Baire measures on uncountable product spaces ¹

by Arnold W. Miller²

Abstract

We show that assuming the continuum hypothesis there exists a nontrivial countably additive measure π on the Baire subsets of the space \mathbb{R}^{ω_1} which vanishes on each element of an open cover. Contrariwise, we show that assuming MA_{ω_1} , that there is no such measure.

Let \mathbb{R}^{ω_1} be the ω_1 product of uncountably many copies of the real line. The family of Baire sets in this context is the smallest σ -algebra which contains the basic open sets, i.e., sets of the form: $\prod_{\alpha < \omega_1} U_{\alpha}$ where each U_{α} is an open subset of \mathbb{R} and all but finitely many U_{α} are the whole real line.

Other definitions of this family are that it is the smallest σ -algebra generated by the closed G_{δ} -sets. It is also true that the closed G_{δ} -sets are the preimages of zero under a continuous real-valued mapping. Basically the Baire sets are the Borel sets which depend on only countably many coordinates. For example, singletons are not Baire.

A Baire measure is a countably additive measure into the unit interval [0,1] which is defined on the Baire sets. Denis Saveliev [8] has asked

Question: Does every Baire measure on \mathbb{R}^{ω_1} which vanishes on a cover of open Baire sets have to be trivial? In particular what happens if we assume Martin's Axiom?

Here I will answer this question by proving:

Theorem 1 (Fremlin [3]) Assume MA_{ω_1} . Then every Baire measure on \mathbb{R}^{ω_1} which vanishes on a cover of open Baire sets is trivial.

 $^{^{1}}$ As I was just about finished writting this up (October 1998), I discovered that everything here is already known. See the last section of

R.J.Gardner and W.F.Pfeffer, *Borel Measures*, in Handbook of Set Theoretic Topology, North-Holland, 1984, 961-1044.

²I want to thank Joel Robbin for many helpful conversations, especially for some helpful comments which fixed my first "proof" of Theorem 2.

Theorem 2 (Moran [7], Kemperman and Maharam [5]) Assume CH. Then there exists a nontrivial Baire measure on \mathbb{R}^{ω_1} which vanishes on a cover of open Baire sets.

Proof of Theorem 1

Assume MA_{ω_1} and let μ be a nontrivial Baire measure. Let \mathbb{P} be the following partially ordered set. We say that $p \subseteq \mathbb{R}^{\omega_1}$ is a finite box iff p is a product $p = \prod_{\alpha < \omega_1} p(\alpha)$ where for all but finitely many coordinates $p(\alpha) = \mathbb{R}$ and for these finitely many coordinates $p(\alpha)$ is a compact interval in the reals. Define

$$\mathbb{P} = \{ p \subseteq \mathbb{R}^{\omega_1} : p \text{ is a finite box and } \mu(p) > 0 \}$$

Order \mathbb{P} by inclusion. Note that it two condition are compatible iff their intersection has positive measure. Thus \mathbb{P} has the countable chain condition (ccc). (Given uncountably many elements of \mathbb{P} , $\{p_{\alpha} : \alpha < \omega_1\}$, there must be some natural number n such that uncountably many of the p_{α} have measure greater than $\frac{1}{n}$, but there can be at most n pairwise incompatible elements of \mathbb{P} of measure $\frac{1}{n}$.)

Suppose for contradiction, there were a cover of \mathbb{R}^{ω_1} by Baire open sets of measure zero. We may assume this cover has cardinality ω_1 , say it is $\{U_{\beta} : \beta < \omega_1\}$, where the U_{β} are particularly simple. Namely, each is an ω_1 product of open intervals in \mathbb{R} with rational end points and all but finitely many are $(-\infty, \infty)$.

For each $\alpha < \omega_1$ define

$$D_{\alpha} = \{ p \in \mathbb{P} : p \cap U_{\alpha} = \emptyset \}.$$

Each D_{α} is dense in \mathbb{P} . To see this note that the complement of the set U_{α} can be written as a countable union of finite boxes. To see this, let F be the finitely many coordinates where U_{α} is a nontrivial open interval and for each $\beta \in F$ write the complement of this open interval as a union of compact intervals J_n^{β} for $n \in \omega$. For each $\beta \in F$ and $n \in \omega$ let

$$p_n^{\beta} = \{ x \in \mathbb{R}^{\omega_1} : x_{\beta} \in J_n^{\beta} \}$$

Then the complement of U_{α} is the countable union of finite boxes

$$\langle p_n^\beta : \beta \in F, n \in \omega \rangle.$$

Given an arbitrary $p \in \mathbb{P}$ there exists some $\beta \in F$, $n \in \omega$ such that $q = p \cap p_n^{\beta}$ has positive measure and so $q \in D_{\alpha}$. This shows that D_{α} is dense.

For each α and natural number n, let

$$E_{\alpha}^{n} = \{ p \in \mathbb{P} : \text{ the diameter of } p(\alpha) \text{ is less than } 1/n \}.$$

To see that E_{α}^{n} is a dense subset of \mathbb{P} , let J_{k} for $k < \omega$ be a cover of \mathbb{R} by closed intervals of length less than 1/n. Given an arbitrary $p \in \mathbb{P}$ let

$$p_k = \{ x \in p : x_\alpha \in J_k \}.$$

Each p_k is a closed Baire set and since p has positive measure at least on p_k must have positive measure. Hence, there exists k such that $p_k \leq p$ and $p_k \in E_{\alpha}^n$.

By $\operatorname{MA}_{\omega_1}$ there exists a \mathbb{P} -filter G such that for all $\alpha < \omega$ and n, both

$$G \cap E_{\alpha}^{n} \neq \emptyset$$
 and $G \cap D_{\alpha} \neq \emptyset$.

First we claim that $\cap G$ is nonempty, in fact, a singleton $\{x\}$. To see that it is nonempty, note that we cannot directly use compactness since our space \mathbb{R}^{ω_1} is not compact. However, for each fixed α the intersection $\cap \{p(\alpha) : p \in G\}$ is a nonempty singleton since G meets E_{α}^n for all n. Let $x \in \mathbb{R}^{\omega_1}$ be defined by

$$\{x(\beta)\} = \bigcap \{p(\alpha) : p \in G\}$$

for every $\beta < \omega_1$. By its definition, $x \in p$ for every $p \in G$.

Since G meets each D_{α} it must be that $x \notin U_{\alpha}$ and this contradicts the fact that U_{α} were supposed to be a cover of \mathbb{R}^{ω_1} .

Proof of Theorem 2

We will begin by showing that there exists such a measure π on the Baire subsets of $2^{\omega} \times \omega^{\omega_1}$.

Assuming CH let $2^{\omega} = \{x_{\alpha} : \alpha < \omega_1\}.$

For any $\alpha < \omega_1$ let $\langle \sigma_n^{\alpha} \in 2^{n+1} : n \in \omega \rangle$ be defined by

$$\sigma_n^{\alpha}(i) = \begin{cases} x_{\alpha}(i) & \text{if } i < n \\ 1 - x_{\alpha}(n) & \text{if } i = n \end{cases}$$

Note that $\{[\sigma_n^{\alpha}] : n \in \omega\}$ is a partition of $2^{\omega} \setminus \{x_{\alpha}\}$.

For the convenience of the reader we first describe what π would be on $2^{\omega} \times \omega$.

Let λ be the usual product measure on 2^{ω} . For any Borel $B \subseteq 2^{\omega} \times \omega$ and $n \in \omega$ define

$$B_n = \{ x \in 2^{\omega} : (x, n) \in B \text{ and } x \in [\sigma_n^0] \}.$$

Then define

$$\pi(B) = \sum_{n=0}^{\infty} \lambda(B_n).$$

Note that since B_n is a subset of $[\sigma_n^0]$ and since the $[\sigma_n^0]$ partition $2^{\omega} \setminus \{x_0\}$, we get that π is a probability measure on $2^{\omega} \times \omega$. Also note that for any Borel $C \subseteq 2^{\omega}$ we will have that $\pi(C \times \omega) = \lambda(C')$ where $C' = C \setminus \{x_0\}$. Finally note that for any $n \in \omega$ the point $(x_0, n) \in 2^{\omega} \times \omega$ has an open neighborhood which has π -measure zero, namely $\pi([x_0 \upharpoonright m] \times \{n\}) = 0$ for any m > n.

Now we indicate what π is on all of $2^{\omega} \times \omega^{\omega_1}$.

Let \mathcal{A} be the algebra of Baire sets $B \subseteq 2^{\omega} \times \omega^{\omega_1}$ whose support in ω_1 is finite. This means, that there exists a finite $F \subseteq \omega_1$ such that:

for every $(x, y), (x, y') \in 2^{\omega} \times \omega^{\omega_1}$ if $y \upharpoonright F = y' \upharpoonright F$, then $(x, y) \in B$ iff $(x, y') \in B$.

For each $s: F \to \omega$ define

$$C_s = \cap \{ [\sigma_{s(\alpha)}^{\alpha}] : \alpha \in F \} \subseteq 2^{\omega}.$$

A lot of the C_s are empty, however they partition $2^{\omega} \setminus F$. (For each $x \in 2^{\omega} \setminus F$ define $s : F \to \omega$ by $s(\alpha)$ is the largest n such that $x(n) = x_{\alpha}(n)$. Then $x \in C_s$.)

Define

$$B_s = \{x \in 2^{\omega} : \exists y \in \omega^{\omega_1} \ s \subseteq y, \ (x, y) \in B, \text{ and } x \in C_s\}$$

$$B^* = \bigcup \{B_s : \ s : F \to \omega\}$$

$$\pi(B) = \lambda(B^*)$$

To verify that this is well-defined we should check that if $F\subseteq F'\subseteq \omega_1$ for any F' finite that

$$\sum_{s:F\to\omega}\lambda(B_s)=\sum_{t:F'\to\omega}\lambda(B_t).$$

But for any fixed $s: F \to \omega$

$$C_s = \bigcup \{ C_t : t : F' \to \omega, s \subseteq t \} \cup (\{ x_\alpha \in C_s : \alpha \in F' \})$$

Now since F is the support of B for each $s: F \to \omega, B_s$ will differ from

$$\bigcup \{ B_t : t : F' \to \omega, s \subseteq t \}$$

by at most a finite set, hence

$$\lambda(B_s) = \sum \{ \lambda(B_t) : t : F' \to \omega, s \subseteq t \}.$$

Thus the set B^* (which depends on F) is the same up to a finite set.

To verify that π extends to the σ -algebra generated by \mathcal{A} , according to Halmos [6], we need to show that whenever B_n are disjoint elements of \mathcal{A} such that their union $B = \bigcup \{B_n : n \in \omega\}$ is in \mathcal{A} , we have

$$\pi(B) = \sum_{n=0}^{\infty} \pi(B_n).$$

For each B_n suppose that it is supported by the finite set F_n and B is supported by the finite set F. Without loss of generality, we may assume $F \subseteq F_n$ for all n. To verify our equation it is enough to see that for any xexcept possibly the x_{α} for $\alpha \in \bigcup \{F_n : n \in \omega\}$ that

$$x \in B^*$$
 iff $x \in \bigcup \{B_n^* : n \in \omega\}.$

Let us verify this. Suppose $x \in B^*$. Then for some $s : F \to \omega$ and $y \supseteq s$ we have that $(x, y) \in B$ and $x \in C_s$. Since the support of B is F we can redefine y so that for every

$$\alpha \in \bigcup \{F_n : n \in \omega\} \setminus F$$

 $y(\alpha)$ is the first *n* such that $x(n) \neq x_{\alpha}(n)$ (i.e. so that $x \in [\sigma_{y(\alpha)}^{\alpha}]$). Since $(x, y) \in B$ there exists *n* such that $(x, y) \in B_n$. But since we are assuming $x \neq x_{\alpha}$ for any $\alpha \in F_n$, there exists $t : F_n \to \omega$ such that $t \supseteq s$ and if $t = y \upharpoonright F_n$, then we have that $x \in C_t$ and hence $x \in B_n^*$.

Now let us check the converse. Suppose $x \in B_n^*$ for some n. Then for some $t: F_n \to \omega$ and some $y \supseteq t$ we have $(x, y) \in B_n$ and $x \in C_t$. But then since $F \subseteq F_n$ we have that $(x, y) \in B$ and $x \in C_s$ where $s = t \upharpoonright F$ and so $x \in B^*$.

It follows that π extends to the σ -algebra generated by \mathcal{A} , i.e., the Baire subsets of $2^{\omega} \times \omega^{\omega_1}$. Finally, we note that for every element $(x, y) \in 2^{\omega} \times \omega^{\omega_1}$ there exists a clopen set C with $\pi(C) = 0$ and $(x, y) \in C$. Let $x = x_{\alpha}$ and suppose that $y(\alpha) = n$. Then let $s : \{\alpha\} \to \omega$ be defined by $s(\alpha) = n$ and let $t = x \upharpoonright (n+1)$. Then $(x, y) \in C = [t] \times [s]$ and $\pi([t] \times [s]) = 0$.

To obtain the same result for \mathbb{R}^{ω_1} , first note that we have such a measure on ω^{ω_1} , since $2^{\omega} \times \omega^{\omega_1}$ is a closed Baire set in $\omega^{\omega} \times \omega^{\omega_1}$ and we can identify $\omega^{\omega} \times \omega^{\omega_1}$ with $\omega^{\omega+\omega_1} = \omega^{\omega_1}$. Now to "lift" π to $\hat{\pi}$ on the Baire subsets of \mathbb{R}^{ω_1} , note that for every Baire $B \subseteq \mathbb{R}^{\omega_1}$ the set $B \cap \omega^{\omega_1}$ is Baire in ω^{ω_1} . So we can let $\hat{\pi}(B) = \pi(B \cap \omega^{\omega_1})$. The measure $\hat{\pi}$ vanishes on an open neighborhood of every point. To check this, suppose $x \in \mathbb{R}^{\omega_1}$. Then if there exists some α such that $x(\alpha) \notin \omega$, then letting $\epsilon > 0$ be a quarter of the distance from $x(\alpha)$ and the nearest element of ω , we have that

$$x \in U = \{ y \in \mathbb{R}^{\omega_1} : |y(\alpha) - x(\alpha)| < \epsilon \}$$

and $\hat{\pi}(U) = 0$. On the other hand if $x \in \omega^{\omega_1}$ then for some finite $F \subseteq \omega_1$ we have that $\pi([x \upharpoonright F]) = 0$, and so if we let

$$U = \{ y \in \mathbb{R}^{\omega_1} : |y(\alpha) - x(\alpha)| < 1/4 \text{ for all } \alpha \in F \}$$

then $x \in U$ and $\hat{\pi}(U) = 0$.

Theorem 3 (Bockstein [1] [2]) If $C \subseteq \omega^{\omega_1}$ is a closed G_{δ} set, then C is Baire.

Proof:

Suppose for contradiction that C is not countably supported. This means that for each $\alpha < \omega_1$ there exists $f^i_{\alpha} : \omega_1 \to \omega$ for i = 0, 1 such that

$$f^0_{\alpha} \upharpoonright \alpha = f^1_{\alpha} \upharpoonright \alpha \text{ and } f^0_{\alpha} \in C \text{ and } f^1_{\alpha} \notin C.$$

Suppose $C = \bigcap \{ U_n : n \in \omega \}$ where U_n are open. For each α choose finite F_n^{α} for $n \in \omega$ so that

$$[f^1_{\alpha} \upharpoonright F^{\alpha}_0] \cap C = \emptyset$$

 $[f^0_{\alpha} \upharpoonright F^{\alpha}_n] \subseteq U_n$

By the push down lemma there exists H and a stationary set of α such that $F^0_{\alpha} \cap \alpha = H$. Hence, it easy to find $\alpha < \beta$ such that

$$F^n_{\alpha} \cap F^0_{\beta} \subseteq \alpha$$

for all n. Now if we define $g: \omega_1 \to \omega$ so that

$$g \upharpoonright F_{\alpha}^n = f_{\alpha}^0 \upharpoonright F_{\alpha}^n$$

and

$$g \upharpoonright F^0_\beta = f^1_\beta \upharpoonright F^0_\beta$$

then we get the contradiction that $g \notin C$ but $g \in \bigcap \{U_n : n \in \omega\}$.

Theorem 4 (A.H.Stone [9]) The space ω^{ω_1} is not normal.

Proof:

Let

$$C_{i} = \{ f \in \omega^{\omega_{1}} : \forall n \neq i \ |f^{-1}\{i\}| \le 1 \}$$

i.e., one-to-one except when equal to i. Then C_0 and C_1 are disjoint closed sets which cannot be separated by disjoint open sets. To see this suppose that U_0 and U_1 are disjoint open sets which separate C_0 and C_1 . For each $\alpha < \omega_1$ choose $f^i_{\alpha} \in C_i$ for i = 0, 1 such that

 $f^0_{\alpha} \restriction \alpha = f^1_{\alpha} \restriction \alpha.$

For each α there exists a finite F_{α} such that

$$[f^0_{\alpha} \upharpoonright F_{\alpha}] \subseteq U_0 \text{ and } [f^1_{\alpha} \upharpoonright F_{\alpha}] \subseteq U_1.$$

But by the Δ -systems lemma it easy to find $\alpha < \beta$ such that $F_{\alpha} \cap F_{\beta} \subseteq \alpha$. But this means we can define $g: \omega_1 \to \omega$ so that

$$g \upharpoonright F_{\alpha} = f_{\alpha}^{0} \upharpoonright F_{\alpha} \text{ and } g \upharpoonright F_{\beta} = f_{\beta}^{1} \upharpoonright F_{\beta}$$

which is a contradiction since then $g \in U_0 \cap U_1$.

Theorem 5 The usual product measure μ on 2^{ω_1} makes all Borel subsets measurable (not just the Baire sets).

Proof:

Let $U \subseteq 2^{\omega_1}$ be any open set. Suppose

$$U = \bigcup_{\alpha < \omega_1} [s_\alpha].$$

Then we may choose α_0 so that for every β

$$\mu(\bigcup_{\alpha<\alpha_0}[s_\alpha])=\mu([s_\beta]\cup\bigcup_{\alpha<\alpha_0}[s_\alpha]).$$

Let $\Gamma = \bigcup_{\alpha < \alpha_0} \operatorname{domain}(s_\alpha)$. Because this is the product measure it must be that for every β

$$\mu([s_{\beta} \upharpoonright \Gamma] \setminus \bigcup_{\alpha < \alpha_0} [s_{\alpha}]) = 0.$$

So let

$$U_0 = \bigcup_{\alpha < \alpha_0} [s_\alpha])$$

and let

$$U_1 = U_0 \cup \bigcup_{\alpha_0 \le \beta < \omega_1} [s_\beta \restriction \Gamma]).$$

Then U_0 and U_1 are Baire open sets, $U_0 \subseteq U \subseteq U_1$, and $\mu(U_1 \setminus U_0) = 0$. Hence, U is measurable.

References

- [1] M.Bockstein, Un théorme de séparabilité pour les produits topologiques, Fundamenta Mathematicae, 35(1948), 242-246.
- [2] R.Engelking and M.Karlowicz, Some theorems of set theory and their topological consequences, Fundamenta Mathematicae, 57(1965),
- [3] D.H.Fremlin, Uncountable powers of ℝ can be almost Lindelöf, Manuscripta mathematics, 22(1977), 77-85.

- [4] R.J.Gardner and W.F.Pfeffer, Borel Measures, in Handbook of Set Theoretic Topology, North-Holland, 1984, 961-1044.
- [5] J.H.B.Kemperman, D.Maharam, ℝ^c is not almost Lindelöf, Proceedings of the American Mathematical Society, 24(1970), 772-773.
- [6] P.R.Halmos, Measure Theory, Van Nostrand Reinhold Company, (1950), see Theorem A on page 54.
- [7] W.Moran, *The additivity of measures on completely regular spaces*, Journal of the London Mathematical Society, 43(1968), 633-639.
- [8] D.Saveliev, email to M.E.Rudin, July 1998.
- [9] A.H.Stone, *Paracompactness and product spaces*, Bulletin of the American Mathematical Society, 54(1948), 977-982.

Address: University of Wisconsin-Madison, Department of Mathematics, Van Vleck Hall, 480 Lincoln Drive, Madison, Wisconsin 53706-1388, USA.

e-mail: miller@math.wisc.edu

web page: http://www.math.wisc.edu/~miller