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We prove that the relative rank r(B(X) : C(X)) of the semigroup of Borel mappings B(X)

from X to X (with the composition of mappings as the semigroup operation) with respect
to the semigroup of continuous functions C(X) from X to X is equal to ℵ1 if X is an
uncountable Polish space which either can be retracted to a Cantor subset of X , or contains
an arc, or is homeomorphic to its Cartesian square X2.
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1. Introduction

If S is a semigroup and U is a subset of S then the relative rank of S with respect to U is the minimal cardinality of a
subset V of S such that U together with V generate S . The principal result in the theory of relative ranks of semigroups
of mappings, where the composition of mappings is the semigroup operation, is due to Sierpiński [13]. It says that the
relative rank of the semigroup of all mappings A A from an infinite set A to A with respect to any subsemigroup is either
uncountable or finite and then equal to 0, 1 or 2 (Banach in [1] gave a very nice short proof of this theorem). In [6] Galvin
proved an analogous result for groups of permutations. Relative ranks of semigroups and groups of mappings have been
studied in various contexts ([12] is a survey of some directions of this research). One of them is purely combinatorial and
concerns the relative ranks of A A with respect to natural subsemigroups of A A , where A has no structure, e.g. a relative
rank of A A with respect to the group of all permutations of A [9]. When A is equipped with some structure (order, metric,
etc.) one can consider relative ranks of A A with respect to semigroups that are related to this structure, e.g. semigroups of
mappings from A to A that preserve order [7,8]. In [4] the authors examined the relative rank of A A with respect to the
semigroup of mappings satisfying the Lipschitz condition for various metrics defined on A. For discrete metric spaces the
semigroup A A of all mappings from A to A is also the semigroup C(A) of all continuous mappings from A to A. Of course,
this is not the case if the metric considered on A is not discrete. The relative rank of the semigroup of continuous mappings
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with respect to the semigroup of Lipschitz mappings for various classical metric spaces was examined in [3]. The results of
[3] and [4] show that this rank depends very much on the metric structure of the space A, as it could be expected, because
the Lipschitz condition is a metric notion. In this paper we consider a relative rank that depends only on topology, namely,
the relative rank of the semigroup of all Borel measurable mappings with respect to the semigroup of continuous mappings
for some classical topological spaces. Our main result, Theorem 3.6, states that this rank is equal to the first uncountable
cardinal ℵ1 for a wide family of Polishable topological spaces X , namely those which either can be retracted to a Cantor
subset of X , so, in particular, all uncountable zero-dimensional spaces, or contain a topological copy of the interval [0,1]
(so, in particular, Euclidean spaces), or are homeomorphic to their Cartesian square X2.

2. Notation, definitions, auxiliary results

For sets A, B , C , f : A × B → C , a ∈ A and b ∈ B , let fa(b) = f (a,b).
Let S be a semigroup and A ⊆ S . By 〈A〉 we denote the semigroup of S generated by A.
A topological space X is Polishable if there is a metric on this space that induces the topology of X and X with this

metric is a Polish space.
The topological spaces considered in this paper are assumed to be metrizable. In fact, we consider only Polish(able)

spaces.
Let Q denote the Hilbert cube [0,1]N . Let C denote the classical ternary Cantor set (the set of those elements from [0,1]

which in the ternary notation can be expressed using only digits 0 and 2). Sets homeomorphic with C will be simply called
Cantor sets. It is known that every uncountable Polish space contains a Cantor set [11, Chapter 3, Section 36, V, Corollary 2].
Let N be the Baire space NN , where the topology on N is discrete.

Though the first uncountable cardinal ℵ1 and the first uncountable ordinal ω1 are the same set-theoretical object in
ordinal inequalities we shall rather use ω1 while ℵ1 will appear in quantitative statements.

An arc is a topological copy (i.e. a homeomorphic image) of the unit interval [0,1].
The family of all functions from a set X to a set Y will be denoted by Y X .
We will use the classical notation for the hierarchy of Borel sets. Let X be a topological space. Let Σ0

1(X) denote the
topology on X , i.e. the family of all open subsets of X . Let Π0

1(X) denote the family of all closed subsets of X . Then we
define recursively Σ0

α(X) and Π0
α(X) for all countable ordinals α. Namely, assume that all classes Σ0

ξ (X) and Π0
ξ (X) have

been defined for 1 � ξ < α. We define Σ0
α(X) as

Σ0
α(X) =

{ ∞⋃
n=1

An: An ∈ Π0
ξn

(X), ξn < α

}
,

and next we define Π0
α(X) as

Π0
α(X) = {

Ac: A ∈ Σ0
α(X)

}
.

The family B(X) of all Borel measurable subsets of X is defined as the σ -algebra generated by the class Σ0
1(X) of all open

subsets of X . For any metric space X we have

B(X) =
⋃

α<ℵ1

Σ0
α(X) =

⋃
α<ℵ1

Π0
α(X).

Let X , Y be topological spaces. The class of all continuous mappings from X to Y will be denoted by C(X, Y ). The class
C(X, X) will be denoted by C(X). A mapping f : X → Y is Borel measurable if f −1(B) ∈ B(X) for all B ∈ B(Y ). The class of
all Borel measurable mappings from X to Y will be denoted by B(X, Y ). The class B(X, X) will be denoted by B(X). Borel
measurable mappings will be called for short Borel mappings.

With some abuse of notation B(X) (C(X)) will denote the semigroup of mappings whose elements are all Borel (contin-
uous, resp.) mappings from X to X with the composition of mappings as the semigroup operation.

For α < ω1 let

Bα(X, Y ) = {
f ∈ Y X : f −1(U ) ∈ Σ0

1+α(X) for each U ∈ Σ0
1(Y )

}
(note that for infinite ordinals α we have 1 + α = α). Thus B0(X, Y ) = C(X, Y ). Of course, Bα(X, Y ) ⊆ B(X, Y ). The class
Bα(X, X) will be denoted by Bα(X).

Let A⊆ Y X . Let Z be any set. We say that a mapping F : Z × X → Y is universal for A if

A ⊆ {
F (z, ·): z ∈ Z

}
.

Let

MΣ0
α(X) = {

f ∈ [0,1]X : f −1((t,1]) ∈ Σ0
α(X) for each t ∈ [0,1]}

(for α = 1 this is the class of lower semi-continuous functions with values in [0,1]).
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The following theorem was proved in [5].

Theorem 2.1. Let 1 � α < ω1 . If X is a Polish space, then there exists F ∈ MΣ0
α(C × X) universal for MΣ0

α(X).

The following theorem is due to Kuratowski [10].

Theorem 2.2. If X , Y are Polish spaces of the same cardinality then there exists a bijection ψ ∈ B1(X, Y ) from X onto Y such that
ψ−1 ∈ B1(Y , X).

A bijection ψ ∈ B1(X, Y ) such that ψ−1 ∈ B1(Y , X) is called a (1,1)-homeomorphism between X and Y [10].

Lemma 2.3. Let X be an uncountable Polish space and C ⊆ X be a Cantor set. For every α < ω1 , there exists a Borel measurable
mapping F : C × X → Q universal for Bα(X, Q ).

Proof. By Theorem 2.1 there exists a function f ∈ MΣ0
1+α(C × X) universal for the class MΣ0

1+α(X). The spaces C and CN

are homeomorphic. Let φ : C → CN be any homeomorphism between them. Let x ∈ C , y ∈ X . Let G : X → Q be defined by

G(x, y) = (
f
(
φi(x), y

))
i .

The mapping G is universal for Bα(X, Q ). Indeed, let g = (gi)i ∈ Bα(X, Q ). Then gi ∈ Bα(X, [0,1]). Thus gi(·) = f (zi, ·)
for some zi ∈ C , because f is universal for MΣ0

1+α(X) and Bα(X, [0,1]) ⊆ MΣ0
1+α(X). Let x = φ−1((zi)i). It is easy to see

that G(x, y) = g(y) for each y ∈ X . �
Lemma 2.4. Let X be an uncountable Polish space. For every α < ω1 , there exists a Borel measurable mapping f : C × X → X universal
for Bα(X).

Proof. From Lemma 2.3 we know that there exists a mapping Γ ∈ B(C × X, Q ) universal for the class Bα(X, Q ). As every
Polish space has a homeomorphic copy in Q we can assume that X ⊆ Q . Because Γ is universal for Bα(X, Q ) for each
f ∈ Bα(X) there exists c ∈ C such that f (·) = Γ (c, ·). The set Γ −1(X) is Borel. The desired mapping is given by the formula

f (x, y) =
{

Γ (x, y), if (x, y) ∈ Γ −1(X),

x0, otherwise,

where x0 ∈ X is fixed. �
3. Results

We will now establish the following general result concerning all uncountable Polish spaces.

Theorem 3.1. If X is an uncountable Polish space and α is a countable ordinal, then

r
(
B(X) : Bα(X)

)
� ℵ1.

Proof. Aiming at a contradiction, assume that

B(X) = 〈
Bα(X) ∪ {ψn: n ∈N}〉,

where {ψn: n ∈N} ⊆ B(X). Then ψn ∈ Bαn (X) for some countable ordinal αn . Let

γ = max
(
sup{αn: n ∈N},α)

.

Of course, γ is also a countable ordinal. Let now f ∈ 〈Bα(X) ∪ {ψn: n ∈N}〉. Then

f = fk+1 ◦ ψnk ◦ fk ◦ · · · ◦ ψn1 ◦ f1

for some f1, . . . , fk+1 ∈ Bα(X), n1, . . . ,nk ∈N, k ∈N. But then

f ∈ Bγω(X).

Hence 〈Bα(X) ∪ {ψn: n ∈N}〉 ⊆ Bγω(X) � B(X). This is a contradiction. �
Setting α = 0 we obtain the following corollary.
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Corollary 3.2. If X is an uncountable Polish space, then

r
(
B(X) : C(X)

)
� ℵ1.

We will prove the inverse inequality for the family of Polish spaces from the hypothesis of the next lemma.

Lemma 3.3. If X is an uncountable Polish space which either (i) can be retracted to a Cantor subset of X , or (ii) contains an arc (i.e. a
topological copy of the unit interval [0,1]), or (iii) is homeomorphic to its Cartesian square X2 then X has the following property:

(
) there are Cantor sets C, C ′ ⊆ X and a homeomorphism ϕ : C2 → C ′ such that for every c ∈ C there exists f ∈ C(X) extending ϕc .

Proof. (i) Let r : X → C be a retraction of X onto some Cantor subset of X . Let ϕ : C2 → C be any homeomorphism from C2

onto C . Let c ∈ C . Then f (x) = ϕc(r(x)) is the extension desired.
(ii) Let X contain a topological copy of [0,1]. Losing no generality we can simply assume [0,1] ⊆ X . Let C, C ′ = C ⊆ [0,1].

Of course, there exists a homeomorphism ϕ : C2 → C. By Tietze’s extension theorem ϕc can be extended to f : X → [0,1] ⊆
X for all c ∈ C.

(iii) Let h : X2 → X be any homeomorphism from X2 onto X . Let C ⊆ X be a Cantor set. Let ϕ : C2 → h(C2) be defined
as ϕ = h|C2. Let c ∈ C . We have ϕc = hc|C , and hc is the extension desired. �
Lemma 3.4. Suppose that X is an uncountable Polish space satisfying the conclusion (
) of Lemma 3.3. Let C be the set from (
). Then
for any Borel mapping Φ : C × X → X there exist Borel mappings Ξ,Ψ ∈ B(X) such that for every c ∈ C there exists f ∈ C(X) with
Φc(x) = Ξ( f (Ψ (x))) for every x ∈ X.

Proof. Let C ′ be the set from (
). Let ϕ : C2 → C ′ be the homeomorphism from (
) and let Ψ : X → C be a Borel bijection
(Theorem 2.2). Let Ξ : X → X be a Borel mapping whose restriction to C ′ satisfies for all c,d ∈ C :

Ξ
(
ϕ(c,d)

) = Φ
(
c,Ψ −1(d)

)
.

Let c ∈ C . By (
) there exists f ∈ C(X) such that ϕc = f |C (recall that ϕc(·) = ϕ(c, ·)). Then for any x ∈ X

Ξ
(

f
(
Ψ (x)

)) = Ξ
(
ϕc

(
Ψ (x)

)) = Ξ
(
ϕ

(
c,Ψ (x)

)) = Φ
(
c,Ψ −1(Ψ (x)

)) = Φ(c, x). �
Theorem 3.5. If X is an uncountable Polish space which either can be retracted to a Cantor subset of X , or contains an arc, or is
homeomorphic to its Cartesian square X2 , then r(B(X) : C(X))� ℵ1 .

Proof. By Lemma 2.4 for α < ω1 there are Borel mappings Φ(α) : C × X → X such that

B(X) =
⋃{

Φ
(α)
c : c ∈ C and α < ω1

}
and the conclusion follows from Lemma 3.4. �

Theorems 3.1 and 3.5 imply now the following main result of this article.

Theorem 3.6. If X is an uncountable Polish space which either can be retracted to a Cantor subset of X , contains an arc, or is homeo-
morphic to its Cartesian square X2 , then r(B(X) : C(X)) = ℵ1 .

Hence we have r(B(X) : C(X)) = ℵ1 if X is an uncountable zero-dimensional Polish space (because it is retractable on a
Cantor subset [11, Chapter 2, Section 26, II, Corollary 2]), in particular if X is a Cantor set X = C or X is Baire space X =N ,
if X is a Euclidean space X = Rn (because it contains an arc), or if X is a countable product of any non-singleton Polish
space Y , X = YN (because it is homeomorphic to its Cartesian square X2).

Remark. As we noticed above for most of the classical Polish spaces X we have r(B(X) : C(X)) = ℵ1. On the other hand
there are bizarre uncountable Polish spaces for which C(X) consists only of the identity mapping and the constants, see [2].
In this case, as it is easy to see, r(B(X) : C(X)) = c.

Using Theorem 2.2 and repeating the proof of Lemma 3.4 replacing C and C ′ by X and Ψ by the identity mapping on X
we obtain the following counterpart of Lemma 3.4 for mappings from B1(X).

Lemma 3.7. Let X be an uncountable Polish space. Then for any Borel mapping Φ : X2 → X there exists a Borel mapping Ξ ∈ B(X)

such that for each t ∈ X there exists f ∈ B1(X) such that Φt(x) = Ξ( f (x)) for all x ∈ X.
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The following theorem follows from Lemma 3.7 in an analogous way as Theorem 3.5 follows from Lemma 3.4.

Theorem 3.8. If X is an uncountable Polish space, then r(B(X) : B1(X)) � ℵ1 .

Theorems 3.1 and 3.8 imply the following theorem.

Theorem 3.9. If X is an uncountable Polish space, then

r
(
B(X) : Bα(X)

) = ℵ1

for each 1 � α < ω1 .
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