f(x) to
be the unique y ∈ Y such that x ∈ X. Because of this remark, some authors
identify functions with their graphs, thereby reducing the number of kinds
of mathematical objects from three (individuals, sets, and functions) to two
(individuals and sets).

22The observation that parantheses are not needed with prefix (or postfix) notation is
due to a Pole named  Lukasiewicz so parentheses-free notation is sometimes called Polish
(or reverse Polish) notation.

159



5.5 Set theoretic operations.

These include

Intersection of two sets. Given two sets A and B, their intersection is de-
noted by A ∩B and defined to be the set of all x in both A and B:

A ∩B = {x|x ∈ A and x ∈ B}.

Union of two sets. Given two sets A and B, their union is denoted by A∪B
and defined to be the set of all x in either A or B:

A ∪B = {x|x ∈ A or x ∈ B}.

Set-theoretic difference of two sets. Given two sets A and B, their differ-
ence is denoted by A \ B and defined to be the set of all x in A and
not in B:

A \B = {x|x ∈ A and x /∈ B}.

Image of a set by a function. Given a function f : X −→ Y and a subset
A ⊂ X the image of A by f is the set of all f(x) as x ranges over A:

f(A) = {f(x)|x ∈ A}.

Range of a function. Given a function f : X −→ Y the range of f is denoted
by Ran(f) and is the image of X by f :

Ran(f) = f(X).

Preimage of a set by a function. Given a function f : X −→ Y and a subset
B ⊂ Y preimage of B by f is denoted by f−1(B) and is defined to be
the set of all x ∈ X such that f(x) ∈ B:

f−1(B) = {x ∈ X|f(x) ∈ B}.

Preimage of a point by a function. 23 Given a function f : X −→ Y and
y ∈ Y the preimage of y by f is

f−1(y) = f−1({y}) = {x ∈ X : f(x) = y}.
23In situations like this many authors do not distinguish between a point y ∈ Y and

the corresponding singleton {y} ⊂ Y . Thus if f happens to be a bijection, f−1(y) might
denote value f−1 : Y −→ X for argument y ∈ X (i.e. the unique x ∈ X such that
f(x) = y) or it might denote the corresponding singleton (i.e. {x}). The reader must
deduce from the context which is meant.
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Restriction of a function to a subset of its domain. Given a function f : X −→
Y and a subset A ⊂ X the restriction of f to A is denoted by f |A
and is defined to be the function A −→ Y whose output for x ∈ A is
f(x).

Union of a collection of sets. Let {Ai}i∈I be a collection of sets indexed by
I. 24 A point x belongs to the union of the sets Ai : i ∈ I iff it belongs
to at least one of them:⋃

i∈I

Ai = {x|x ∈ Ai for some i ∈ I}.

Intersection of a collection of sets. Let {Ai}i∈I be a collection of sets in-
dexed by I. A point x belongs to the intersection of the sets Ai : i ∈ I
iff it belongs to all of them:⋂

i∈I

Ai = {x|x ∈ Ai for all i ∈ I}.

Power set of a set. Given a set X the power set of X is denoted by 2X and
is defined to be the set of all subsets of X:

2X = {A|A ⊂ X}.

Set of functions from one set to another. Given sets X and Y the set of all
maps from X to Y is denoted by Y X :

Y X = {f | f : X −→ Y }.

Proposition 5.5.1 Let A, B, C be sets. Then the following laws hold:

associative (A ∩B) ∩ C = A ∩ (B ∩ C)
(A ∪B) ∪ C = A ∪ (B ∪ C)

commutative A ∩B = B ∩ A
A ∪B = B ∪ A

distributive A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

De Morgan’s A \ (B ∩ C) = (A \B) ∪ (A \ C)
A \ (B ∪ C) = (A \B) ∩ (A \ C)

24i.e. i 7→ Ai is a function defined on I whose output Ai for input i ∈ I is a set Ai.
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Proposition 5.5.2 Let {Ai}i∈I be a collection of sets indexed by I and X
be a set. Then we have the following infinite distributive laws:

X ∩
⋃
i∈I

Ai =
⋃
i∈I

(X ∩ Ai)

X ∪
⋂
i∈I

Ai =
⋂
i∈I

(X ∪ Ai)

and the following infinite De Morgan’s laws:

X \
⋂
i∈I

Ai =
⋃
i∈I

(X \ Ai)

X \
⋃
i∈I

Ai =
⋂
i∈I

(X \ Ai)

Proposition 5.5.3 Let {Bi}i∈I be an indexed collection of subsets of a set
Y , B ⊂ Y , and f : X −→ Y . Then

f−1

(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1(Bi)

f−1

(⋂
i∈I

Bi

)
=
⋂
i∈I

f−1(Bi)

and
f−1(Y \B) = X \ f−1(B).

Proposition 5.5.4 Let {Ai}i∈I be an indexed collection of subsets of a set
X, A ⊂ X, and f : X −→ Y . Then

f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai)

f

(⋂
i∈I

Ai

)
⊂
⋂
i∈I

f(Ai)

162



5.6 Finite Sets

A set X is called finite iff there is a natural number n ∈ N and a bijective
mapping

f : {1, 2, . . . n} −→ X.

Note that the empty set is a finite set (with n = 0 ) for the set {1, 2, . . . n}
is also the empty set (since there are no natural numbers greater than or
equal to 1 and less than or equal to 0) and the empty mapping is certainly
a bijection between the empty set and itself.

We define the cardinality of a finite set X to be the natural number n of
the definition. There is however a logical difficulty with this kind of definition:
in general, whenever we define something to be “the c which satisfies P(c)”
we must verify that c is “well-defined” by the condition P (c) i.e. that there
is one and only one c which does in fact satisfy P(c). In the present context
to show that the notion of cardinality is well-defined we must verify that if
f : {1, 2, . . . n} −→ X and g : {1, 2, . . . m} −→ X are both bijections, then
m = n. Since the composition of bijections is a bijection, and the inverse
of a bijection is a bijection, the bijections f and g give rise to a bijection
f−1 ◦ g : {1, 2, . . . ,m} −→ {1, 2, . . . n} The justification for the definition of
cardinality is the third assertion in the following

Proposition 5.6.1 Let m and n be natural numbers and

h : {1, 2, . . . m} −→ {1, 2, . . . , n}

a mapping. Then:

• if h is injective, then m ≤ n; and

• if h is surjective, then n ≤ m ; hence

• if h is bijective, then n = m.

The following proposition shows why certain notations were chosen. De-
note by #(X) the cardinality of the finite set X.

Proposition 5.6.2 Let X and Y be finite sets. Then

#(X × Y ) = #(X)#(Y ),
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#(2X) = 2#(X),

#(Y X) = #(Y )#(X),

and
#(X ∪ Y ) = #(X) + #(Y )−#(X ∩ Y ).

5.7 Equivalence Relations.

Let X be a set and ≡ a binary relation on X. In this section we use the infix
notation x ≡ y instead of (x, y) ∈≡ or ≡ (x, y). The relation ≡ is

1. reflexive iff x ≡ x;

2. symmetric iff x ≡ y =⇒ y ≡ x;

3. transitive iff x ≡ y, y ≡ z =⇒ x ≡ z;]

for all x, y, z ∈ X. An equivalence relation is a binary relation which is
reflexive, symmetric, and transitive. Of course the usual relation of equality
(x = y) is an equivalence relation, and in general equivalence relations are
relations which behave much like equality.

In fact, there is a device for changing an equivalence relation ≡ into
equality. Namely for each x ∈ X define the equivalence class [x] = [x]≡ by

[x] = {y ∈ X : y ≡ x}.

Then for x, y ∈ X the following are equivalent”

• x ≡ y;

• [x] = [y];

• [x] ∩ [y] 6= ∅.

We can form the space of equivalence classes:

(X/ ≡) = {[x] : x ∈ X};

it is called the quotient space of X by the equivalence relation ≡. Since

x ≡ y ⇐⇒ [x] = [y]
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we have in effect converted the equivalence relation into ordinary (set-theoretic)
equality.

One important property of equality is that equals may be substituted for
equals. The analog for general equivalence relations is called “respect”. More
precisely let fXn −→ X be an n-ary function on X. We say that the equiv-
alence relation ≡ respects the relation f iff for x1, y1, x2, y2, . . . , xn, yn ∈ X
we have:

x1 ≡ y1, . . . , xn ≡ yn =⇒ f(x1, . . . , xn) = f(y1, . . . , yn).

When this happens we define an n-ary function [f ] : (X/ ≡)n −→ (X/ ≡)
by the condition:

[f ]([x1], [x2], . . . , [xn]) = [f(x1, x2, . . . , xn)].

The definition is consistent (one says that [f ] is “well-defined” since

[f(x1, x2, . . . , xn)] = [f(y1, y2, . . . , yn)]

whenever [x1] = [y1], [x2] = [y2], . . . , [xn] = [yn] so that the definition of
[f ]([x1], . . . , [xn]) does not depend on the particular elements x1, . . . , xn rep-
resenting the equivalence classes [x1], . . . , [xn]. The function [f ] : (X/ ≡
)n −→ (X/ ≡) the function induced by f .

Similarly, let P ⊂ Xn be an n-ary relation on X. We say that the equiv-
alence relation ≡ respects the relation P iff for x1, y1, x2, y2, . . . , xn, yn ∈ X
we have:

x1 ≡ y1, . . . , xn ≡ yn) =⇒ P (x1, . . . , xn ⇔ P (y1, . . . , yn).

Again we can define an n-ary relation [P ] = [P ]≡ ⊂ (X/ ≡)n by

[P ] = {([x1], . . . , [xn]) ∈ (X/ ≡)n : (x1, . . . , xn) ∈ P}

As before we have for x1, . . . , xn ∈ X that

(x1, . . . , xn) ∈ P ⇔ ([x1], . . . , [xn]) ∈ [P ]

and we call [P ] the n-ary relation induced by P .
The simplest example (aside from equality itself) of an equivalence re-

lation is afforded by “modular arithmetic”. Choose a non-zero integer m
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(the “modulus”) and for x, y ∈ Z write x ≡ y (mod m) iff x − y is divisible
by m; e.g. 5 ≡ 19 (mod 7) since 7 divides −14. The quotient space of this
equivalence relation is usually denoted Zm or sometimes Z/mZ and is finite:

Zm = {[0], [1], [2], . . . , [m− 1]}.

Equivalence modulo m respects the arithmetic operations of addition, sub-
traction, and multiplication: namely, if x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m)
then x1 + x2 ≡ y1 + y2 (mod m), x1 − x2 ≡ y1 − y2 (mod m), and x1 · x2 ≡
y1 · y2 (mod m). (For example, 2 ≡ 9 (mod 7) and 17 ≡ 3 (mod 7) so 19 ≡
12 (mod 7), −15 ≡ 6 (mod 7), and 34 ≡ 27 (mod 7).) An example of a relation
which is not respected by equivalence modulo m is the usual order relation:
thus 3 ≡ 10 (mod m) and 4 ≡ 4 (mod m) but 3 < 4 and 10 6< 4.

An equivalence relation on a set X and a surjective function π : X −→ W
are much the same thing. Thus the map π determines an equivalence relation
≡ on X via

x ≡ y ⇐⇒ π(x) = π(y)

for x, y ∈ X while an equivalence relation ≡ on a set X determines a map

π : X −→ (X/ ≡)

called the projection via
π(x) = [x]

for x ∈ X.

5.8 Induction on the Natural Numbers

A fundamental principle in mathematics is

The Principle of Mathematical Induction. Let S ⊂ N be a set of
natural numbers satisfying

• 0 ∈ S, and

• for all n: n ∈ S =⇒ n + 1 ∈ S.

Then S is the set of all natural numbers: S = N.
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The principle may be justified as follows. Suppose that S ⊂ N satisfies
(5.8) and (5.8). Then by (5.8) 0 ∈ S. But by (5.8) 0 ∈ S =⇒ 1 ∈ S so (as
0 ∈ S) 1 ∈ S. But by (5.8) 1 ∈ S =⇒ 2 ∈ S so (as 1 ∈ S) 2 ∈ S. etc.

The principle of mathematical induction is generally used as a method of
proof. Typically, a proof which uses mathematical induction will have the
following form:

Theorem S = N.
Proof: By mathematical induction. First we show that 0 ∈ S. (Some argu-
ment will appear here.) Hence 0 ∈ S as required.

Next we assume that n ∈ S. (Some further argument will appear here.
In this argument the hypothesis n ∈ S is referred to as the “induction hy-
pothesis”.) Therefore n + 1 ∈ S. This completes the proof.

Students sometimes have trouble with this kind of proof for it looks like
one is assuming what has to be proved. The point is that one proves n+1 ∈ S
from the hypothesis that n ∈ S and then concludes that n ∈ S from 0 ∈ S
and the principle of induction. This is very different from proving that n ∈ S
from the hypothesis that n ∈ S (a rather trivial activity).

As an example we prove the formula

(Pn) 1 + 2 + · · ·+ n =
n(n + 1)

2

for n ∈ N. The formula is true for n = 0 (since the empty sum is 0); i.e.
(P0) is true. Next assume that (Pn) is true. Then adding n + 1 to both sides
we obtain

1 + 2 + . . . + n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
(n + 1)n + 2(n + 1)

2

=
(n + 1)((n + 1) + 1)

2

This is (Pn+1). Thus we have proved (Pn+1) from the hypothesis (Pn), i.e.
we have shown that (Pn) =⇒ (Pn+1). But according to the principle of
mathematical induction, if (P0) and if for all n we have (Pn) =⇒ (Pn+1), then
for all n we have (Pn). This completes the proof. (Note that we have proved
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in particular that 1 + 2 + · · · + 100 = 5050 a fact that Euler’s schoolmaster
thought would require an hour to establish.)

Sometimes the principle of mathematical induction is expressed in a
slightly different form: viz.

The Principle of Strong Mathematical Induction. Let S ⊂ N be a set
of natural numbers satisfying

(*) For all n ∈ S if {0, 1, 2, . . . , n− 1} ⊂ S, then n ∈ S.

Then S is the set of all natural numbers: S = N.

This principle is really no different from the other form. Indeed, suppose
S ⊂ N satisfies (*) and define

S ′ = {n ∈ N : {0, 1, 2, . . . , n− 1} ⊂ S}.

Then clearly 0 ∈ S ′ (since ∅ ⊂ S while (*) asserts that n + 1 ∈ S ′ whenever
n ∈ S ′. Thus by the ordinary form of the principle of mathematical induction,
S ′ = N. This clearly implies that S = N since if n ∈ N, then n + 1 ∈ N
so n + 1 ∈ S ′ so {0, 1, 2, . . . , n} ⊂ S so n ∈ S. The reason this is called
the principle of “strong” mathematical induction is that when we construct
a proof using this principle we get to assume that k ∈ S) for all k < n;
we have to prove n ∈ S from this. (When we use ordinary mathematical
induction we have to prove n ∈ S from a weaker hypothesis: viz. n = 0 or
n− 1 ∈ S.) The difference however is really that some proofs (like the proof
of the addition formula given above) are expressed more naturally using the
ordinary principle while others are expressed more naturally using the strong
principle.
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6 Computer program documentation

6.1 TABLEAU program documentation

TABLEAU helps you write down a tableau proof in predicate logic. It has
three modes of operation:

Hypothesis mode builds the formula to be proved and a list of hypotheses.
The program will only allow well formed formulas to be entered.

Tableau mode builds a semantic tableau, and shows the current branch
and its two neighbors. The program will only allow trees which follow the
rules for a semantic tableau.

Map mode shows the whole semantic tableau but with abbreviated for-
mulas.

The program starts in Hypothesis mode. You can change from one mode
to another with the commands H, T, and M. The command Q is used to quit
the program. To protect against accidental quitting, the program asks you
to type Q a second time to be sure you really meant to quit. It gives you a
chance to return to the previous state or to start a new tableau instead of
quitting.

EQUIPMENT NEEDED

TABLEAU will run on an IBM PC (TM) or compatible computer with
at least 256 K of memory and one disk drive. With more memory, you will
have room to build a larger tableau, up to 1000 nodes. The files

TABLEAU.COM, TABLEAU.000, TABLEAU.001, and TABLEAU.002
must be in the current directory for the program to run. If you want to
load problems and file answers, you will need the problem diskette in drive
slot A. When the title screen appears, you are given the choice of running
the program on a color or monochrome display. You may experiment to see
which choice looks best on your screen.

A QUICK PREVIEW

Here is a short example which will give you an idea of what the program
does. Type the keys in square brackets exactly as shown and watch the
screen. Begin with the title screen showing and the problem diskette in drive
slot A.
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[c] (for color), or [m] (for monochrome) (You are now in Hypothesis mode)
[L] (A list of .TBU files is shown)
[sample][RETURN key] (A formula to prove and hypothesis list will ap-

pear)
[t] (You are now in Tableau mode)
[Down arrow][Down arrow][g] (The Get command)
[End key][e] (The Extend command) (2 new nodes appear)
[Down arrow][Right arrow][g][e] (2 more nodes appear)
[h][L][asample][RETURN key] (A new tableau is loaded)
[t] (A completed tableau proof is on the screen)
[PgDn] (Another part of the tableau)
[m] (You are now in map mode)
[q][q] (You have quit the TABLEAU program)

HYPOTHESIS MODE

In this mode you can enter the formula to be proved and/or a list of
hypotheses. You can either type these in at the keyboard or load them from
the diskette. Figure 25 is a sample screen.

MOVING THE CURSOR TO A NEW LINE.

Up or Down arrow : up or down one line.
PgUp : go to the top of the screen.
PgDn : go to the line marked “next”.

COMMANDS IN HYPOTHESIS MODE.

The message in the window at the bottom of the screen lists the following
commands, except when you are in the process of typing in a new formula.

E : Edit (change) the formula in the current line. This command will not
work after a tableau has been built.

K : Kill. The formula in the present line will be erased. This command
will not work after a tableau has been built.

L : Load. This command displays a list of files which contain sample
hypothesis lists and tableaus. If you type the name of one of these files and
press Return or Enter (the key has different names on different computers) a
list of hypothesis will appear on the screen. If you press RETURN without a
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-----------------------------------------------------------

FORMULA TO BE PROVED

wff | r \/ s

===========================================================

HYPOTHESIS LIST

-----------------------------------------------------------

wff | p \/ q

wff | p->r

wff | q->s

next |

-----------------------------------------------------------

TABLEAU PROGRAM -- HYPOTHESIS MODE

Type in the formula to be proved on the line marked "here"

or type in a new hypothesis on the line marked "next".

E(dit) K(ill hyp) L(oad) M(ap) P(ull) Q(uit) T(ableau)

-----------------------------------------------------------

Figure 25: Hypothesis Mode
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file name, you will get back to the regular command list with no change. The
files have names up to eight characters long followed by the suffix “.TBU”.
You should not enter the suffix, only the name as it appears in the window.

P : Pull. The hypothesis in the current line is pulled from its present
position and put at the end of the hypothesis list. This command will not
work after a tableau has been built. You can use this command to easily
change the order in which the hypotheses are listed.

M : Change to Map mode.
Q : Quit the program.
T : Change to Tableau mode.
STARTING A FORMULA. You can type in formulas yourself instead of

loading a list of formulas from the diskette. You may also add new formulas
to a list which has been loaded in. If you move the cursor to a free line, the
window at the bottom of the screen will change to a new background color
and tell you that you may type in a formula.

Propositional Logic: The symbols which are allowed in formulas are:
AND & (shift 4) /\ (forslash backslash)
OR | (shift backslash) \/ (backslash forslash)
NOT ¬ (Ctrl N)
IMPLIES IFTHEN ONLYIF − > (minus, greater than)
IFF < − > (less than, minus, greater than)
[ ] (brackets)
The computer will accept either the symbols or words as shown (in paran-

thesis we give some indication of the key strokes which word on some key-
boards). Any other string of letters and numbers which begins with a letter
can be used as a propositional symbol.

Predicate Logic: The following additional symbols are allowed:
ALL Å(Ctrl A)
EXIST É (Ctrl E)
= < <= > >= (common infix relations)
+ − ∗ (common infix functions)
( ) (parentheses)
, (comma)
Any other string (of letters and numbers) which begins with a letter can

be used as a variable, relation symbol or function symbol. The type of symbol
and the number of argument places are determined by the first use of the
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symbol. A string which begins with a number can be used only as a constant
symbol.

MOVING WITHIN A FORMULA. You can move within a formula using
the Right and Left arrow keys. New symbols are inserted at the cursor
position. The Backspace and Del keys can be used to erase symbols as usual.
The Home key will jump to the beginning of the line and the End key will
jump to the end of the line. The Esc key will erase the entire line.

FINISHING A FORMULA. The computer will say “new” or “here” if the
line is empty, “wff” if the line contains a Well Formed Formula, and will say
“bad” otherwise. When you have a wff or an empty line, you may leave the
line by pressing RETURN, the Up or Down arrow key, or the PgUp or PgDn
key (depending on which line you want to go to next). You cannot leave the
line when the computer says “bad”. This makes sure that only well formed
formulas are allowed. When the computer says “ bad”, you can type the ?
key to get a message telling you what is wrong with the formula.

CHANGING A FORMULA. If the tableau has not been built, you can
change an existing formula by moving to its line and pressing the E key (for
Edit). Then make changes in the usual way. If you delte the whole line, the
computer will say “nil”.

TABLEAU MODE

In this mode you can build a semantic tableau. The tableau is a tree which
has a formula at each node. The top node has the negation of the formula to
be proved, and the next nodes have the hypotheses. If every branch through
a node is contradictory, the formula is shown in red (or written between :
symbols on a monochrome screen). When every node of the tableau is red,
the tableau is a completed proof. Your current location in the tableau is the
node which has the blinking cursor and blue background (or reversed text on
a monochrome screen). Figure 26 is a sample screen, but with the current
location indicated by asterisks ** ** instead of a blue background.

The tableau is built one step at a time. To extend the tableau, you move
the cursor to a formula, type G to Get the formula into a box in the window
at the bottom of the screen, move the cursor to the end of a branch, and
then type E to Extend the tableau. The program will only allow tableau
extensions which are legal according to the formal definition of a tableau in
the course.
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-----------------------------------------------------------

HYPOTHESES

|

-[r \/ s]

|

p \/ q

|

p->r

|

q->s

|

TABLEAU

|

-r

||

-s

--------------------------- q

p --

-p -------------------------- -q

** r **

-----------------------------------------------------------

TABLEAU PROGRAM -- TABLEAU MODE

Hypotheses: 4 Nodes: 8 Free space: 592

Get: p->r

E(xtend) F(ile) G(et) H(ypoth) K(ill) M(ap) Q(uit)

S(ub) U(ndo) W(hy)

-----------------------------------------------------------

Figure 26: Tableau Mode
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MOVING WITHIN THE TABLEAU. The screen shows the current branch
of the tableau and the neighboring branches to the right and left. If the tree
is too large, only part of the tableau can be seen on the screen at one time.
The cursor can be moved within the tableau using the arrow keys in the
following ways:

Up arrow : Move up one line.
Down arrow : Move down one line along the current branch.
Right arrow : Move one branch to the right. This is active only when

there is a branching directly above the present node.
Left arrow : Same as right arrow but moves one branch to the left.
Home : Move to the top of the tableau.
End : Move to the end of the current branch.
Page Up : Move up one screen (9 lines) .
Page Down : Move down one screen (9 lines).
COMMANDS IN TABLEAU MODE. The list of commands is shown in

the window at the bottom of the screen.
Propositional Logic:
E : Extend. The tableau is extended using the tableau rule for the formula

in the “Get” box. This command is available only when the cursor is at the
bottom of a branch. Nothing happens if the “Get” formula is atomic or
negated atomic.

F : File. Saves the hypothesis list and tableau in its present state into a
file on the diskette. The computer asks you to type in the name of the file,
in the form XXXXXXXX.TBU. (You don’t enter the suffix “. TBU”; the
computer will add it automatically). Illegal names are ignored, and you are
warned if you try to use a name which is already on the diskette. To get
back to the program without saving, just type RETURN without typing a
file name.

To ERASE an unwanted .TBU file from the diskette, Quit and start an
empty tableau (no hypotheses and no formula to be proved), go to Tableau
mode, use the File command, and type the name of the file you want to erase.

G : Get. The formula at the cursor is put into the “Get” box in the
bottom window. (The formula is then shown in green in the tableau and has
a green background in the bottom window.) If you later change branches
above that formula, it will drop out of the box. This makes sure that the
formula can only be used below the place where it appears in the tableau.

H : Change to Hypothesis mode.
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K : Kill. This command erases everything below the cursor, and is used
to correct mistakes.

M : Change to Map mode.
Q : Quit the program.
U : Undo. This command undoes the last Kill or Extend command, and

goes back to the previous position.
W : Why. This command tells you which formula was used to add the

current formula to the tableau. It does this by putting the formula which
was used into the “Get” box and writing it in green in the tableau.

Predicate Logic:

When the tableau is extended using a quantified formula, the variable
in the quantifier is replaced by a term. In this program, you must tell the
computer which term to use. This is taken care of by an extra provision in
the Extend command. E : Extend (continued). If the formula in the “Get”
box starts with a quantifier or negated quantifier, the bottom window turns
red and asks you for a term to substitute for the quantified variable. The
rules for entering terms here are the same as the rules for entering formulas
in Hypothesis Mode. The computer will not let you enter a bad term and
will explain what is wrong when you press the ? key. Press RETURN when
you are finished entering the term.

Predicate Logic with Equality:

A second box, the “Sub” box, is added in the bottom window to provide
for the equality substitution rule. A new command is added which puts a
formula into this box.

S : Substitution. This command is available only when the current for-
mula is an equation. The bottom window turns red and you are asked to
either accept the equation as given (Return key), or to reverse it (Right
arrow key). The equation will then appear in the “Sub” box with a cyan
(blue-green) background and will be written in cyan in the tableau.

E : Extend (continued). If the formula in the “Get” box is an atomic
or negated atomic formula, the equality substitution rule will be used. To
do this the “Sub” box must contain an equation between two terms. The
new formula is formed by taking the “Get” formula and replacing the first
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term in the “Sub” box by the second term in the “Sub” box. Nothing will
happen if there is no possible substitution. If there is exactly one possible
substitution, the bottom window will turn red, the computer will highlight
the substitution position, and you will be asked to accept (Return key) or
cancel (Esc key). If there is more than one place to substitute, the computer
will highlight the first one and ask you to accept, cancel, or go to the next
place (Right arrow key).

W : Why (continued). If the current formula was added to the tableau
by an equality substitution, the substitution equation will be put into the
“Sub” box and the target of the substitution will be put into the “Get” box.

= : The computer will ask you for a term in the bottom of window. When
you type int the term t and press return, the wff t = t will be added to the
tableau. This command is available only at the end of a branch.

MAP MODE

This mode displays the tableau in a smaller scale by showing only the
main connective of the formulas. If the tableau is too large to fit on the
screen in Tableau mode, use Map mode to see where you are in the big
picture. Figure 27 is a sample screen in this mode.

The current location in the tableau is again shown by the blinking cursor
and blue background, and the current formula is displayed in full in the
bottom window. You can still use the arrow and page keys to move within the
tableau. However, you cannot change the tableau in Map mode. Sometimes
the tableau is so complex that it will not fit on the screen even in Map mode.
A sharp symbol, #, is used to indicate a portion of the tableau which is too
complicated to fit on the screen. The Zoom command can be used to enlarge
a portion of the tableau to see what is inside the #.

The commands, shown in the bottom window, are as follows.
H : Change to Hypothesis mode.
Q : Quit the program.
T : Change to Tableau mode.
Z : Zoom. Redraws part of the tableau in a larger scale with the present

cursor position at the top of the screen. This command is useful when the
tableau is so large that it will not fit on the screen even in Map mode, so
that # symbols appear on the screen. It is best to use this command with
the cursor at a node which is below the point where the central branch splits
and above the # symbol.
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Figure 27: Map Mode
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6.2 COMPLETE program documentation

This program is designed for classroom demonstrations of complete (or fin-
ished) tableaus in propositional logic. It makes tableaus with the property
that every branch is either contradictory or is such that every node of the
branch is used on the branch. It works like the TABLEAU program and
uses .TBU files, but with the following differences. 1. There is no Hypoth-
esis mode, only Tableau and Map modes. 2. The program starts by listing
the .TBU files on the diskette in drive slot A. (These files must be prepared
with the TABLEAU program). 3. Only propositional rules are recognized.
Wffs beginning with quantifiers and atomic wffs are treated as propositional
symbols. 4. The E(xtend) command uses the current wff to extend every
noncontradictory branch through the current node. 5. Contradictory nodes
are shown in red, and noncontradictory nodes which have been used are
shown in cyan. When every node is either red or cyan, the tableau is com-
plete. 6. There is no provision for monochrome display. 7. At least 360 K of
memory is required.

6.3 PREDCALC program documentation

INTRODUCTION. This program demonstrates the rules of formation for
formulas of first order predicate logic, and the corresponding inductive defi-
nition of the truth value of a formula. It works like a Hewlett- Packard (TM)
(or reverse Polish notation) calculator, but operates on formulas of predicate
logic instead of numbers. There are nine formulas in a stack and the last four
formulas which were put on the stack are visible on the screen. The calcula-
tor has 24 “keys” which allow you to add an atomic formula to the bottom
of the stack or to make a new formula by applying a logical connective or
quantifier to formulas in the stack.

At all times you can switch back and forth between two modes, a TEXT
mode and a GRAPHICS mode. In text mode the formulas in the stack are
shown in the usual way. This mode corresponds to the syntax of predicate
logic. By the graph of a formula we mean the set of valuations for which the
formula is true. The graphics mode displays the graphs of the bottom four
formulas in the stack. This mode corresponds to the semantics of predicate
logic. Since the graphs have three dimensions, only the three variables x, y,
and z are allowed in a formula.
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The VIEW command gives an alternative, more detailed display of the
graphs of the formulas.

EQUIPMENT NEEDED. The program runs on an IBM PC (TM) or
compatible computer with at least 160K of memory and one disk drive. With
a color- graphics card both text and graphics modes are available. Without
this card, only the text mode is available, but the graphs can still be seen
with the VIEW command.

STARTING THE PROGRAM. When you see the title screen, you have
two options for starting out. The first option is to specify a universe size
by typing a number between 1 and 8. The calculator will then appear on
the screen in text mode. Initially, the stack contains nine false formulas
designated by the f symbol.

The second option is to type the letter L (for LOAD), to load a problem
or previous session from the diskette. A list of files which contain problems
will appear on the screen. To get started you type the name of one of these
files and press Return or Enter. The files have names up to eight characters
long followed by the suffix “.PRD”. You should not enter the suffix, only the
name as it appears on the screen. The calculator will then appear on the
screen, and the universe size and starting mode (Text or Graphics) will be
determined by the problem you select.

You can also choose between a color graphics, monochrome graphics, or
text only display at the title screen. If you choose the monochrome display,
the graphics mode will be disabled. You may experiment to see which one
works best on your screen.

A QUICK PREVIEW. Here is a short example which will give you an
idea of what the program does. Press the keys shown within square brackets
[] exactly as shown. Start out with the title screen for the PREDCALC
program. Put your problem diskette in drive slot A.

[L] (A list of files will appear)
[preview][ENTER key] (The text screen will appear)
[LEFT ARROW key][z][x][ENTER key] (z < x will appear in position 1)
[=][x][2][ENTER key] (z < x in position 2 and x=2 in position 1)
[&][ENTER key] (z < x & x=2 will appear in position 1)
[PgDn key][x][ENTER key] (The formula in position 1 now matches the

goal)
[g][ENTER key] (The screen is now in Graphics mode)
[m][ENTER key] (You are now in memory mode)
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[ENTER key][ENTER key][ENTER key][ENTER key] (Replay in Graph-
ics mode)

[q][ENTER key] (The quitting screen appears)
[q] (You have quit the PREDCALC program)
GOALS. When you start the program by selecting a problem from the

diskette, a Goal will be shown next to the stack. There are two types of
problems, Text and Graphics problems.

A Text problem starts out in Text mode, and the goal is a formula which
is displayed above the stack. The object of the problem is to match the goal
formula in position one of the stack by using the calculator. In order to do
this, you must begin with atomic formulas and build up to the goal formula
through a parsing sequence.

A Graphics problem starts out in Graphics mode, and the goal is shown
in the form of a graph. The object is to think of a formula which has the
required graph and to get the formula into position one of the stack by using
the calculator keys. This type of problem is more difficult and requires an
understanding of the interpretation of quantifiers in a model.

No goal is shown if you start the program by selecting a universe size.
You can use the calculator “keys” to build and look at formulas in either
text or graphics mode.

THE CALCULATOR. When you begin the program with a text problem,
a text screen will appear. At the top is the goal formula, then the bottom
four formulas of the stack (initially all false), then an array of 24 “calculator
keys” and a help window. In graphics mode you will see graphs of the goal
formula and the four formulas in the stack, and a similar array of calculator
keys. There is no room for a help window in graphics mode.

THE TIME COUNTER. The number 0 in the lower right corner of the
calculator is a TIME COUNTER. Each time you carry out a calculator com-
mand which changes the formulas in the stack, the time counter increases by
one.

MOVING WITHIN THE CALCULATOR KEYBOARD. To distinguish
between the computer keyboard and the “calculator keys” in the screen pic-
ture, we shall call the “calculator keys” BOXES. The currently active box,
in this case the Quit box, is enclosed in a double border (which is green in
the computer display). The lower right part of the screen has a help window
explaining what the currently active box does. There are two ways to change
the active box. One way is to use the keys on the computer’s numeric pad
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to move to another box (the four arrow keys and the four corner keys move
in the indicated direction). The other way is to press the first letter of the
desired calculator box. For example, if you type N the active box will be the
box labeled Not. Typing the =, <, +, &, and * keys will also move you to the
corresponding box. By moving within the calculator keyboard and reading
the help messages, you can discover what all the calculator boxes do.

USING THE CALCULATOR COMMANDS. You CALL a calculator
command by pushing the RETURN key when the box with the command is
marked with the double green border. Here is a brief overview of the calcula-
tor commands. The commands in the first four columns cause changes in the
formulas in the stack, and are counted by the time counter. The commands
in the right two columns of the calculator are used for a variety of purposes
which do not change the formulas in the stack and are not counted by the
time counter.

Six of the boxes can be used to put an atomic formula on the stack: the
four boxes in the left column and the boxes labeled “.=.” and “.<.”; you will
usually begin a session with one of these. The periods represent argument
places which must be replaced by variables or constants. As an example,
when the “.=.” box is active, you can enter the atomic formula “x=3” by
typing x, then typing 3, and then typing RETURN. If you change your mind,
you can cancel the variables or constants by pressing the Esc key instead of
Return. The five boxes labeled “&”, “Or”, “− >”, “< − >”, and “Not”
can be used to put a new formula in the stack by combining old formulas
with logical connectives. The “All.” and “Exi.” boxes can be used to make
a new formula by applying a quantifier to a formula in the stack. To call
the quantifier commands you type one of the variables x, y, or z to replace
the dot and then type RETURN. The “Dup” and “Pik.” boxes are used to
rearrange the formulas which are already in the stack.

Figures 28 and 29 are reproductions of two of the help messages which
go with the calculator boxes.

Except for the Mem box, every help box in the first four columns has a
table showing exactly how the command affects the formulas in the stack. For
example, the “&” box will put the conjuction of the formulas from positions
1 and 2 in position 1, copy the formulas from positions 9 to 3 into postions 8
to 3, and leave postion 9 unchanged. In the boxes which have periods which
are to be replaced by variables, the only variables accepted are x, y, and z.
The random relation box labeled “R(...)” introduces a new predicate symbol
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=======================================

= CONJUNCTION =

= =

= =

= Before After =

= =

= =

= [4] [4] =

= [3] [4] =

= [2] [3] =

= [1] [1] & [2] =

=======================================

Figure 28: Help box for the & key

=======================================

= RANDOM RELATION =

= Enter one, two, or three distinct =

= variables and type RETURN. =

= =

= Before After =

= =

= [4] [3] =

= [3] [2] =

= [2] [1] =

= [1] R(u), R(u,v), or R(u,v,w) =

=======================================

Figure 29: Help box for the R(...) key
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with one, two, or three argument places each time it is called, starting with
A. Its graph will be chosen randomly by the computer, with the variables
you enter. The random function box “.=h(..)” introduces a new function
symbol with one or two arguments each time it is called, starting with a.
Again, its graph is chosen randomly with the variables you enter.

The “Mem” box is a toggle switch (like a light switch) which allows you
to go back and forth between two modes of operation, Memory mode and
Calculator mode. You are normally in calculator mode. When you switch to
memory mode, the calculator reverts to its starting position at time 0. You
can then replay your previous sequence of commands by pressing the Return
key. You can continue pressing the Return key until the time counter reaches
its previous count, or else go back to Calculator mode partway through the
sequence by moving to another box and changing the sequence of commands.
In Memory mode, the “Mem” box is replaced by the “Calc” box, which
will cause an immediate jump back to the state at the end of the original
command sequence.

Here is a detailed description of these commands for the last two columns
of calculator boxes.

The “Grph” box is a toggle which switches the calculator between Text
and Graphics modes. In graphics mode you will see the graphs of the four
formulas in the stack and the goal formula. One of the main objects of the
program is to allow you to see both the syntax of the formulas in text mode
and the semantics in graphics mode. You are encouraged to switch back
and forth between the two modes as often as possible. You can always do
this without changing anything else. Each formula has, at most, the three
variables x, y, and z, and its graph is a set of points in a cube whose side is
the size of the universe. The cube has three axes labeled with the variables
x, y, and z. All of the calculator boxes work in the same way in graphics
mode as in text mode. In graphics mode, the “Grph” box is replaced by the
“Text” box, which returns you to text mode.

The “Both” box lets you see the formulas and their graphs together.
The “View” box shows the graph of one formula at a time in an expanded

form, and is useful for examining a graph in more detail. It lets you view
(one at time) any of the nine formulas in the stack or the goal formula.

The “Quit” box can be used either to quit the program entirely, or to
restart the program. It will put a menu on the screen which will be discussed
later on.
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The “Undo” box will Undo the last command. It cannot be used twice
in a row.

The “Load” box can be used to load in a new problem or previous session
from the diskette. It is the same as the Load option which is available when
you start the program.

The “File” box is used to file your session in its current state on the
diskette, so that it can be loaded in and replayed or revised at a later time,
or handed in on the diskette as a completed assignment. To ERASE an
unwanted .PRD file from the diskette, use the Quit box to start an empty
session (no goal, time 0, no memory, any universe size) and then use the File
box and type the name of the file you want to erase.

There is one extra command intended for instructors preparing problems
for students, the “Goal” command. This command is called by holding the
Ctrl key down and pressing the G key. If you call the Goal command when
you are in Text mode, a problem file will be created with the formula currently
in stack position one as a Text Goal. If you call the Goal command when
you are in Graphics mode, a problem file will be created with the formula in
stack position one as a Graphics goal.

ACHIEVING YOUR GOAL. When you succeed in your task of getting
a copy of the goal formula into position 1 of the stack, the computer will
reward you by replacing the word “Goal” with the word “Done”. In a text
problem, you must match the formula exactly. A different formula which has
the same graph as the goal formula does not count. In a graphics problem,
you will achieve the goal when you match the given graph in stack position
one.

QUITTING OR RESTARTING THE PROGRAM. When you call the
“Quit” command, a menu appears on the screen.

If there has been any change since the last time you filed your session,
you will get a warning message, and have a chance to file it by pressing the
F key. (If you leave the program without filing your session, all record of it
is lost). The screen will also inform you if your current session has already
been filed. As protection against accidentally quitting the program, you must
press Q a second time to quit. There are three options for returning to the
program. Pressing R will clear all the formulas from the stack and set the
time counter to 0, but will keep the previous goal and universe size. Pressing
S will completely restart the program and go back to the original opening
screen. Pressing any other key will return the program to the position before
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you called the “Quit” command.

6.4 BUILD program documentation

This program can be used to look for finite models of a set of sentences of
predicate logic. It is based on the Finished Branch Lemma. Given a finite
set of hypotheses and a finite universe, you try to extend the hypothesis set
to a finished set of sentences with a constant symbol for each element of the
universe. The program is similar to the TABLEAU program. The differences
between the two programs are described here.

There are three modes.
HYPOTHESIS MODE builds a list of hypotheses and a universe set. The

program will only allow sentences to be entered.
BUILD MODE builds a set of sentences. The program automatically adds

witnesses for sentences like A & B and Åx A, and asks you to supply witnesses
for sentences like A | B and É x A. It also keeps track of which sentences
already have witnesses, and whether the current set is contradictory, finished,
or neither.

MAP MODE displays the graphs of the predicates in the current potential
model. Truth values which are not yet determined are indicated with question
marks.

The program starts in Hypothesis mode. You can change from one mode
to another with the commands B, H, and M. The command Q is used to quit
the program. To protect against accidental quitting, the program asks you
to type Q a second time to be sure you really meant to quit.

Although the following pages describe the program as it appears on a
color display, it can also be run on a monochrome display.

HYPOTHESIS MODE

In this mode you can enter the size of the universe and a list of hypotheses.
You can either type these in at the keyboard or load them from the diskette.
The program will not let you change to another mode until it has been given
a universe size and at least one hypothesis.

In addition to the commands in the TABLEAU program, there is one new
command, U, which is used to choose the universe size. A number between
1 and 20 will be accepted as a universe size, and the elements of the universe
will be the natural numbers from 0 to one less than the universe size.
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The hypotheses must be sentences of predicate logic without function
symbols or constant symbols.

BUILD MODE

In this mode you can build a set of sentences (which we shall call a
branch), starting with the hypotheses. The sentences are displayed in a
column. If there is a contradiction in the branch, that is, a pair of sentences
of the form A, ¬A, then every sentence below the contradiction is shown in
red. If there is no contradiction, every basic sentence and every sentence
which has witnesses is shown in cyan, and all other sentences are shown in
yellow. If every sentence is shown in cyan, the branch is finished. In this
case, any model of the basic sentences is a model of the whole branch, and
thus a model of the original set of hypotheses.

Your current location is the sentence which has the blinking cursor and
blue background. The sentences in the branch are numbered to help you find
your way around a large branch.

The current status of the branch is shown in the window at the bottom of
the screen: FINISHED (all cyan), CONTRADICTORY (red terminal node),
and UNFINISHED (with the number of the first yellow node) if the branch
is neither finished nor contradictory.

The branch is built one step at a time. To extend the branch, you move
the cursor to a sentence, and type E for Extend. What happens next depends
on the type of sentence. If the current sentence is basic, you will be told that
no extension can be made. If it has the form A & B, both A and B will be
added to the branch. If it has the form A v B, you will be asked to choose
either A or B, and your choice will be added to the branch. If it has the form
Åx A, each of the sentences A(x//c) will be added where c is a constant in
the universe. If it is of the form É x A, you will be asked to choose a number c
between 0 and the largest number in the universe, and the sentence A(x//c)
for your choice of c will be added to the branch.

MOVING WITHIN THE BRANCH. If the branch is too large, only part
of the branch can be seen on the screen at one time. The cursor can be
moved within the branch using the arrow keys in the following ways:

Up arrow : Move up one line.
Down arrow : Move down one line.
Home : Move to the top of the branch.
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End : Move to the end of the branch.
Page Up : Move up one screen.
Page Down : Move down one screen.
COMMANDS IN BUILD MODE. The list of commands is shown in the

window at the bottom of the screen.
A : Run on AUTOMATIC. The program will automatically extend the

branch using all nodes from the current node to the end as much as possible.
Nodes which require you to make a choice are left alone. You can stop the
automatic process at any time by pressing any key.

E : EXTEND. The branch is extended using the current sentence, as
explained in the preceding paragraph. When this command is invoked, the
color of the current sentence becomes cyan unless it is already red.

F : FILE. Saves the universe size, the hypothesis list, and the branch in
its present state into a file on the diskette. The computer asks you to type
in the name of the file, in the form XXXXXXXX.BLD. (You don’t enter the
suffix “.BLD”; the computer will add it automatically). Illegal names are
ignored, and you are warned if you try to use a name which is already on the
diskette. To get back to the program without saving, just type RETURN
without typing a file name.

H : Change to HYPOTHESIS mode.
K : KILL. This command erases everything below the current sentence,

and is used to correct mistakes. Sentences which were added at the same
time as the current sentence with the Extend command will not be erased.

M : Change to MAP mode.
Q : QUIT the program.
S : SPLIT screen. This command is useful when the branch gets so large

that you cannot see both the current sentence and the new sentences which
are added at the end of the branch on the same screen. When you invoke
this command, the screen splits in two. The top half of the screen shows
the part of the branch around the current sentence, and the bottom half of
the screen shows the end of the branch. This lets you see both the current
sentence and the new sentences at the end of the branch when you Extend
the branch. If the screen is already split, this command will change back to
the original single screen.

U : UNDO. This command undoes the last Kill or Extend command, and
goes back to the previous position.

W : WHY. This command checks to see whether the current sentence has
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a witness. It is a good idea to use this command before trying to extend the
branch. It is possible that the current sentence is colored yellow but has a
witness which appeared when some other sentence was used in an extension.
If the current sentence is colored yellow but a witness is found with this
command, the color is changed to cyan, telling you that no extension is
needed. The command also tells you two things about the current sentence:
(1) which sentence was used to add the current sentence to the branch, and
(2) the first witness, if any, for the current sentence. The sentence used and
the witness are displayed in the window at the bottom of the screen.

MAP MODE

This mode starts out with a one or two dimensional graph of the first
predicate in the current “partially defined” model. If the branch has a basic
sentence which determines a truth value, a T or F is shown in the graph, and
otherwise a ? is shown. (If the branch is contradictory, the last truth value
in the branch is shown). All the predicate symbols are listed in the window
at the bottom of the screen.

The Finished Branch Lemma tells us that if the branch is finished, then
any way of replacing the ?’s by either T’s or F’s will produce a model of the
set of hypotheses.
Commands in Map mode:

B: Change to BUILD mode.
C: Next CONSTANT. If the current predicate symbol has more than two

argument places, the graph of the predicate with a constant 0 in all but the
first two places is shown first. C command will then show the graph for the
next value of the constants. You can see the full graph by repeatedly pressing
C until you get back to the starting position.

H: Change to HYPOTHESIS mode.
N: NEXT predicate. If there is more than one predicate symbol, this

command shows the graph of the next predicate symbol.
Q: QUIT the Build program.

6.5 MODEL program documentation

In this program you can define and change predicates and functions in a finite
model of predicate logic, and ask the program for the values of sentences and
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terms. When you start the program, you are asked for a number between 1
and 32 for the size of the universe. Initially, the program will work with a
vocabulary containing a constant for each element of the universe (numbers
starting from 0), the binary predicates <=, <, >=, >, =, <>, and the binary
functions +, -, *. The predicates will have the usual meaning, and the func-
tions will be interpreted as addition, subtraction, and multiplication modulo
the size of the universe. If you enter a sentence, the computer will tell you
its truth value. If you enter a term, the computer will tell you its value as an
element of the universe. You can introduce new relation or function symbols,
or change the interpretations of old ones, by entering definitions with curly
brackets and colons. The available commands are shown on the screen and
are self-explanatory. The program has a help screen with examples showing
how to enter sentences, terms, and definitions. This help screen is reproduced
below.

If you type a wff or term the program returns its value in the model. If
you type a definition the program modifies the model accordingly. Here are
some definitions:

q := {x : x > 0}
p := {(x, y) : x < y OR EXIST z[q(z) AND z <> y]}
f := {(x, y) : x ∗ y + x− y}
∗ := {(x, y) : x ∗ y + x− y}
p(1, 2) :=FALSE
f(1, 2) := 3
Here are some wffs and terms:
ALL x EXIST y x < y < − > EXIST y ALL x x < y
ALL x [ EXIST y x <> y− > EXIST yy <> y ]
2 + 3
ALL x EXIST y [ q(x) OR p(x,y)]

6.6 GNUMBER program documentation

INTRODUCTION

GNUMBER simulates a register machine, which is the basic tool in the
study of computable functions. The title screen asks you to select either
the SIMPLE or the ADVANCED form of GNUMBER. The simple form
can be used to enter instructions and register values and watch a register
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machine program run. The advanced form has additional features which
let you manipulate Godel numbers of register machine programs and get a
close look at register machine programs which refer to themselves. Programs
which refer to themselves lead to the striking results of Godel showing that
some problems are unsolvable.

The program works on an IBM PC or compatible computer with at least
256K of memory. With more memory, there will be room for longer registers.
At the title screen you can select either a color or monochrome display. You
may experiment to see which one looks best on your screen.

There are three modes of operation, the Instruction Editor, the Register
Editor, and the Main Control Panel. GNUMBER starts out in the Instruc-
tion Editor. You can change from one mode to another with the commands
I, R, and M. At any time the command Q can be used to quit the program.
To protect against accidental quitting, the program asks you to type Q a
second time to be sure you really meant to quit. GNUMBER can be run on
either a monochrome or color display, but some of the information stands
out more clearly on a color display.

The next few pages first explain what you can do in each mode with the
simple form of GNUMBER. Then the additional features of the advanced
form are described. If you are only using the simple form, you can skip the
material on the advanced form.

A QUICK PREVIEW

Here is a short sample session which will give you an idea of what the
GNUMBER program does. Begin with the title screen showing. Type each
key within square brackets exactly as shown, and watch the screen.

[SPACE key] (You are now in the Simple Instruction Editor)
[z][1] (The Register machine instruction Z 1 appears)
[Return][S][1][0] (Instruction S 10 appears)
[Return][j][Return] (Instruction J 1 1 1 appears)
[r] (You are now in the Register Editor)
[4] (Register 1 now has value 4)
[m] (You are now in the Main Control Panel)
[s] (You have chosen to run at slow speed)
[SPACE bar] (Watch the program run. Notice registers 1 and 10)
[SPACE bar] (The register machine program stops)
[q][q] (You have quit the GNUMBER program)

191



INSTRUCTION EDITOR

You always start out in the Instruction Editor, and can get there from
other modes with the I command. In the Instruction Editor, you can type in
a register machine program, load a sample register machine program from the
disk, or save a register machine program. There are places for 92 instructions,
numbered from 0 to 91. Any instruction beyond 91 is assumed to be a Halt.
The next instruction number is shown at the top of the screen. On the right
side of the screen is a help window which has a list of the available register
machine instructions and editor commands. The letters H,J,S,T,Z are used
for register machine instructions, and the letters C,D,F,L,O,M,Q,R are used
for editor commands.

Moving within the screen. The UP, DOWN, RIGHT, and LEFT arrow
keys the spacebar, and the HOME, END, RETURN, and TAB keys can be
used to move within the instruction editor.

Register machine instructions. The following register machine instruc-
tions can be entered in your programs. The table shows what each instruc-
tion does when r, s, and t are the numbers following the instruction letter
and [r] is the number in register r.

INSTRUCTION EFFECT
H (Halt) Stop.
Z r (Zero) [r] := 0.
S r (Successor) [r] := [r]+1.
T r s (Transfer) [s] := [r].
J r s t (Jump) if [r] = [s] then jump to instruction t.

Entering register machine instructions. When you start the GNUMBER
program, there is a H command for Halt at every position. Any instruction
can be changed by simply typing over it. When an instruction letter is typed
at an instruction column, the correct number of places are filled in with
question marks. You can then use the RIGHT and LEFT arrow keys or the
spacebar to go to a number column and type the number you want. (The
DEL key changes a number back to a question mark.) In the third place of
the J command, an instruction number is needed, and the computer will let
you type in any value from 0 to 92. At any other place, a register number is
needed, and the computer will let you type in a value from 1 to 45. You can
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also place “break points” in the column after the instruction letter, which will
cause the register machine program to stop when it is being run. The ! key
will insert or remove a brack point. The computer will ignore any attempt
to enter an illegal instruction. When you are finished with the instruction,
you may leave the line by typing an arrow key, RETURN, HOME, or END.
Any remaining question marks will change to 1’s.

Commands in the Instruction Editor.

Q : QUIT the Gnumber program.
M : Go to the MAIN Control Panel.
R : Go to the REGISTER Editor.
C : CLEAR all instructions to H, and set the time counter and next

instruction number to zero.
D : DELETE the current instruction line, move all later lines up one, and

adjusts all J (Jump) instructions accordingly.
O : OPEN a line. This command moves all instructions below the current

line down one, adjusts all J (Jump) instructions accordingly, and writes an
H in the current line. Use this command when you want to insert a new
instruction at the current line.

F : FILE a register machine program. This command saves the current
register machine program in a file on the disk. The computer will ask you
to type in a file name of up to 8 letters and then press RETURN. The suffix
.GN will automatically be added to the name you choose. You will get a
warning if you type in a file name which is already used. You can get back
to the Instruction Editor without saving by pressing RETURN without a file
name.

You can ERASE an unwanted .GN file by clearing all instructions to H
(with the Clear command), then invoking the File command, and then typing
the name of the file which you want to erase.

L : LOAD a register machine program. In the bottom window of the
screen you will see the message

LOAD A REGISTER MACHINE PROGRAM AT LINE nn

where nn is the current line of the cursor in the Instruction editor. The
computer will show you a list of all files on the disk whose names have
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the suffix .GN, and ask you to type in a file name and press RETURN.
The register machine program described in the file will then be put into the
instruction list, starting at the line nn. All old instructions from line nn to
the end will be moved ahead to the end of the new program, and all jump
instructions will be adjusted in the correct way. The next instruction number
and time counter will be set to 0. You can get back to the Instruction Editor
without loading a new program by pressing RETURN without a file name.
After you load a register machine program, its name will be displayed at
the top of the screen. The name will stay there until you change a program
instruction, file a program, or load a new program. If the file name you type
is not on the diskette, or if there is not enough room to load the new program
starting at line nn, you will be informed by a message and will return to the
Instruction Editor with no change.

This command can be used either to load an RM program by itself, or to
load an RM program somewhere in the middle of an old program. To load a
program by itself, first press Home to get to instruction line 0, then press C
to clear out the old instruction list, and then press L. To load a new program
in the middle or at the end of an old program, move the cursor to the line
where you want the new program to begin and then press the L key.

U : UNDOES the most recent change in the instruction list. The register
list is returned to what is was before the most recent entry of an instruction
letter or number, or one of the commands C, D, L, or O. Use this instruction
to recover if you accidentally press the wrong key.

Advanced Instruction Editor.

By means of a Godel numbering scheme, each natural number is also the
code of a finite sequence of natural numbers. The Godel numbering scheme
uses the even decimal positions (starting from 0 on the left) as markers to
show where a new term begins, and uses the odd decimal positions for the
digits of the terms in the sequence to be coded. A 2 marker means that a
new term is beginning, and a 1 marker means that the old term is continuing.
For example, the Godel number of the sequence

5034 6 217

is (with the original digits underlined)
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2510131426221117.

This is a Godel number in standard form. In order to make every number
the Godel number of some sequence, the initial marker can be any digit except
0, a marker > 2 is identified with a 2, a 0 marker is identified with a 1, and
an extra digit at the end is ignored.

Two new 3-placed instructions, E and P, are available in the advanced
form. Remember that [s] stands for the number in register s. The E command
EXTRACTS the [s]-th term from the sequence coded by [r] and places it in
register t. (All terms beyond the last term of the sequence are considered
to be 0). The P command PUTS the number [r] into the [s]-th term of
the sequence coded by register t. The effect of these commands may be
summarized symbolically, where (r) denotes the sequence with Godel number
[r].

INSTRUCTION EFFECT

E r s t (Extract) [t] := the [s]-th term of (r).

P r s t (Put) The [s]-th term of (t) := [r].

REGISTER EDITOR

You can get to the Register Editor from other modes with the R com-
mand. In the Register Editor you can put numbers into the registers. There
are 45 registers, numbered 1 through 45. The register editor displays the
next instruction number and registers 1 through 15 on the right side of the
screen, and instructions 0 through 45 on the left side of the screen. (The
remaining instructions 46 through 91 still exist but are no longer visible on
the screen.) GNUMBER starts with 0 in every register. The help window
below the registers lists the available commands.

Moving within the Register Editor.

The PGDN and PGUP keys display the next or previous group of 15 registers,
1-15, 16-30, and 31-45. The UP and DOWN arrow keys move the cursor up
and down one row, and the HOME key moves the cursor to register one. You
can also get to the NEXT INSTRUCTION REGISTER (register 0) by going
to register 1 and pressing the up arrow key.
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Entering a number into a register.

A number is entered into a register by typing the digits 0,...,9 as usual. You
can enter a number into the Next Instruction Register as well as the ordinary
registers. The backspace key works in the usual way. When you are finished
entering the number, type ENTER, an UP or DOWN arrow, HOME, PGUP,
PGDN, or one of the commands I, M, or Q. You can enter up to 2,000 digits.
While you are entering a number which is more than one line long, the screen
shows you how many digits have scrolled off the left edge of the window.

Exploring a register.

After you or the computer finish entering a number, its total length (mea-
sured in digits) is shown at the extreme right of the screen. If a register
contains more that a full line of digits, you can explore the contents of the
register by using the RIGHT and LEFT arrow keys and the END key (which
displays the last 39 digits). This will cause the number to scroll horizontally
and be displayed in white. The ENTER, UP, DOWN, HOME, PGUP, and
PGDN keys and the I, M, and Q commands will leave the register and behave
in the usual way.

Register Editor Commands.

Q : QUIT this program.
C : CLEAR all registers (put a zero in every register).
I : Go to the INSTRUCTION Editor.
M : Go to the MAIN Control Panel.

Advanced Register Editor.

There are four new commands which involve Godel numbers. A Godel num-
ber is assigned to a register machine program in the following way. Each
register machine instruction is a sequence consisting of a letter and from 0
to 3 numbers. The instruction letters H,Z,S,T,J,E,P are assigned the codes
1 through 7 respectively. This makes each register machine instruction a
sequence of from 1 to 4 numbers, and this sequence is assigned its Godel
number. The instruction list is considered to end one step past the last
nonhalt instruction. The register machine program is a finite sequence of
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instructions, which gives rise to a finite sequence of Godel numbers that in
turn has a Godel number.

G : Put the GODEL number of the register machine program shown in
the current instruction list into the current register. This command also sets
the time counter and next instruction to 0, and leaves all other registers
unchanged.

U : (UNGODEL) Put the register machine program whose Godel number
is in the current register into the instruction list. (A term in the current
register sequence which is not a code of an instruction is treated as the end
of the instruction list). This command also sets the time counter and next
instruction register to 0, and leaves all other registers unchanged.

S : Change to SEQUENCE display. This command causes any number
which has more than 3 digits and is the Godel number of a sequence in stan-
dard form to be displayed as a sequence of numbers enclosed by parentheses
and separated by commas, other numbers are still displayed in the normal
way. When you explore a register containing a sequence, the RIGHT and
LEFT arrow keys move to the beginning of the next or preceding term of the
sequence, and the END key moves to the beginning of the last term of the
sequence.

N : Change to NUMBER display. This command causes the numbers in
all registers to be displayed in the usual way as ordinary numbers.

The last line in the help window tells you whether the Number or Se-
quence display is being used. The next to the last line in the help window
displays more information about the current register. If the computer has
enough memory, the first few registers will have room for 12,000 digits in-
stead of 2,000 digits. The amount of room in the current register is reported.
If you are exploring a register in a number display, the number of digits and
the place of the first visible digit are reported. If you are exploring a register
in a sequence display, the number of terms, the place of the first visible term,
and the length (number of digits) of the first visible term are reported.

MAIN CONTROL PANEL

You can get to the Main Control Panel from other modes with the M
command. The Main Control Panel is the place where you run a register
machine program. It has a variety of commands which allow you to start and
stop the register machine program and control its speed. While the register
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machine program runs at slow or one-step speed, the next instruction label
will be shown with a white background, and its motion will give an indication
of what the program is doing. The register contents also keep changing, and
the time counter at the top of the screen shows the number of instruction
steps in the run. When running at fast speed, the register contents are hidden
and the time is only shown in multiples of 100.

While the register machine program is running, it can be interrupted by
pressing any key. You can go to the Instruction or Register Editor and make
changes or explore the contents of a long register, and then return to the
Main Control Panel and continue running the program.

The screen display of the Main Control Panel and the Register Editor are
the same except for the help window at the bottom of the screen.

Main Control Panel Commands.

I : Go to the INSTRUCTION Editor.
R : Go to the REGISTER Editor.
SPACE : Run the current register machine program.
Q : QUIT the Gnumber program.
S : Make the register machine program run at SLOW speed.
F : Make the register machine program run at FAST speed.
O : Make the register machine program run ONE step at a time.
T : Set the TIME counter and next instruction number to zero.
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A A Simple Proof.

We present a detailed proof of a simple fact so that the reader can study the
logical structure of a simple proof. Note that certain keywords like choose
and assume are italicized in the proof. Study how these words are used.

Example A.0.1 Let X = {x ∈ N : x2 + 7 < 6x} and Y = {2, 3, 4}. Then
X = Y .

Recall that for sets the equality X = Y means that both X ⊂ Y and
Y ⊂ X. Thus are proof breaks up into two parts.

First we show that Y ⊂ X, i.e. that for all x, x ∈ Y ⇒ x ∈ X. Choose
x. Assume x ∈ Y . Then either x = 2, or x = 3, or x = 4. If x = 2, then
x2 + 7 = 11 < 12 = 6x. If x = 3, then x2 + 7 = 16 < 18 = 6x. If x = 4, then
x2 + 7 = 23 < 24 = 6x. In all three cases, x ∈ N and x2 + 7 < 6x. Therefore
x ∈ X. We have shown that every x ∈ Y satisfies x ∈ X; Therefore Y ⊂ X.

Now we show X ⊂ Y , i.e. that for all x, x ∈ Y ⇒ x ∈ X. Choose x ∈ X.
Then x ∈ N and (x − 3 −

√
2)(x − 3 +

√
2) = x2 − 6x + 7 < 0 so either

(x − 3 −
√

2) < 0 < (x − 3 +
√

2) or (x − 3 −
√

2) > 0 > (x − 3 +
√

2).
The latter case implies (subtract x− 3) that −

√
2 >
√

2 which is false so the
former case must hold. From (x− 3−

√
2) < 0 < (x− 3 +

√
2) we conclude

3 −
√

2 < x < 3 +
√

2 and since 1 < 3 −
√

2 < 2, 4 < 3 +
√

2 < 5, and x is
an integer, it follows that x = 2 or x = 3 or x = 4, i.e. that x ∈ Y . We have
shown that every x ∈ X satisfies x ∈ Y , i.e. that X ⊂ Y .

B A lemma on valuations.

Our purpose in this section is to give a detailed proof of the important fact
that if two valuations v and w agree on every variable which occurs freely in
A, then

M, v |= A if and only ifM, w |= A.

This fact is obvious in view of the meaning of the notation M, v |= A (viz.
that A is true in the model M when the free variables of A are assigned
values via v) but the proof we give is of interest both because it illustrates an
important method (the method of induction on the structure of a wff) and
because it justifies simplified notation which we introduced in the section 2.4.
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We begin with an inductive definition of the set FREE(A) of variables
which occur freely in a wff A. This definition agrees with the notion of free
occurrence introduced earlier (in section 2.2) in that a variable x has a free
occurrence in A if and only if x ∈ FREE(A).

Definition B.0.2 The set FREE(A) of variables which occurr freely in a
wff A, also called the set of free variables of A, is defined inductively as
follows:

(basis) If A is an atomic wff, then FREE(A) is the set of all variables which
occur in A.

(¬) For each wff A,
FREE(¬A) = FREE(A).

(∧,∨,⇒,⇔) For each binary connective ∗ (i.e. ∗ is one of ∧, ∨, ⇒, ⇔)
and all wffs A and B,

FREE([A ∗B]) = FREE(A) ∪ FREE(B).

(∀,∃) For each wff A and variable x,

FREE(∀xA) = FREE(A) \ {x}

FREE(∃xA) = FREE(A) \ {x}

If v is a valuation in a modelM and A is a wff, then v|FREE(A) stands
for the restriction of v to the set of variables which occur freely in A. That
is, v|FREE)A) is the function FREE(A) → UM which has the same values
as v for each x ∈ FREE(A).

Theorem B.0.3 Let M be a model and Å be a wff. Let v and w be valua-
tions in M. If

v|FREE(A) = w|FREE(A) (8)

then
M, v |= A if and only if M, w |= A. (9)
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This theorem is often stated verbally as: M, v |= A depends only on the
values of v at the free variables of A.
Proof: Let S(A) be the statement we wish to prove, that for all valuations
v and w inM, if (8), then (9). The proof is by induction on the wff A. The
modelM stays the same throughout the proof.
(basis) If A is an atomic wff, then FREE(A) is the set of all variables which
occur in A, and by the rule (M:n) for truth values in predicate logic,M, v |=
A depends only on the values of v at variables which occur in A. Thus S(A)
is true when A is atomic.
(¬) Assume S(A). Suppose (8) holds for ¬A:

v|FREE(¬A) = w|FREE(¬A).

Since FREE(¬A) = FREE(A), (8) holds for A:

v|FREE(A) = w|FREE(A).

Now by S(A), (9) holds for A:

M, v |= A if and only ifM, w |= A

so by the rule (M:¬), (9) holds for ¬A:

M, v |= ¬A if and only ifM, w |= ¬A.

(∧,∨,⇒,⇔) Assume S(A) and S(B). Suppose (8) holds for A ∗B where ∗
is one of binary connectives ∧, ∨, ⇒, ⇔:

v|FREE(A ∗B) = w|FREE(A ∗B).

Since FREE(A ∗B) = FREE(A) ∪ FREE(B), (8) holds for both A and B:

v|FREE(A) = w|FREE(A) and v|FREE(B) = w|FREE(B)

Now by S(A), (9) holds for A:

M, v |= A if and only ifM, w |= A

and by S(B) (9) holds for B:

M, v |= B if and only ifM, w |= B
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so by the rule (M:∗), (9) holds for A ∗B:

M, v |= A ∗B if and only ifM, w |= A ∗B.

(∃) Assume S(A) and that (8) holds for ∃xA:

v|FREE(∃xA) = w|FREE(∃xA.

We must show that (9) holds for ∃xA.
Assume that

M, v |= ∃xA.

Then there is a valuation v′ ∈ VAL(v,x) such that M, v′ |= ∃xA). Let w′

be the valuation obtained from w by changing the value at x to v′(x), that
is, w′ ∈ VAL(w,x) and w′(x) = v′(x). Since

FREE(∃A) = FREE(A) \ {x}

and v agrees with w on FREE(∃xA), v′ agrees with w′ on FREE(A):

v′|FREE(A) w′|FREE(A).

Then by S(A) we obtainM, w′ |= A so by the rule (M:∃)

M, w |= ∃xA.

Since we proved M, w |= ∃xA from the assumption M, v |= ∃xA we have
proven that M, v |= ∃xA implies M, w |= ∃xA. Reversing the roles of v
and w shows thatM, v |= ∃xA impliesM, w |= ∃xA. Thus

M, v |= ∃xA if and only ifM, w |= ∃xA

as required.
(∀) Assume S(A) and that (8) holds for ∀xA:

v|FREE(∀xA) = w|FREE(∀xA).

We must show that (9) holds for ∀xA.
Assume that

M, v |= ∀xA.
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Then for every valuation v′ ∈ VAL(v,x) we have M, v′ |= ∃xA. Choose
w′ ∈ VAL(w,x) and let v′ be obtained from v by changing the value at x to
w′(x). Then v′ ∈ VAL(v,x) and v′(x) = w′(x). Since

FREE(∀A) = FREE(A) \ {x}

and v agrees with w on FREE(∀xA), v′ agrees with w′ on FREE(A):

v′|FREE(A) = w′|FREE(A).

Then by S(A) we obtainM, w′ |= A. As w′ ∈ VAL(w,x) was arbitrary the
(M:∀) rule yields

M, w |= ∀xA.

Since we proved M, w |= ∀xA from the assumption M, v |= ∀xA we have
proven that M, v |= ∀xA implies M, w |= ∀xA. Reversing the roles of v
and w shows thatM, v |= ∀xA impliesM, w |= ∀xA. Thus

M, v |= ∃xA if and only ifM, w |= ∃xA

as required.
This completes the proof of the theorem. The proof is really quite routine

(and presented in far more detail than is customary) for it consists merely of
unraveling the definitions. Nonetheless, the reader should examine its struc-
ture carefully, for this kind of of argument is quit common in mathematical
logic.

What has this to do with section 2.4? There we said that the meaning of

M |= ∃yP (3, y)

is
M, v |= ∃yP (x, y) where v(x) = 3.

The careful reader may ask for more precision here. Exactly which v is to be
used? There are many valuations which satisfy the condition that v(x) = 3
since the value of v on the variables other than x is unspecified. The point
is that it doesn’t matter. For

FREE(∃yP (x, y)) = {x}
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so that according to theorem B.0.3 we have

M, v |= ∃yP (x, y) if and only ifM, w |= ∃yP (x, y)

whenever v and w are valuations with v(x) = 3 = w(x). The device we have
used is a common one in mathematical exposition; one makes a definition
which appears to depend on a choice (in this case the choice is of a valuation
satisfying v(x) = 3) and then shows that the definition is independent of the
choice.

Finally in section 2.3 we introduced the notation M |= A when A is
a sentence (that is a wff with no free variables: FREE(A) = ∅). This is
justified by

Corollary B.0.4 Let A be a sentence andM be a model for predicate logic.
Then ifM, v |= A for some valuation v, thenM, v |= A for every valuation
v. In other words, eitherM, v |= A for every valuation v orM, v |= ¬A for
every valuation v.

C Summary of Syntax Rules

A vocabulary is a disjoint union P ∪ F of disjoint unions

P =
∞⋃

n=0

Pn, F =
∞⋃

n=0

Fn.

The elements of Pn are called n-ary predicate symbols ( proposition symbols
for n = 0) and the elements of Fn are called n-ary operation symbols (
constants for n = 0). There is a set of symbols VAR whose elements are
called variables.

The set TERM(F) of all terms constructed using F is smallest set of
strings satisfying the following rules:

(T:VAR) VAR ⊂ TERM(F);

(T:F0) F0 ⊂ TERM(F);

(T:Fn) f ∈ Fn, τ1, τ2, . . . τn ∈ TERM(F) =⇒ f(τ1, τ2, . . . τn) ∈ TERM(F).

The set WFF(P ,F) is the smallest set of strings satisfying

204



(W:P) P0 ⊂WFF(P0);

(W:Pn) p ∈ Pn, τ1, τ2, . . . , τn ∈ TERM(F) =⇒ p(τ1, τ2, . . . , τn) ∈WFF(P);

(W:¬) A ∈WFF(P) =⇒ ¬A ∈WFF(P);

(W:∧) A,B ∈WFF(P) =⇒ [A ∧B] ∈WFF(P);

(W:∨) A,B ∈WFF(P) =⇒ [A ∨B] ∈WFF(P);

(W:⇒) A,B ∈WFF(P) =⇒ [A⇒ B] ∈WFF(P);

(W:⇔) A,B ∈WFF(P) =⇒ [A⇔ B] ∈WFF(P);

(W:∀) A ∈WFF(P), x ∈ VAR =⇒ ∀xA ∈WFF(P);

(W:∃) A ∈WFF(P), x ∈ VAR =⇒ ∃xA ∈WFF(P);

The set FREE(τ) of variables which occur in the term τ is defined induc-
tively by:

(VAR) x ∈ VAR =⇒ FREE(x) = {x};

(F0) c ∈ F0 =⇒ FREE(c) = ∅;

(Fn) FREE(f(τ1, . . . , τn)) = FREE(τ1) ∪ . . . ∪ FREE(τn).

The set FREE(A) of variables which occur freely in the wff A is defined
inductively by:

(P0) FREE(p) = ∅;

(Pn) FREE(p(τ1, . . . , τn)) = FREE(τ1) ∪ . . . ∪ FREE(τn));

(¬) FREE(¬A) = FREE(A);

(∧, ∨, ⇒, ⇔) FREE([A ∗B]) = FREE(A) ∪ FREE(B);

(∀, ∃) FREE(QxA) = FREE(A) \ {x}.

The condition that a term τ is free for a variable x in a wff A is defined
inductively as follows:

205



(P0) τ is free for x in p ∈ P0;

(Pn) τ is free for x in p(τ1, τ2, . . . , τn);

(¬) τ is free for x in ¬A iff τ is free for x in A.

(∧, ∨, ⇒, ⇔) τ is free for x in A ∗B iff τ is free for x in A and τ is free for
x in B.

(∀, ∃) τ is free for x in QyA iff

either x 6= y and τ is free for x in A

or else x = y

The term τ(x//σ) which results from the term τ by substituting the term
σ for the variable x is defined inductively by:

(S:VAR) If τ is a variable, then τ(x//σ) is σ if τ is the variable x and is τ
if τ is some other variable;

(S:F0) If τ is f(τ1, τ2, . . . , τn) then τ(x//σ) is f(τ1(x//σ), τ2(x//σ), . . . , τn(x//σ))

The wff C(x//σ) which results from the wff C by substituting the term
σ which is free for the variable x in C is defined inductively by:

(S:P0) If C is a proposition symbol p ∈ P0, then C(x//σ) is p.

(S:Pn) If C is p(τ1, τ2, . . . , τn), then C(x//σ) is p(σ1(x//σ), τ2(x//σ), . . . , τn(x//σ)).

(S:¬) If C is of form ¬A, then C(x//σ) is ¬A(x//σ).

(S:∧,∨,⇒,⇔) If C is of form A ∗B, then C(x//σ) is A(x//σ) ∗B(x//σ).

(S:∀,∃) If C is of one of the forms ∀yA or ∃yA and if y 6= x, then C(x//σ)
is respectively ∀zA(x//σ) or ∃zA(x//σ).

(S:∀∃) If C is of one of the forms ∀xA or ∃xA then C(x//σ) is just C.
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D Summary of Tableaus.

A tree T is a system consisting of a set of points called the nodes of the
tree, a distinguished node rT called the root of the tree, and a function π,
or πT, which assigns to each node t distinct from the root another node π(t)
called the parent of t; it is further required that for each node t the sequence
of nodes

π0(t), π1(t), π2(t), . . .

defined inductively by
π0(t) = t

and
πk+1(t) = π(πk(t))

terminates for some n at the root:

πn(t) = rT.

A node of the tree for which π−1(t) = ∅ is called terminal and a sequence

Γ = (t, π(t), π2(t), . . . , rT)

starting at a terminal node t is called a branch.
A labeled tree is a function Φ defined on a tree T which assigns a wff Φ(t)

to each nonroot node t and which assigns a set of wffs H = Φ(rT) (called
the hypothesis set of the tableau) to the root rT. For each node t let Φ∗(t)
be defined by

Φ∗(t) = {Φ(t)} ∪ {Φ(π(t))} ∪ {Φ(π2(t))} ∪ . . . .

The definition entails that

H = Φ∗(rT) ⊂ Φ∗(t)

for every node t; in fact, Φ∗(π(t)) ⊂ Φ∗(t). When the node is terminal we
write Φ∗(Γ) instead of Φ∗(t) where t is the terminal node of the branch Γ.
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A labeled tree (T,H, Φ) is a tableau iff at each nonterminal node t of T
one of the following conditions holds:

¬¬ Φ(w) = A where ¬¬A ∈ Φ∗(t);

∧ Φ(w) = A and Φ(w′) = B where [A ∧B] ∈ Φ∗(t);

¬∧ Φ(u) = ¬A and Φ(v) = ¬B where ¬[A ∧B] ∈ Φ∗(t);

∨ Φ(u) = A and Φ(v) = B where [A ∨B] ∈ Φ∗(t);

¬∨ Φ(w) = ¬A and Φ(w′) = ¬B where ¬[A ∨B] ∈ Φ∗(t);

⇒ Φ(u) = ¬A and Φ(v) = B where [A⇒ B] ∈ Φ∗(t);

¬ ⇒ Φ(w) = A and Φ(w′) = ¬B where ¬[A⇒ B] ∈ Φ∗(t);

⇔ Φ(u) = A ∧B and Φ(v) = ¬A ∧ ¬B where [A⇔ B] ∈ Φ∗(t);

¬ ⇔ Φ(u) = A ∧ ¬B, and Φ(v) = ¬A ∧B where ¬[A⇔ B] ∈ Φ∗(t);

∀ Φ(w) = A(x//τ) where ∀xA ∈ Φ∗(t);

¬∀ Φ(w) = ¬A(x//z) where ¬∀xA ∈ Φ∗(t);

∃ Φ(w) = A(x//z) where ∃xA ∈ Φ∗(t);

¬∃ Φ(w) = A(x//τ) where ¬∃xA ∈ Φ∗(t);
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= 1 Φ(w) = p(. . . τ . . .) where τ = σ, p(. . . σ . . .) ∈ Φ∗(t)

= 2 Φ(w) = p(. . . τ . . .) where σ = τ, p(. . . σ . . .) ∈ Φ∗(t)

= 1¬ Φ(w) = ¬p(. . . τ . . .) where τ = σ, ¬p(. . . σ . . .) ∈ Φ∗(t)

= 2¬ Φ(w) = ¬p(. . . τ . . .) where σ = τ, ¬p(. . . σ . . .) ∈ Φ∗(t)

In items ¬¬ , ∀ , ¬∀ , ∃ , ¬∃ , = 1 , = 2 , = 1¬ , = 2¬

Φ−1(t) = {w}.

In items ∧ , ¬∨ , and ¬ ⇒ ,

Φ−1(t) = {w}, Φ−1(w) = {w′}.

In items ∨ , ¬∧ , ⇒ , ⇔ , and ¬ ⇔

Φ−1(t) = {u, v}.

In items ∀ and ¬∃ the term τ is free for x.

In items ¬∀ and ∃ the variable z has no occurrence in Φ∗(t).

In items = 1 , = 2 , = 1¬ , = 2¬ the wffs p(. . . τ . . .) and p(. . . σ . . .) are
atomic wffs and the latter is obtained from the former by substituting the
term σ for the one occurrence of the term τ .

E Finished Sets.

We call a set ∆ of wffs full predicate logic contradictory iff either (1) a pair
of wffs of form A, ¬A both in ∆ or (2) ∆ contains a wff of form τ 6= τ .

A wff is atomic iff it is either a proposition symbol or else of form
p(τ1, τ2, . . . , τn) where p is a predicate symbol and τ1, τ2, . . . , τn are terms.
A wff is basic iff it is either atomic or else of form ¬B where B is atomic.
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Let τ and σ be terms and A and B be wffs. We say that B is obtained
from A by an equality substitution on τ = σ iff both the wffs A and B
are basic and B results from A either by replacing some occurrence of τ by
σ or else by replacing some occurrence of σ by τ . (It is not necessary that
the occurrence being subsituted for be an argument; it may be part of an
argument.) We say that a set ∆ of wffs is closed under equality substitution
iff whenever [τ = σ] ∈ ∆, A ∈ ∆ and B is obtained from A by an equality
substitution on τ = σ, we have that B ∈∆ and for every variable free term
τ we have that τ = σ is in ∆.

Let U∆ denote the set of terms τ such that τ has no variables (i.e.
FREE(τ) = ∅) and τ has an occurrence in some wff of ∆.

We call ∆ finished iff ∆ is not contradictory, closed under equality
substitution, and for each wff C ∈ ∆ either C is a basic wff or else one of
the following is true:

[¬¬] C has form ¬¬A where A ∈∆;

[∧] C has form A ∧B where both A ∈∆ and B ∈∆;

[¬∧] C has form ¬[A ∧B] where either ¬A ∈∆ or B¬ ∈∆;

[∨] C has form A ∨B where either A ∈∆ or B ∈∆;

[¬∨] C has form ¬[A ∨B] where both ¬A ∈∆ and ¬B ∈∆;

[⇒] C has form A⇒ B where either ¬A ∈∆ or B ∈∆;

[¬ ⇒]C has form ¬[A⇒ B] where both A ∈∆ and ¬B ∈∆;

[⇔] C has form A⇔ B where either [A ∧B] ∈∆ or [¬A ∧ ¬B] ∈∆;

[¬ ⇔]C has form ¬[A ∧B] where either [A ∧ ¬B] ∈∆ or [¬ ∧B] ∈∆;

[∀] C has form ∀xA where A(x//τ) ∈∆ for every τ ∈ U∆;

[¬∀] C has form ¬∀xA where ¬A(x//σ) ∈∆ for some term σ ∈ U∆;
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[∃] C has form ∃A where A(x//σ) ∈∆ for some term σ ∈ U∆;

[¬∃] C has form ¬∃xA where ¬A(x//τ) ∈∆ for every τ ∈ U∆.

F Commented outline of the PARAM pro-

gram

Inputs: x = the G.N. of a program Q in R1, y in R2
Output: The G.N. of the program (T 1 2, Z 1, S 1 y times, Q) in R1

Register usage: R7 = term number t
R8 = first part of answer a
R9 = G.N. of T 1 2 or Z 1 or S 1 instruction

00 - 10 FIVE put 0 to 5 in R20 to R25
11 T 1 5 save x in R5
12 T 2 6 save y in R6
13 S 6 y := y + 1
14 Z 7 t := 0
15 Z 8 a := 0
16 Z 9
17 P 24 20 9
18 P 21 21 9
19 P 22 22 9 R9 := G.N. of T 1 2
20 P 9 7 8 put T 1 2 in 0th term of a
21 S 7 t := t + 1
22 Z 9
23 P 22 20 9
24 P 21 21 9 R9 := G.N. of Z 1
25 P 9 7 8 put Z 1 in 1st term of a
26 P 23 20 9 R9 := G.N. of S 1
27 J 6 7 31 if t = y then jump to 24
28 S 7 t := t + 1
29 P 9 7 8 put S 1 in t-th term of a
30 J 1 1 27 jump to 27
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31 - 39 TERMS R1 := number of terms of x
40 T 1 4 R4 := number of terms of x
41 T 8 1 R1 := a
42 T 5 2 R2 := x
43 S 6 y := y + 1 (no. of terms of a)
44 T 6 3 R3 := y
45 - 68 JOIN R1 := G.N. of the program with

G.N. a followed by the program
with G.N. x
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