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Analytic subspace of the reals without an analytic basis.

A Hamel basis is a basis for the reals R considered as a vector space over
the field of rationals Q.

Theorem 1. (Erdos and Sierpinski [1]) There is no analytic Hamel base.

Proof. Suppose on the contrary that B is such a basis. R is the countable
union of sets of the form q1B + . . . qnB, where q1, . . . , qn ∈ Q. These sets
are all analytic, hence have the property of Baire and thus, by the Baire
category theorem, for some q1, . . . , qn ∈ Q, the set A = q1B + . . . qnB is non
meager. There is an interval I ⊆ R such that A is comeager in I. Pick any
distinct x1, . . . , xn ∈ B. Let q ∈ Q and J ⊆ I be a subinterval such that
q(x1 + . . .+xn) +A is comeager J . Note that q can be chosen so that q 6= qi,
for each i. This will ensure that there will be none of the xi will be canceled
out by elements of A. Then

W = (q(x1 + . . .+ xn) + A) ∩ A 6= ∅
because both terms of the intersection above are comeager in J . Any element
of W will be at the same time a linear combination of at least n+ 1 elements
of B and also n elements of B. This contradicts the linear independence of
B �

Theorem 2. Every proper analytic subspace of R is measure zero and mea-
ger.

Proof. For the first claim, suppose that A is an analytic subspace of R has
positive measure. Then by Steinhaus’ theorem, A−A (the set of differences
of elements of A) contains a nontrivial interval. Hence A must be all of R.

For the second claim, suppose that A is an analytic subspace which is
non-meager. A has the property of Baire and hence there is an open interval
I in which A is comeager. Fix any α ∈ R. Let q ∈ Q be small enough that
qα is less than the length of I. Then J = (qα + I) ∩ I is non empty and
qα + A and A are both comeager in J . In other words, there exist x, y ∈ A
such that qα + x = y. Hence α = 1

q
(y − x) ∈ A. We see that A = R.

�
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The following answers a question raised by Ashutosh Kumar.

Theorem 3. There exists a proper (and hence meager) analytic subspace of
R with no analytic basis.

We begin by describing the subspace in question.
Let εn be a decreasing sequence of positive rational numbers such that

for every k and each N ≥ k, ∑
n>N

kεn ≤
1

4
εN

This condition requires the εn to be a very rapidly decreasing sequence.
Now let P be the set defined by

P = {
∑
n∈ω

xnεn : xn ∈ {−1, 0, 1}}

P is essentially a very sparse Cantor set. We now take the subspace A to
be span(P ). Our first objective is to show that A is a proper subspace of R.
To this end, we make the following observations: A is the union of all sets
of the form q1P + . . . + qnP , where the qi are rational numbers. By taking
common denominators, we can write such sets as 1

m
(p1P + . . . + pnP ), for

some p1, . . . , pn ∈ ω. If we let k = p1 + . . .+ pn, then

(p1P + . . .+ pnP ) ⊂ P + P + . . .+ P︸ ︷︷ ︸
k times

We give this latter set the name Qk. Observe that Qk can be described
by

Qk = {
∑
n∈ω

xnεn : xn ∈ {−k,−k + 1, . . . , k − 1, k}}

p1P + . . .+ pnP ⊂ Qk and hence 1
m

(p1P + . . .+ pnP ) ⊂ 1
m
Qk. Note that

of course each 1
m
Qk is also a subset of A.

Before proceeding, note that throughout we will use the notation σ̂ for
the rational number

∑
n<|σ| σ(n)εn, where σ is a finite sequence of integers.

We now show that A is a proper subspace via the following two lemmas.
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Lemma 4. Suppose that σ, τ ∈ {−k, . . . , k}<ω such that |σ| = |τ | > k. If
σ <lex τ , then every point in Qσ

k is less than every point in Qτ
k.

Proof. It suffices to prove this lemma for the case in which there exists γ
such that σ = γ î and τ = γ (̂i + 1), for some i ∈ {−k, . . . , k − 1}. Let
M = |γ|. The greatest element of Qσ

k is

α = σ̂ +
∑
n>M

kεn = γ̂ + iεM +
∑
n>M

kεn

and the least element of Qτ
k is

β = τ̂ −
∑
n>M

kεn = γ̂ + (iεM −
∑
n>M

kεn)

Therefore,

β − α = εM −
∑
n>M

2kεn ≥
1

2
εM > 0

�

Lemma 5. Each Qσ
k is nowhere dense, for |σ| > k.

Proof. Fix any interval I such that I ∩ Qσ
k 6= ∅. Choose τ ⊇ σ such that

τ̂ î , ˆτ (̂i+ 1) ∈ I, for some i ∈ {−k, . . . , k − 1}. Then every element of

Qτˆi
k is less than every element of Q

τˆ(i+1)
k by the previous lemma. Therefore,

between all Qσ
k are closed sets, we may take an interval J between Qτˆi

k and

Q
τˆ(i+1)
k . J is disjoint from Qσ

k , because Qσ
k is the disjoint union of Qγ

k for
|γ| = |τ |+ 1 and by the previous lemma, no such Qγ

k intersects J .
�

This shows that each Qσ
k is nowhere dense. Hence Qk is as well, being a

finite union of such Qσ
k . It follows that each 1

m
Qk is nowhere dense and hence

A =
⋃
m,k∈ω

1
m
Qk is meager. A is therefore proper.

Now we get to our main claim.

Lemma 6. A has no analytic basis as a vector space over Q.
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We begin with some remarks about the set P . As in the above lemma,
for σ ∈ {−1, 0, 1}<ω, we define

Nσ = {
∑
n∈ω

xnεn : xn ∈ {−1, 0, 1} & σ(n) = xn for n < |σ|}

Note that although the Nσ are closed sets in R (and hence in P ), they are
also relatively open in P . In fact, they form a base for the relative topology
on P .

Proof of Lemma 6. Suppose towards a contradiction that B is an analytic
basis for A. We may assume, without loss of generality, that 1 ∈ B.
Otherwise, suppose that x1, . . . , xn ∈ B and q1, . . . qn ∈ Q are such that
1 = q1x1 + . . . + qnxn. Then [(q1 − 1)x1 + q2x2 + . . . qnxn] + x1 = 1. Hence
[(q1− 1)x1 + q2x2 + . . . qnxn] +B is an analytic basis for A which contains 1.

Since B is a basis, the generating set P of A must be covered by a union
of set of the form

q1(B ∩ I1) + . . .+ qn(B ∩ In)

where q1, . . . , qn ∈ Q and I1, . . . , In are pairwise disjoint intervals with ratio-
nal endpoints. To avoid confusion later on, we assume here that all qj are
nonzero and that each B ∩ Ij is nonempty.

P is an uncountable closed set and hence a Baire space when regarded as
a topological subspace of R. Because the union described above is countable,
the Baire category theorem yields that there are q1, . . . , qn, I1, . . . , In as above
such that

W = q1(B ∩ I1) + . . .+ qn(B ∩ In)

is non-meager in P . W is analytic, hence has the Baire property. We there-
fore obtain σ ∈ {−1, 0, 1}ω such that W is comeager in Nσ. (Because the Nσ

are a base for the relative topology on P .)
We now define a homeomorphism π of Nσ as follows: If z ∈ Nσ, then

z = σ̂ +
∑

n≥|σ| xnεn, for some sequence 〈xn : n ∈ ω〉 ∈ {−1, 0, 1}ω. We

define π(z) = σ̂ −
∑

n≥|σ| xnεn. It is clear that π is an autohomeomorphism
of Nσ.

It follows that π−1(W ) is also comeager in Nσ and hence W∩π−1(W ) 6= ∅.
Let z ∈ W ∩ π−1(W ). Then z, π(z) ∈ W . Note that we may assume that z

4



(and hence π(z)) are irrational. This follows from the fact that the rationals
are meager in Nσ.

We may now take xj, yj ∈ B ∩ Ij such that

z = q1x1 + . . .+ qnxn

π(z) = q1y1 + . . .+ qnyn

Thus

z + π(z) = q1(x1 + y1) + . . .+ qn(xn + yn)

By the definition of π, z + π(z) = σ̂ ∈ Q. Note that since the Ij are
disjoint, for each j and i 6= j xj 6= xi, yi. Further, because z /∈ Q, z 6= π(z),
we have that for at least one j, xj 6= yj. We have therefore expressed a
rational number (namely σ̂) as a sum of n+ 1 distinct elements of the basis
B. On the other hand, 1 ∈ B and any rational can be expressed as a rational
scalar multiple of 1, i.e. a linear combination of length 1. By independence,
such linear combinations are unique and so the above leads to a contradiction.

�

We conclude with some further notes.

Theorem 7. For all α > 2 there exists a Q–subspace A of R which is Σ0
α,

but not Π0
α.

Proof. Let C ⊆ R be a perfect, linearly independent set. Choose B ⊆ C
which is Σ0

α, but not Π0
α. Take A to be the linear span of B.

First of all, A is not Π0
α. To see this, observe that, by the independence

of C, A ∩ C = B. If A were Π0
α, then B would be as well.

Secondly, A is Σ0
α. Observe that A is the union of sets of the form.

q1(B ∩ I1) + . . .+ qn(B ∩ In)

Where the qi are nonzero rational numbers and the Ii are disjoint intervals
with rational endpoints. We can define a homeomorphism

n∏
i=1

(C ∩ Ii)→ qi(C ∩ Ii) + . . .+ (C ∩ In)
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by 〈x1, . . . , xn〉 7→ q1x1 + . . .+ qnxn. Under this map,
∏n

i=1(B ∩ Ii) maps
onto q1(B ∩ I1) + . . . + qn(B ∩ In). Hence this latter set of is of the same
Borel class as B, namely Σ0

α. Since the union above is countable, A is also
Σ0
α.

�

Theorem 7 is also a consequence of Theorem 2.5 of Farah and Solecki [2]
but has a shorter proof.

Theorem 8. For all α > 3, there exists a Q-subspace W of R which is Π0
α

and not Σ0
α.

Proof. Let C ⊂ R be a perfect, independent set over Q. Let A0 ⊃ A1 ⊃ . . .
be subsets of C which are Σ0

<α and such that A =
⋂
n∈ω An is Π0

α \Σ0
α. Let

Wn = spanQ(An) and W =
⋂
n∈ωWn. Then each Wn is Σ0

<α as in the proof
of Theorem 7. Thus W is Π0

α, but not Σ0
α. If W were Σ0

α, then A = W ∩ C
would be as well. �
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