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1

A function f : R ! R is approximately continuous i� it is continuous

in the density topology, i.e., for any open set U � R the set E = f

�1

(U) is

measurable and has Lebesgue density one at each of its points. Approximate

continuity was introduced by Denjoy [7] in his study of derivatives. Denjoy

proved that bounded approximately continuous functions are derivatives. It

follows from this that approximately continuous functions are Baire 1, i.e.,

pointwise limits of continuous functions. For more on these concepts, see

Bruckner [3], Luke�s, Mal�y, Zaji�cek [17], Tall [22], and Go�man, Neugebauer,

Nishiura [9].

For any f : R

2

! R de�ne

f

x

(y) = f

y

(x) = f(x; y)

for any x; y 2 R. A function f : R

2

! R is separately continuous if f

x

and

f

y

are continuous for every x; y 2 R. Lebesgue [16] in his �rst paper proved

that any separately continuous function is Baire 1. He also showed that if

f

x

is continuous for all x and f

y

Baire � for all y, then f is Baire �+ 1 (see

Kuratowski [14] p. 378). For more historical comments and generalizations

see Rudin [18]. Sierpi�nski [21] showed that there exists a nonmeasurable

f : R

2

! R which is separately Baire 1. (The characteristic function of a

nonmeasurable subset of the plane which meets every horizontal and vertical

line in at most one point.)

In this paper we shall prove:

Theorem 1 Let f : R

2

! R be such that f

x

is approximately continuous

and f

y

is Baire 1 for every x; y 2 R: Then f is Baire 2.

1
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Theorem 2 Suppose there exists a real-valued measurable cardinal. Then

for any function f : R

2

! R and � < !

1

, if f

x

is approximately continuous

and f

y

is Baire � for every x; y 2 R, then f is Baire �+ 1 as a function of

two variables.

Theorem 3 (i) Suppose that R can be covered by !

1

closed null sets. Then

there exists a nonmeasurable function f : R

2

! R such that f

x

is approxi-

mately continuous and f

y

is Baire 2 for every x; y 2 R:

(ii) Suppose that R can be covered by !

1

null sets. Then there exists a non-

measurable function f : R

2

! R such that f

x

is approximately continuous

and f

y

is Baire 3 for every x; y 2 R:

Theorem 4 In the random real model for any function f : R

2

! R if f

x

is

approximately continuous and f

y

is measurable for every x; y 2 R, then f is

measurable as a function of two variables.

Remarks. Davies [6] showed that any function of two variables which is

separately approximately continuous is Baire 2. Theorem 1 which generalizes

this was announced in Laczkovich and Petruska [15], but the proof was never

published. In Davies and Draveck�y [5] and Grande [10] it is shown that

CH implies the existence of a nonmeasurable function f such that f

x

is

approximately continuous for every x and f

y

is measurable for every y. It

is easy to check that these constructions, in fact, give Baire 2 sections. Our

Theorem 3 is a re�nement of this observation. Note that Bartoszynski and

Shelah [1] have shown that it is relatively consistent with ZFC that R is the

union of !

1

meager null sets, but not the union of !

1

closed null sets. It is

well known that R can be the union of !

1

closed null sets and the continuum

arbitrarily large.

In Theorem 2 we only use that for any family of continuum many sub-

sets of the real line there exists a measure extending Lebesgue measure and

making the family measurable. This is slightly weaker than a real-valued

measurable and has the consistency strength of a weakly compact cardinal

(see Carlson [4]).

It follows from Lebesgue's argument that any function f : R

2

! R

such that f

x

is continuous and f

y

is measurable for all x; y 2 R must be

measurable as a function of two variables. Theorems 3 and 4 show that this

fact is independent of set theory if we replace continuous by approximately

continuous.
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Proof of Theorem 1. This is an immediate consequence of the following

theorem due to Bourgain, Fremlin and Talagrand [2].

Theorem 5 (Bourgain, Fremlin, Talagrand) Let (X;�; �) be a proba-

bility space and let f : X � R ! R be bounded. If f

x

is Baire 1 for every

x 2 X and f

y

is measurable for every y 2 R, then the function

y 7!

Z

X

f

y

d�(x) (y 2 R)

is Baire 1.

Suppose that f

x

is approximately continuous and f

y

is Baire 1 for every

x; y 2 R:Without loss of generality we may assume that f is bounded. (Oth-

erwise, let h : R! (0; 1) be a homeomorphism. Then h � f is approximately

continuous when x is �xed and measurable when y is �xed. Hence h � f is

Baire 2 and therefore h

�1

� h � f = f is Baire 2.)

It follows from Theorem 5, that for every �xed y; the function

x 7!

Z

y

0

f

x

dt (x 2 R)

is Baire 1.

This implies that the function

F (x; y) =

Z

y

0

f

x

dt

is Baire 1, since F

y

is Baire 1 and the family fF

x

: x 2 Rg is uniformly

continuous (in fact, uniformly Lipschitz). The proof is this. Let F

n

: R

2

! R

be the function such that F

n

(x; i=n) = F (x; i=n) for every x 2 R and every

integer i; and let F

n

(x

0

; y) be linear in y 2 [(i� 1)=n; i=n] for every integer i

and every �xed x

0

: Then F

n

is Baire 1. Indeed, let F (x; i=n) = lim

j!1

g

i;j

(x);

where g

i;j

: R! R continuous. Let G

j

(x; i=n) = g

i;j

(x); letG

j

be continuous

in y and linear for y 2 [(i�1)=n; i=n] for every �xed x: Then G

j

is continuous

and G

j

! F

n

; so that F

n

is Baire 1. Finally, F

n

! F uniformly, so that F is

Baire 1 (see Kuratowski [14] p. 386).

Finally, since

f(x; y) = lim

n!1

F (x; y + (1=n))� F (x; y)

1=n

;
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it follows that f is Baire 2.

�

Proof of Theorem 2. This is the same as the proof of Theorem 1

except we use the following generalization of the Bourgain-Fremlin-Talagrand

Theorem 5:

Lemma 6 Let (X;�; �) be a probability space such that every subset of X

is in � and let f : X �R! R be bounded. For � < !

1

if f

x

is Baire � for

every x 2 X, then the function

F (y) =

Z

X

f

y

d�(x) for y 2 R

is Baire �.

Proof. This is proved by induction on �. If � = 0; that is, if f

x

is

continuous for every x; then the continuity of F follows from the dominated

convergence theorem. For � > 0, let �

n

be a nondecreasing sequence of

ordinals such that sup

n2!

(�

n

+ 1) = �. Let hf

n

: n 2 !i be a sequence of

uniformly bounded functions such that (f

n

)

x

is Baire �

n

for each n and

lim

n!1

f

n

(x; y) = f(x; y):

Then by induction the function

F

n

(y) =

Z

X

f

y

n

d�(x)

is Baire �

n

. By the dominated convergence theorem

lim

n!1

F

n

(y) = F (y)

is Baire �.

�

Since there is a real-valued measurable cardinal we can �nd an extension

� of Lebesgue measure � which makes every set of reals measurable. The

rest of the proof is the same as Theorem 1.

�

Proof of Theorem 3. Let R = [

�<!

1

C

�

; where C

�

is a closed set of

measure zero for every � < !

1

:
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By a Lemma of Zahorski [23] (see also Bruckner [3] p. 28) for any G

�

mea-

sure zero set G � R there exists an approximately continuous g : R! [0; 1]

such that g

�1

f0g = G. So for each � let g

�

: R! [0; 1] be an approximately

continuous function such that g

�1

�

f0g is a measure zero set covering

S

�<�

C

�

.

We de�ne f(x; y) = g

�

(y); where � is the smallest ordinal such that x 2 C

�

:

Obviously, f

x

is approximately continuous for every x: For any �xed y;

let � be such that y 2 C

�

: If x =2

S

�<�

C

�

, then f(x; y) = 0: It is also clear

that f

y

is constant on each of the G

�

sets C

�

n [

<�

C



. It follows that f

y

is

Baire 2, since the range of f

y

is countable and the preimage of any set is a

countable union of G

�

-sets. Finally, f is not measurable, since

Z

R

�

Z

R

f

x

dy

�

dx > 0 =

Z

R

�

Z

R

f

y

dx

�

dy:

For the second part, let R = [

�<!

1

C

�

; where �(C

�

) = 0 for every � < !

1

:

We may assume that each C

�

is a G

�

set. Following the proof of (i), we

obtain a nonmeasurable function f such that f

x

is approximately continuous

for every x: Also, for every y; the preimage of any set by f

y

is a countable

union of F

��

sets, and thus f

y

is Baire 3.

�

Proof of Theorem 4. We will use the following lemmas. For a set in

the plane H � R�R and x; y 2 R let

H

x

= fy 2 R : (x; y) 2 Hg and H

y

= fx 2 R : (x; y) 2 Hg:

Lemma 7 The following statements are equivalent.

(i) There exists a nonmeasurable function f : R

2

! R such that f

x

is ap-

proximately continuous and f

y

is measurable for every x; y 2 R.

(ii) There exists a set H � R

2

such that �(H

y

) = 0 for every y 2 R, but the

set fx : �(R nH

x

) = 0g has positive outer measure.

Proof. (ii)=)(i): Suppose (ii) and let A = fx : �(R n H

x

) = 0g.

For every x 2 A there is a G

�

null set B

x

� R such that R n H

x

� B

x

:

This implies by Zahorski's Lemma that for every x 2 A there exists an

approximately continuous function g

x

: R! R such that g

x

(y) = 0 if y 2 B

x

and 0 < g

x

(y) � 1 if y =2 B

x

:
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For every y 2 R we de�ne f(x; y) = g

x

(y) if x 2 A, and f(x; y) = 0

if x =2 A: Then f

x

is approximately continuous for every x. Also, f

y

is

measurable for every y; since f

y

(x) = 0 for a.e. x: Indeed,

f

y

(x) 6= 0 =) x 2 A; y =2 B

x

;=) y 2 H

x

=) x 2 H

y

and hence

�(fx : f

y

(x) 6= 0g) � �(H

y

) = 0:

This implies that

Z

R

�

Z

R

f

y

dx

�

dy = 0:

On the other hand,

Z

R

�

Z

R

f

x

dy

�

dx > 0;

since

R

R

f

x

dy > 0 for every x 2 A and A has positive outer measure. There-

fore f cannot be measurable.

(i)=)(ii): Suppose (i); we may also assume that f is bounded.

Since every approximately continuous function is Baire 1, it follows as in

the proof of Theorem 1, that the function

F (x; y) =

Z

x

0

f

y

dt

is Baire 1. Let

g(x; y) =

(

lim

n!1

n � (F (x + (1=n); y)� F (x; y)) if this limit exists

0 if it does not.

Then g is Borel measurable, and for every �xed y; we have g(x; y) = f(x; y)

for a.e. x by Lebesgue's classical theorem.

Claim. For any g : R

2

! R measurable, there exists a Borel set B � R

2

such that �

2

(B) = 0 and for every (x; y) =2 B the function g

x

is approximately

continuous at y.

Proof. This easily follows from the fact that if E � R

2

is measurable

then there is a Borel set B � R

2

such that �

2

(B) = 0 and y is a density

point of E

x

for every (x; y) 2 E nB; see the argument on pp. 130-131 of Saks
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[20]. For the convenience of the reader we sketch the proof here. Without

loss of generality, we may assume E is compact. Fix � > 0 and de�ne

A

�

n

= f(x; y) 2 E : �(E

x

\ I) � (1� �)�(I) whenever y 2 I and jIj < 1=ng:

(We use I to range over nondegenerate closed intervals.) Then it can be

shown that A

�

n

is closed since E is. Therefore

N

�

= E n

[

n2!

A

�

n

is measurable. By the Lebesgue density theorem, (N

�

)

x

has measure zero for

every x and hence by Fubini's Theorem N

�

has planar measure zero. Let

B =

[

�>0

N

�

:

Then �

2

(B) = 0 and y is a density point of E

x

for every (x; y) 2 E nB. To

obtain the result for g let B be a measure zero subset of the plane such that

for every U in some countable basis for R if (x; y) 2 g

�1

(U) n B, then y is

a density point of (g

�1

(U))

x

= g

�1

x

(U). It follows that g

x

is approximately

continuous at y for every (x; y) 2 R nB. This proves the Claim.

�

Let

K = f(x; y) : g(x; y) 6= f(x; y)g;

then �(K

y

) = 0 for every y: Let x be �xed. Then, for y =2 B

x

; the functions

f

x

and g

x

are both approximately continuous at y. Therefore, if (x; y) 2 K

then the set

K

x

= fy : f

x

(y) 6= g

x

(y)g

is measurable and of positive measure. (This is because if two functions are

approximately continuous at a point x and take on di�erent values there,

then there exists a measurable set with density one at x where they di�er.)

Hence for any x, K

x

is measurable, and either K

x

� B

x

or K

x

has positive

measure. Let A = fx : �(K

x

) > 0g; then K � B [ (A�R): If �(A) = 0 then

�

2

(K) = 0 and f = g almost everywhere, contradicting our assumption that

f is not measurable. Thus A has positive outer measure.
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Now, putting H = f(x; y + r) : (x; y) 2 K; r 2 Qg; we obtain a set such

that �(H

y

) = 0 for every y and �(R n H

x

) = 0 for x 2 A; and hence (ii)

holds.

�

By the random real model we refer to any model of set theory which is

a generic extension of a countable transitive ground model of CH by adding

!

2

random reals, i.e., forcing with the measure algebra on 2

!

2

.

Lemma 8 In the random real model the following two facts hold:

1. R is not the union of !

1

measure zero sets.

2. Any Y � R with positive outer measure contains a subset Z � Y of

cardinality !

1

with positive outer measure.

Proof. Lemma 8.1 is due to Solovay [19] and is also proved in Kunen

[13] 3.18 and probably Jech [11]. Lemma 8.2 is probably due to Kunen (see

remark in Tall [22] p. 283), but we don't know of a published proof, so we

include one here. The category version of Lemma 8.2 appears in Komj�ath

[12].

Since 2

!

and [0; 1] are measure isomorphic, we may work in 2

!

. For any

set � let 2

�

be product space of the two point set 2 = f0; 1g with the usual

product measure and topology. Let B(�) denote the measure algebra, i.e.,

the Borel subsets of 2

�

modulo the measure zero sets. This is a complete

boolean algebra which satis�es the countable chain condition.

Let M be a countable standard model of ZFC+CH. For any set � in M

let B (�)

M

denote the measure algebra inM . A generic �lter may be regarded

as a map G : �! 2.

We use the following facts which are probably all due to Solovay:

1. (see Kunen [13] 3.13) For any two disjoint sets � and � in a countable

standard model M ,

(a) G is B(� [ �)-generic over M i�

(b) G � � is B(�)

M

-generic over M and G � � is B (�)

M [G��]

-generic

over M [G � �].
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2. (Kunen [13] 3.22) Suppose G : � ! 2 is B (�)-generic over M and

Y 2M is such that

M j= Y � 2

!

has positive outer measure.

Then

M [G] j= Y � 2

!

has positive outer measure.

3. (Well-known) Suppose G : !

2

! 2 is B (!

2

)-generic over M and

M [G] j= Y has positive outer measure.

Then there exists a set � � !

2

in M of cardinality !

1

in M such that

if Z =M [G � �] \ Y , then

M [G � �] j= Z has positive outer measure.

Fact 3 is proved with a Lowenheim-Skolem argument as follows. Let

f : 2

!

! 2� 2

!

be a map with the following property: If f(x) = (i; z), then

a i = 1 i� x 2 Y and

b if x is a code for a Borel set of measure zero set Z(x), then z 2 Y nZ(x).

Since there is a recursive pairing function taking 2 � 2

!

to 2

!

it su�ces to

show that for any function f : 2

!

! 2

!

in M [G] there exists a set � � !

2

in

M of size !

1

in M such that 2

!

\M [G � �] is closed under f and

f � (M [G � �]) 2M [G � �]:

For any x 2 2

!

\M [G] there exists a sequence (B

n

: n 2 !) of Borel sets

in M with countable support such that for any n 2 ! we have x(n) = 1 i�

G 2 B

n

(the equivalence class of B

n

is the boolean value of the statement

\x(n) = 1"). Any such sequence (B

n

: n 2 !) is called a canonical name

for an element of 2

!

(see Kunen [13] 3.17). Working in the ground model

M with a name for the function f , we can de�ne a map F from canonical

names to canonical names such that for any canonical name � , F (�) will be

a canonical name for f(�

G

). Since canonical names have countable support

and M satis�es the GCH there exists a set � � !

2

of cardinality !

1

in M

9



such that for any canonical name � with support from �, the support of F (�)

is a subset of �. This proves Fact 3.

To prove Lemma 8.2, suppose Y � R has positive outer measure. By

Fact 3 above there exists a set � � !

2

inM of cardinality !

1

inM such that

if Z =M [G] \ Y , then

M [G � �] j= Z has positive outer measure.

Now since M is a model of CH we have that M [G � �] is a model of CH (see

Kunen [13] 3.14). Hence Z has cardinality !

1

. By Facts 1 and 2, it follows

that Z has positive outer measure in M [G].

�

Finally we prove Theorem 4. By Lemma 7 if there were such a nonmea-

surable function, then there would be a set H � R

2

such that �(H

y

) = 0 for

every y 2 R; and Y = fx : �(R nH

x

) = 0g has positive outer measure. By

applying Lemma 8.2 we get Z � Y with positive outer measure and cardi-

nality !

1

. By Lemma 8.1 we know that the reals are not covered by the !

1

measure zero sets fR nH

x

: x 2 Zg. Suppose y =2

S

fR nH

x

: x 2 Zg. Then

y 2

T

fH

x

: x 2 Zg which implies Z � H

y

contradicting the fact that H

y

has zero measure.

�

Remarks. The next statement is implicit in Freiling [8] (see the proof

of the Theorem on p. 198). The following are equivalent:

(i) there is a function f : [0; 1]�[0; 1]! [0; 1] such that f

x

; f

y

are measurable

for every x and y; and

R

(

R

f

x

dy)dx 6=

R

(

R

f

y

dx)dy;

(ii) there exists a set H � [0; 1]� [0; 1] such that H

y

is a null set for every

y and [0; 1] nH

x

is a null set for every x.

This is similar to our Lemma 7; also, it implies that if Fubini's theorem is not

true for arbitrary bounded functions, then there is a nonmeasurable function

f such that f

x

is approximately continuous and f

y

is measurable for every

x; y:
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