
Baire measures on uncountable product spaces

1

by Arnold W. Miller

2

Abstract

We show that assuming the continuum hypothesis there exists a

nontrivial countably additive measure � on the Baire subsets of

the space R

!

1

which vanishes on each element of an open cover.

Contrariwise, we show that assuming MA

!

1

, that there is no such

measure.

Let R

!

1

be the !

1

product of uncountably many copies of the real line. The

family of Baire sets in this context is the smallest �-algebra which contains

the basic open sets, i.e., sets of the form:

Q

�<!

1

U

�

where each U

�

is an open

subset of R and all but �nitely many U

�

are the whole real line.

Other de�nitions of this family are that it is the smallest �-algebra gen-

erated by the closed G

�

-sets. It is also true that the closed G

�

-sets are the

preimages of zero under a continuous real-valued mapping. Basically the

Baire sets are the Borel sets which depend on only countably many coordi-

nates. For example, singletons are not Baire.

A Baire measure is a countably additive measure into the unit interval

[0; 1] which is de�ned on the Baire sets. Denis Saveliev [8] has asked

Question: Does every Baire measure on R

!

1

which vanishes on a cover of

open Baire sets have to be trivial? In particular what happens if we assume

Martin's Axiom?

Here I will answer this question by proving:

Theorem 1 (Fremlin [3]) Assume MA

!

1

. Then every Baire measure on R

!

1

which vanishes on a cover of open Baire sets is trivial.

1

As I was just about �nished writting this up (October 1998), I discovered that every-

thing here is already known. See the last section of

R.J.Gardner and W.F.Pfe�er, Borel Measures, in Handbook of Set Theoretic

Topology, North-Holland, 1984, 961-1044.
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I want to thank Joel Robbin for many helpful conversations, especially for some helpful

comments which �xed my �rst \proof" of Theorem 2.
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Theorem 2 (Moran [7], Kemperman and Maharam [5]) Assume CH. Then

there exists a nontrivial Baire measure on R

!

1

which vanishes on a cover of

open Baire sets.

Proof of Theorem 1

Assume MA

!

1

and let � be a nontrivial Baire measure. Let P be the

following partially ordered set. We say that p � R

!

1

is a �nite box i� p is a

product p =

Q

�<!

1

p(�) where for all but �nitely many coordinates p(�) = R

and for these �nitely many coordinates p(�) is a compact interval in the

reals. De�ne

P= fp � R

!

1

: p is a �nite box and �(p) > 0g

Order P by inclusion. Note that it two condition are compatible i� their

intersection has positive measure. Thus Phas the countable chain condition

(ccc). (Given uncountably many elements of P, fp

�

: � < !

1

g, there must be

some natural number n such that uncountably many of the p

�

have measure

greater than

1

n

, but there can be at most n pairwise incompatible elements

of Pof measure

1

n

.)

Suppose for contradiction, there were a cover of R

!

1

by Baire open sets

of measure zero. We may assume this cover has cardinality !

1

, say it is

fU

�

: � < !

1

g, where the U

�

are particularly simple. Namely, each is an !

1

product of open intervals in R with rational end points and all but �nitely

many are (�1;1).

For each � < !

1

de�ne

D

�

= fp 2 P : p \ U

�

= ;g:

Each D

�

is dense in P. To see this note that the complement of the set U

�

can be written as a countable union of �nite boxes. To see this, let F be

the �nitely many coordinates where U

�

is a nontrivial open interval and for

each � 2 F write the complement of this open interval as a union of compact

intervals J

�

n

for n 2 !. For each � 2 F and n 2 ! let

p

�

n

= fx 2 R

!

1

: x

�

2 J

�

n

g:

Then the complement of U

�

is the countable union of �nite boxes

hp

�

n

: � 2 F; n 2 !i:
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Given an arbitrary p 2 Pthere exists some � 2 F; n 2 ! such that q = p\p

�

n

has positive measure and so q 2 D

�

. This shows that D

�

is dense.

For each � and natural number n, let

E

n

�

= fp 2 P : the diameter of p(�) is less than 1=n g:

To see that E

n

�

is a dense subset of P, let J

k

for k < ! be a cover of R by

closed intervals of length less than 1=n. Given an arbitrary p 2 P let

p

k

= fx 2 p : x

�

2 J

k

g:

Each p

k

is a closed Baire set and since p has positive measure at least on

p

k

must have positive measure. Hence, there exists k such that p

k

� p and

p

k

2 E

n

�

.

By MA

!

1

there exists a P-�lter G such that for all � < ! and n, both

G \ E

n

�

6= ; and G \D

�

6= ;:

First we claim that

T

G is nonempty, in fact, a singleton fxg. To see that it is

nonempty, note that we cannot directly use compactness since our space R

!

1

is not compact. However, for each �xed � the intersection

T

fp(�) : p 2 Gg

is a nonempty singleton since G meets E

n

�

for all n. Let x 2 R

!

1

be de�ned

by

fx(�)g =

\

fp(�) : p 2 Gg

for every � < !

1

. By its de�nition, x 2 p for every p 2 G.

Since G meets each D

�

it must be that x =2 U

�

and this contradicts the

fact that U

�

were supposed to be a cover of R

!

1

.

�

Proof of Theorem 2

We will begin by showing that there exists such a measure � on the Baire

subsets of 2

!

� !

!

1

:

Assuming CH let 2

!

= fx

�

: � < !

1

g.

For any � < !

1

let h�

�

n

2 2

n+1

: n 2 !i be de�ned by

�

�

n

(i) =

(

x

�

(i) if i < n

1� x

�

(n) if i = n
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Note that f[�

�

n

] : n 2 !g is a partition of 2

!

n fx

�

g.

For the convenience of the reader we �rst descibe what � would be on

2

!

� !.

Let � be the usual product measure on 2

!

. For any Borel B � 2

!

� !

and n 2 ! de�ne

B

n

= fx 2 2

!

: (x; n) 2 B and x 2 [�

0

n

]g:

Then de�ne

�(B) =

1

X

n=0

�(B

n

):

Note that since B

n

is a subset of [�

0

n

] and since the [�

0

n

] partition 2

!

n fx

0

g,

we get that � is a probability measure on 2

!

�!. Also note that for any Borel

C � 2

!

we will have that �(C � !) = �(C

0

) where C

0

= C n fx

0

g. Finally

note that for any n 2 ! the point (x

0

; n) 2 2

!

�! has an open neighborhood

which has �-measure zero, namely �([x

0

� m]� fng) = 0 for any m > n.

Now we indicate what � is on all of 2

!

� !

!

1

.

Let A be the algebra of Baire sets B � 2

!

� !

!

1

whose support in !

1

is

�nite. This means, that there exists a �nite F � !

1

such that:

for every (x; y); (x; y

0

) 2 2

!

� !

!

1

if y � F = y

0

� F , then

(x; y) 2 B i� (x; y

0

) 2 B:

For each s : F ! ! de�ne

C

s

= \f[�

�

s(�)

] : � 2 Fg � 2

!

:

A lot of the C

s

are empty, however they partition 2

!

nF . (For each x 2 2

!

nF

de�ne s : F ! ! by s(�) is the largest n such that x(n) = x

�

(n). Then

x 2 C

s

.)

De�ne

B

s

= fx 2 2

!

: 9y 2 !

!

1

s � y; (x; y) 2 B; and x 2 C

s

g

B

�

=

[

fB

s

: s : F ! !g

�(B) = �(B

�

)

To verify that this is well-de�ned we should check that if F � F

0

� !

1

for any F

0

�nite that

X

s:F!!

�(B

s

) =

X

t:F

0

!!

�(B

t

):
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But for any �xed s : F ! !

C

s

= [fC

t

: t : F

0

! !; s � tg [ (fx

�

2 C

s

: � 2 F

0

g:

Now since F is the support of B for each s : F ! !, B

s

will di�er from

[

fB

t

: t : F

0

! !; s � tg

by at most a �nite set, hence

�(B

s

) =

X

f�(B

t

) : t : F

0

! !; s � tg:

Thus the set B

�

(which depends on F ) is the same up to a �nite set.

To verify that � extends to the �-algebra generated by A, according to

Halmos [6], we need to show that whenever B

n

are disjoint elements of A

such that their union B = [fB

n

: n 2 !g is in A, we have

�(B) =

1

X

n=0

�(B

n

):

For each B

n

suppose that it is supported by the �nite set F

n

and B is

supported by the �nite set F . Without loss of generality, we may assume

F � F

n

for all n. To verify our equation it is enough to see that for any x

except possibly the x

�

for � 2

S

fF

n

: n 2 !g that

x 2 B

�

i� x 2

[

fB

�

n

: n 2 !g:

Let us verify this. Suppose x 2 B

�

. Then for some s : F ! ! and y � s

we have that (x; y) 2 B and x 2 C

s

. Since the support of B is F we can

rede�ne y so that for every

� 2

[

fF

n

: n 2 !g n F

y(�) is the �rst n such that x(n) 6= x

�

(n) (i.e. so that x 2 [�

�

y(�

]). Since

(x; y) 2 B there exists n such that (x; y) 2 B

n

. But since we are assuming

x 6= x

�

for any � 2 F

n

, there exists t : F

n

! ! such that t � s and if

t = y � F

n

, then we have that x 2 C

t

and hence x 2 B

�

n

.

Now let us check the converse. Suppose x 2 B

�

n

for some n. Then for

some t : F

n

! ! and some y � t we have (x; y) 2 B

n

and x 2 C

t

. But then
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since F � F

n

we have that (x; y) 2 B and x 2 C

s

where s = t � F and so

x 2 B

�

.

It follows that � extends to the �-algebra generated by A, i.e., the Baire

subsets of 2

!

�!

!

1

. Finally, we note that for every element (x; y) 2 2

!

�!

!

1

there exists a clopen set C with �(C) = 0 and (x; y) 2 C. Let x = x

�

and

suppose that y(�) = n. Then let s : f�g ! ! be de�ned by s(�) = n and

let t = x � (n+ 1). Then (x; y) 2 C = [t]� [s] and �([t]� [s]) = 0.

To obtain the same result for R

!

1

, �rst note that we have such a measure

on !

!

1

, since 2

!

� !

!

1

is a closed Baire set in !

!

� !

!

1

and we can identify

!

!

�!

!

1

with !

!+!

1

= !

!

1

. Now to \lift" � to �̂ on the Baire subsets of R

!

1

,

note that for every Baire B � R

!

1

the set B \!

!

1

is Baire in !

!

1

. So we can

let �̂(B) = �(B \ !

!

1

). The measure �̂ vanishes on an open neighborhood

of every point. To check this, suppose x 2 R

!

1

. Then if there exists some

� such that x(�) =2 !, then letting � > 0 be a quarter of the distance from

x(�) and the nearest element of !, we have that

x 2 U = fy 2 R

!

1

: jy(�)� x(�)j < �g

and �̂(U) = 0. On the otherhand if x 2 !

!

1

then for some �nite F � !

1

we

have that �([x � F ]) = 0, and so if we let

U = fy 2 R

!

1

: jy(�)� x(�)j < 1=4 for all � 2 Fg

then x 2 U and �̂(U) = 0.

�

Theorem 3 (Bockstein [1] [2]) If C � !

!

1

is a closed G

�

set, then C is

Baire.

Proof:

Suppose for contradiction that C is not countably supported. This means

that for each � < !

1

there exists f

i

�

: !

1

! ! for i = 0; 1 such that

f

0

�

� � = f

1

�

� � and f

0

�

2 C and f

1

�

=2 C:

Suppose C =

T

fU

n

: n 2 !g where U

n

are open. For each � choose �nite F

�

n

for n 2 ! so that

[f

1

�

� F

�

0

] \ C = ;
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[f

0

�

� F

�

n

] � U

n

By the push down lemma there exists H and a stationary set of � such that

F

0

�

\ � = H. Hence, it easy to �nd � < � such that

F

n

�

\ F

0

�

� �

for all n. Now if we de�ne g : !

1

! ! so that

g � F

n

�

= f

0

�

� F

n

�

and

g � F

0

�

= f

1

�

� F

0

�

then we get the contradiction that g =2 C but g 2

T

fU

n

: n 2 !g.

�

Theorem 4 (A.H.Stone [9]) The space !

!

1

is not normal.

Proof:

Let

C

i

= ff 2 !

!

1

: 8n 6= i jf

�1

figj � 1g

i.e., one-to-one except when equal to i. Then C

0

and C

1

are disjoint closed

sets which cannot be separated by disjoint open sets. To see this suppose

that U

0

and U

1

are disjoint open sets which separate C

0

and C

1

. For each

� < !

1

choose f

i

�

2 C

i

for i = 0; 1 such that

f

0

�

� � = f

1

�

� �:

For each � there exists a �nite F

�

such that

[f

0

�

� F

�

] � U

0

and [f

1

�

� F

�

] � U

1

:

But by the �-systems lemma it easy to �nd � < � such that F

�

\ F

�

� �.

But this means we can de�ne g : !

1

! ! so that

g � F

�

= f

0

�

� F

�

and g � F

�

= f

1

�

� F

�

which is a contradiction since then g 2 U

0

\ U

1

.

�
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Theorem 5 The usual product measure � on 2

!

1

makes all Borel subsets

measurable (not just the Baire sets).

Proof:

Let U � 2

!

1

be any open set. Suppose

U =

[

�<!

1

[s

�

]:

Then we may choose �

0

so that for every �

�(

[

�<�

0

[s

�

]) = �([s

�

] [

[

�<�

0

[s

�

]):

Let � =

S

�<�

0

domain(s

�

). Because this is the product measure it must be

that for every �

�([s

�

� �] n

[

�<�

0

[s

�

]) = 0:

So let

U

0

=

[

�<�

0

[s

�

])

and let

U

1

= U

0

[

[

�

0

��<!

1

[s

�

� �]):

Then U

0

and U

1

are Baire open sets, U

0

� U � U

1

, and �(U

1

n U

0

) = 0.

Hence, U is measurable.

�
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