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Abstract

We show that assuming the continuum hypothesis there exists a
nontrivial countably additive measure m on the Baire subsets of
the space R“? which vanishes on each element of an open cover.
Contrariwise, we show that assuming MA,, , that there is no such
measure.

Let R“t be the wy product of uncountably many copies of the real line. The
family of Baire sets in this context is the smallest o-algebra which contains
the basic open sets, i.e., sets of the form: [],.,, U, where each U, is an open
subset of R and all but finitely many U, are the whole real line.

Other definitions of this family are that it is the smallest o-algebra gen-
erated by the closed Gs-sets. It is also true that the closed Gs-sets are the
preimages of zero under a continuous real-valued mapping. Basically the
Baire sets are the Borel sets which depend on only countably many coordi-
nates. For example, singletons are not Baire.

A Baire measure is a countably additive measure into the unit interval
[0, 1] which is defined on the Baire sets. Denis Saveliev [8] has asked

Question: Does every Baire measure on R“* which vanishes on a cover of
open Baire sets have to be trivial? In particular what happens if we assume
Martin’s Axiom?

Here I will answer this question by proving:

Theorem 1 (Fremlin [3]) Assume MA,, . Then every Baire measure on R“!
which vanishes on a cover of open Baire sets is trivial.

LAs T was just about finished writting this up (October 1998), I discovered that every-
thing here is already known. See the last section of

R.J.Gardner and W.F.Pfeffer, Borel Measures, in Handbook of Set Theoretic
Topology, North-Holland, 1984, 961-1044.

21 want to thank Joel Robbin for many helpful conversations, especially for some helpful
comments which fixed my first “proof” of Theorem 2.



Theorem 2 (Moran [7], Kemperman and Maharam [5]) Assume CH. Then
there exists a nontrivial Baire measure on R*Y which vanishes on a cover of
open Baire sets.

Proof of Theorem 1

Assume MA,, and let g be a nontrivial Baire measure. Let P be the
following partially ordered set. We say that p C R is a finite box iff p is a
product p = [I,«,, p(«) where for all but finitely many coordinates p(a) = R
and for these finitely many coordinates p(«) is a compact interval in the
reals. Define

P={p CR“: pis a finite box and u(p) > 0}

Order P by inclusion. Note that it two condition are compatible iff their
intersection has positive measure. Thus P has the countable chain condition
(cce). (Given uncountably many elements of P, {p, : @ < wy}, there must be
some natural number n such that uncountably many of the p, have measure
greater than %, but there can be at most n pairwise incompatible elements
of P of measure +.)

Suppose for contradiction, there were a cover of R“? by Baire open sets
of measure zero. We may assume this cover has cardinality w, say it is
{Ug : B < wi}, where the Us are particularly simple. Namely, each is an wy
product of open intervals in R with rational end points and all but finitely
many are (—o0, 00).

For each a < w; define

D,={per:pnlU, =0}.

Each D, is dense in P. To see this note that the complement of the set U,
can be written as a countable union of finite boxes. To see this, let F' be
the finitely many coordinates where U, is a nontrivial open interval and for
each f € F write the complement of this open interval as a union of compact
intervals J? for n € w. For each 3 € I and n € w let

Pl ={r er“ x5 € J%).
Then the complement of U, is the countable union of finite boxes

(pf B e Fncuw).



Given an arbitrary p € P there exists some 3 € F, n € w such that ¢ = pNp®
has positive measure and so ¢ € D,. This shows that D, is dense.
For each a and natural number n, let

EY = {p € P: the diameter of p(«) is less than 1/n }.

To see that E” is a dense subset of P, let J;; for £ < w be a cover of R by
closed intervals of length less than 1/n. Given an arbitrary p € P let

pr={x €p:x, € Ji}.

Each py is a closed Baire set and since p has positive measure at least on
pr must have positive measure. Hence, there exists k such that pp < p and
pr € LY.

By MA,, there exists a P-filter ¢ such that for all & < w and n, both

GNE"+#0and GN D, # 0.

First we claim that (G is nonempty, in fact, a singleton {x}. To see that it is
nonempty, note that we cannot directly use compactness since our space R*?
is not compact. However, for each fixed o the intersection N{p(«a) : p € G}
is a nonempty singleton since G meets E” for all n. Let x € R“* be defined

by
{z(8)} =({pla):pe G}
for every 3 < wy. By its definition, x € p for every p € G.
Since G meets each D, it must be that @ ¢ U, and this contradicts the

fact that U, were supposed to be a cover of R1.
|

Proof of Theorem 2

We will begin by showing that there exists such a measure 7 on the Baire
subsets of 2 x w*'.

Assuming CH let 2 = {a, : o <wi}.

For any a < w; let (¢ € 2"t : n € W) be defined by

aa(@'):{ wo(i) ifi<n

l—a4(n) ifi=n



Note that {[c%] : n € w} is a partition of 2¥ \ {x,}.

For the convenience of the reader we first descibe what 7 would be on
2 X w.

Let A be the usual product measure on 2*. For any Borel B C 2% X w
and n € w define

B, ={x€?2Y:(x,n) € Band x € [0)]}.
Then define .
m(B) = Z A By).
n=0

Note that since B, is a subset of [0°] and since the [0?] partition 2¥ \ {xo},
we get that 7 is a probability measure on 2 xw. Also note that for any Borel
C C 2¥ we will have that 7(C x w) = AC’) where C' = C \ {x0}. Finally
note that for any n € w the point (x¢,n) € 2¥ X w has an open neighborhood
which has m-measure zero, namely 7([zo | m] x {n}) = 0 for any m > n.

Now we indicate what 7 is on all of 2¥ x w"“.

Let A be the algebra of Baire sets B C 2¥ x w“* whose support in wy is
finite. This means, that there exists a finite F' C w; such that:

for every (x,y), (x,y') € 2¥ xw* if y | F =y’ | F, then
(r.y) € Bff (a,4') € B.

For each s : ' — w define

A lot of the C; are empty, however they partition 2\ F. (For each « € 2\ F
define s : F' — w by s(«) is the largest n such that z(n) = x,(n). Then

x e Cy)
Define
By = {z€2’:Fyewt sCy, (x,y) € B, and z € C,}
B = | J{B,: s:F —w}
m(B) = A(B7)

To verify that this is well-defined we should check that if ¥ C F' C wy
for any F' finite that

S AB)= Y AB.

s:F—w I —w



But for any fixed s: F' — w
Co=U{C;: t:F > w, sCtU{a,eCs:ae '}
Now since F'is the support of B for each s : F' — w, B, will differ from
{Bi: t:F —w,sCt}
by at most a finite set, hence
A(Bs) = Z{)‘(Bf) ot —w, s Cit}.

Thus the set B* (which depends on F') is the same up to a finite set.

To verify that 7 extends to the o-algebra generated by A, according to
Halmos [6], we need to show that whenever B, are disjoint elements of A
such that their union B = U{B, : n € w} is in A, we have

m(B) = iw(Bn).

For each B, suppose that it is supported by the finite set F,, and B is
supported by the finite set F'. Without loss of generality, we may assume
F C F, for all n. To verify our equation it is enough to see that for any =
except possibly the z, for o € J{F, : n € w} that

v e B iff v € J{B} :new}

Let us verify this. Suppose z € B*. Then for some s : F' — w and y DO s
we have that (x,y) € B and & € C,. Since the support of B is F' we can
redefine y so that for every

o | {Finew\F

y(a) is the first n such that x(n) # wa(n) (i.e. so that x € [0y, ]). Since
(x,y) € B there exists n such that (z,y) € B,. But since we are assuming
r # x, for any o € F,, there exists ¢ : F,, — w such that ¢ O s and if
t =y | F,, then we have that = € (; and hence z € B}.

Now let us check the converse. Suppose v € B for some n. Then for
some t : F,, — w and some y O t we have (z,y) € B, and @ € C;. But then



since F' C F,, we have that (z,y) € B and € Cs where s =t | F' and so
x € B

It follows that 7 extends to the o-algebra generated by A, i.e., the Baire
subsets of 2¥ x w*1. Finally, we note that for every element (x,y) € 2% x w*!
there exists a clopen set C' with #(C') = 0 and (z,y) € C. Let © = 2, and
suppose that y(a) = n. Then let s : {a} — w be defined by s(a) = n and
let t =2 (n+1). Then (z,y) € C = [t] x [s] and 7([t] x [s]) = 0.

To obtain the same result for R“*, first note that we have such a measure
on w*!, since 2¥ x w“! is a closed Baire set in w* x w“* and we can identify
W¥ X w*t with wt¥t = w¥1 . Now to “lift” 7 to 7 on the Baire subsets of R“,
note that for every Baire B C R*! the set B Nw*! is Baire in w*!. So we can
let #(B) = m(B N w*'). The measure 7 vanishes on an open neighborhood
of every point. To check this, suppose * € R¥. Then if there exists some
a such that z(«) ¢ w, then letting € > 0 be a quarter of the distance from
z(a) and the nearest element of w, we have that

relU={y eR”: |y(a) —z(a)| < €}

and 7(U) = 0. On the otherhand if @ € w** then for some finite F' C wy we
have that w([z | F]) = 0, and so if we let

U={yer*: |y(a) —z(a)] < 1/4 for all o € F'}

then v € U and #(U) = 0.
u

Theorem 3 (Bockstein [1] [2]) If C C w*' is a closed Gy set, then C is

Baire.

Proof:
Suppose for contradiction that C' is not countably supported. This means
that for each a < w; there exists f' : w; — w for i = 0,1 such that

Pra=fl1aand f£€Cand fl ¢ C.

Suppose C = ({U,, : n € w} where U, are open. For each a choose finite F*
for n € w so that

o T FINC =10



[fo1 F2lCU,

By the push down lemma there exists H and a stationary set of a such that
FPNa = H. Hence, it easy to find a < 3 such that

Fnggga
for all n. Now if we define ¢ : w; — w so that
g1 Fl=fo1E

and
g1 Fg=f31F3
then we get the contradiction that ¢ ¢ C but g € ON{U, : n € w}.
u
Theorem 4 (A.H.Stone [9]) The space w** is not normal.

Proof:
Let

Ci={f€w :Vn#i [fTHi}| <1}
i.e., one-to-one except when equal to . Then Cy and C; are disjoint closed
sets which cannot be separated by disjoint open sets. To see this suppose
that Uy and U; are disjoint open sets which separate Cy and ;. For each
a < wy choose f! € C; for 1 = 0,1 such that

Pra=flra.
For each o there exists a finite £, such that
[fg [Fa] gUO and [folZ rFa] gUl

But by the A-systems lemma it easy to find o < 3 such that I, N Iz C o
But this means we can define ¢g : w; — w so that

g[Fa:fg[Faandg[ngfé[Fg

which is a contradiction since then g € Uy N U;.
|



Theorem 5 The usual product measure p on 2" makes all Borel subsets
measurable (not just the Baire sets).

Proof:
Let U C 2“1 be any open set. Suppose

U= [s4]-

a<wy

Then we may choose aq so that for every 3

p( U [sa]) = ullssl U U [sa])-

a<ag a<ag

Let I' = Uy<qo, domain(s,). Because this is the product measure it must be

that for every (3
(s 1T\ U [s]) = 0.

a<ag
So let
Up= | [s4])
a<ag
and let

U1 :U()U U [Sﬁ [F])
apg<fB<w
Then Uy and U; are Baire open sets, Uy C U C Uy, and p(U; \ Up) = 0.
Hence, U is measurable.
|
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