K. Beros A. Miller February 2009

Analytic subspace of the reals without an analytic basis.

A Hamel basis is a basis for the reals \mathbb{R} considered as a vector space over the field of rationals \mathbb{Q} .

Theorem 1. (Erdos and Sierpinski [1]) There is no analytic Hamel base.

Proof. Suppose on the contrary that B is such a basis. \mathbb{R} is the countable union of sets of the form $q_1B + \ldots q_nB$, where $q_1, \ldots, q_n \in \mathbb{Q}$. These sets are all analytic, hence have the property of Baire and thus, by the Baire category theorem, for some $q_1, \ldots, q_n \in \mathbb{Q}$, the set $A = q_1B + \ldots q_nB$ is non meager. There is an interval $I \subseteq \mathbb{R}$ such that A is comeager in I. Pick any distinct $x_1, \ldots, x_n \in B$. Let $q \in \mathbb{Q}$ and $J \subseteq I$ be a subinterval such that $q(x_1 + \ldots + x_n) + A$ is comeager J. Note that q can be chosen so that $q \neq q_i$, for each i. This will ensure that there will be none of the x_i will be canceled out by elements of A. Then

$$W = (q(x_1 + \ldots + x_n) + A) \cap A \neq \emptyset$$

because both terms of the intersection above are comeager in J. Any element of W will be at the same time a linear combination of at least n+1 elements of B and also n elements of B. This contradicts the linear independence of B

Theorem 2. Every proper analytic subspace of \mathbb{R} is measure zero and meager.

Proof. For the first claim, suppose that A is an analytic subspace of \mathbb{R} has positive measure. Then by Steinhaus' theorem, A - A (the set of differences of elements of A) contains a nontrivial interval. Hence A must be all of \mathbb{R} .

For the second claim, suppose that A is an analytic subspace which is non-meager. A has the property of Baire and hence there is an open interval I in which A is comeager. Fix any $\alpha \in \mathbb{R}$. Let $q \in \mathbb{Q}$ be small enough that $q\alpha$ is less than the length of I. Then $J = (q\alpha + I) \cap I$ is non empty and $q\alpha + A$ and A are both comeager in J. In other words, there exist $x, y \in A$ such that $q\alpha + x = y$. Hence $\alpha = \frac{1}{q}(y - x) \in A$. We see that $A = \mathbb{R}$.

 \boxtimes

The following answers a question raised by Ashutosh Kumar.

Theorem 3. There exists a proper (and hence meager) analytic subspace of \mathbb{R} with no analytic basis.

We begin by describing the subspace in question.

Let ϵ_n be a decreasing sequence of positive rational numbers such that for every k and each $N \ge k$,

$$\sum_{n>N} k\epsilon_n \le \frac{1}{4}\epsilon_N$$

This condition requires the ϵ_n to be a very rapidly decreasing sequence. Now let P be the set defined by

$$P = \left\{ \sum_{n \in \omega} x_n \epsilon_n : x_n \in \{-1, 0, 1\} \right\}$$

P is essentially a very sparse Cantor set. We now take the subspace A to be span(P). Our first objective is to show that A is a proper subspace of \mathbb{R} . To this end, we make the following observations: A is the union of all sets of the form $q_1P + \ldots + q_nP$, where the q_i are rational numbers. By taking common denominators, we can write such sets as $\frac{1}{m}(p_1P + \ldots + p_nP)$, for some $p_1, \ldots, p_n \in \omega$. If we let $k = p_1 + \ldots + p_n$, then

$$(p_1P + \ldots + p_nP) \subset \underbrace{P + P + \ldots + P}_{k \text{ times}}$$

We give this latter set the name Q_k . Observe that Q_k can be described by

$$Q_{k} = \{\sum_{n \in \omega} x_{n} \epsilon_{n} : x_{n} \in \{-k, -k+1, \dots, k-1, k\}\}$$

 $p_1P + \ldots + p_nP \subset Q_k$ and hence $\frac{1}{m}(p_1P + \ldots + p_nP) \subset \frac{1}{m}Q_k$. Note that of course each $\frac{1}{m}Q_k$ is also a subset of A.

Before proceeding, note that throughout we will use the notation $\hat{\sigma}$ for the rational number $\sum_{n < |\sigma|} \sigma(n) \epsilon_n$, where σ is a finite sequence of integers. We now show that A is a proper subspace via the following two lemmas.

Lemma 4. Suppose that $\sigma, \tau \in \{-k, \ldots, k\}^{<\omega}$ such that $|\sigma| = |\tau| > k$. If $\sigma <_{lex} \tau$, then every point in Q_k^{σ} is less than every point in Q_k^{τ} .

Proof. It suffices to prove this lemma for the case in which there exists γ such that $\sigma = \gamma \hat{i}$ and $\tau = \gamma \hat{i}(i+1)$, for some $i \in \{-k, \dots, k-1\}$. Let $M = |\gamma|$. The greatest element of Q_k^{σ} is

$$\alpha = \hat{\sigma} + \sum_{n > M} k\epsilon_n = \hat{\gamma} + i\epsilon_M + \sum_{n > M} k\epsilon_n$$

and the least element of Q_k^{τ} is

$$\beta = \hat{\tau} - \sum_{n > M} k\epsilon_n = \hat{\gamma} + (i\epsilon_M - \sum_{n > M} k\epsilon_n)$$

Therefore,

$$\beta - \alpha = \epsilon_M - \sum_{n > M} 2k\epsilon_n \ge \frac{1}{2}\epsilon_M > 0$$

Lemma 5. Each Q_k^{σ} is nowhere dense, for $|\sigma| > k$.

Proof. Fix any interval I such that $I \cap Q_k^{\sigma} \neq \emptyset$. Choose $\tau \supseteq \sigma$ such that $\tau \hat{i}, \tau \hat{i}, \tau \hat{i} + 1 \in I$, for some $i \in \{-k, \dots, k-1\}$. Then every element of $Q_k^{\tau \hat{i}}$ is less than every element of $Q_k^{\tau \hat{i}(i+1)}$ by the previous lemma. Therefore, between all Q_k^{σ} are closed sets, we may take an interval J between $Q_k^{\tau \hat{i}}$ and $Q_k^{\tau \hat{i}(i+1)}$. J is disjoint from Q_k^{σ} , because Q_k^{σ} is the disjoint union of Q_k^{γ} for $|\gamma| = |\tau| + 1$ and by the previous lemma, no such Q_k^{γ} intersects J.

 \boxtimes

This shows that each Q_k^{σ} is nowhere dense. Hence Q_k is as well, being a finite union of such Q_k^{σ} . It follows that each $\frac{1}{m}Q_k$ is nowhere dense and hence $A = \bigcup_{m,k\in\omega} \frac{1}{m}Q_k$ is meager. A is therefore proper.

Now we get to our main claim.

Lemma 6. A has no analytic basis as a vector space over \mathbb{Q} .

We begin with some remarks about the set P. As in the above lemma, for $\sigma \in \{-1, 0, 1\}^{<\omega}$, we define

$$N_{\sigma} = \{ \sum_{n \in \omega} x_n \epsilon_n : x_n \in \{-1, 0, 1\} \& \sigma(n) = x_n \text{ for } n < |\sigma| \}$$

Note that although the N_{σ} are closed sets in \mathbb{R} (and hence in P), they are also relatively open in P. In fact, they form a base for the relative topology on P.

Proof of Lemma 6. Suppose towards a contradiction that B is an analytic basis for A. We may assume, without loss of generality, that $1 \in B$. Otherwise, suppose that $x_1, \ldots, x_n \in B$ and $q_1, \ldots, q_n \in \mathbb{Q}$ are such that $1 = q_1x_1 + \ldots + q_nx_n$. Then $[(q_1 - 1)x_1 + q_2x_2 + \ldots + q_nx_n] + x_1 = 1$. Hence $[(q_1 - 1)x_1 + q_2x_2 + \ldots + q_nx_n] + B$ is an analytic basis for A which contains 1.

Since B is a basis, the generating set P of A must be covered by a union of set of the form

$$q_1(B \cap I_1) + \ldots + q_n(B \cap I_n)$$

where $q_1, \ldots, q_n \in \mathbb{Q}$ and I_1, \ldots, I_n are pairwise disjoint intervals with rational endpoints. To avoid confusion later on, we assume here that all q_j are nonzero and that each $B \cap I_j$ is nonempty.

P is an uncountable closed set and hence a Baire space when regarded as a topological subspace of \mathbb{R} . Because the union described above is countable, the Baire category theorem yields that there are $q_1, \ldots, q_n, I_1, \ldots, I_n$ as above such that

$$W = q_1(B \cap I_1) + \ldots + q_n(B \cap I_n)$$

is non-meager in P. W is analytic, hence has the Baire property. We therefore obtain $\sigma \in \{-1, 0, 1\}^{\omega}$ such that W is comeager in N_{σ} . (Because the N_{σ} are a base for the relative topology on P.)

We now define a homeomorphism π of N_{σ} as follows: If $z \in N_{\sigma}$, then $z = \hat{\sigma} + \sum_{n \ge |\sigma|} x_n \epsilon_n$, for some sequence $\langle x_n : n \in \omega \rangle \in \{-1, 0, 1\}^{\omega}$. We define $\pi(z) = \hat{\sigma} - \sum_{n \ge |\sigma|} x_n \epsilon_n$. It is clear that π is an autohomeomorphism of N_{σ} .

It follows that $\pi^{-1}(W)$ is also comeager in N_{σ} and hence $W \cap \pi^{-1}(W) \neq \emptyset$. Let $z \in W \cap \pi^{-1}(W)$. Then $z, \pi(z) \in W$. Note that we may assume that z (and hence $\pi(z)$) are irrational. This follows from the fact that the rationals are meager in N_{σ} .

We may now take $x_j, y_j \in B \cap I_j$ such that

$$z = q_1 x_1 + \ldots + q_n x_n$$
$$\pi(z) = q_1 y_1 + \ldots + q_n y_n$$

Thus

$$z + \pi(z) = q_1(x_1 + y_1) + \ldots + q_n(x_n + y_n)$$

By the definition of π , $z + \pi(z) = \hat{\sigma} \in \mathbb{Q}$. Note that since the I_j are disjoint, for each j and $i \neq j$ $x_j \neq x_i, y_i$. Further, because $z \notin \mathbb{Q}, z \neq \pi(z)$, we have that for at least one $j, x_j \neq y_j$. We have therefore expressed a rational number (namely $\hat{\sigma}$) as a sum of n + 1 distinct elements of the basis B. On the other hand, $1 \in B$ and any rational can be expressed as a rational scalar multiple of 1, i.e. a linear combination of length 1. By independence, such linear combinations are unique and so the above leads to a contradiction.

We conclude with some further notes.

Theorem 7. For all $\alpha > 2$ there exists a \mathbb{Q} -subspace A of \mathbb{R} which is Σ^0_{α} , but not Π^0_{α} .

Proof. Let $C \subseteq \mathbb{R}$ be a perfect, linearly independent set. Choose $B \subseteq C$ which is Σ^0_{α} , but not Π^0_{α} . Take A to be the linear span of B.

First of all, A is not Π^0_{α} . To see this, observe that, by the independence of $C, A \cap C = B$. If A were Π^0_{α} , then B would be as well.

Secondly, A is Σ^0_{α} . Observe that A is the union of sets of the form.

$$q_1(B \cap I_1) + \ldots + q_n(B \cap I_n)$$

Where the q_i are nonzero rational numbers and the I_i are disjoint intervals with rational endpoints. We can define a homeomorphism

$$\prod_{i=1}^{n} (C \cap I_i) \to q_i (C \cap I_i) + \ldots + (C \cap I_n)$$

by $\langle x_1, \ldots, x_n \rangle \mapsto q_1 x_1 + \ldots + q_n x_n$. Under this map, $\prod_{i=1}^n (B \cap I_i)$ maps onto $q_1(B \cap I_1) + \ldots + q_n(B \cap I_n)$. Hence this latter set of is of the same Borel class as B, namely Σ_{α}^0 . Since the union above is countable, A is also Σ_{α}^0 .

 \boxtimes

Theorem 7 is also a consequence of Theorem 2.5 of Farah and Solecki [2] but has a shorter proof.

Theorem 8. For all $\alpha > 3$, there exists a Q-subspace W of \mathbb{R} which is Π^0_{α} and not Σ^0_{α} .

Proof. Let $C \subset \mathbb{R}$ be a perfect, independent set over \mathbb{Q} . Let $A_0 \supset A_1 \supset \ldots$ be subsets of C which are $\Sigma_{<\alpha}^0$ and such that $A = \bigcap_{n \in \omega} A_n$ is $\Pi_{\alpha}^0 \setminus \Sigma_{\alpha}^0$. Let $W_n = \operatorname{span}_{\mathbb{Q}}(A_n)$ and $W = \bigcap_{n \in \omega} W_n$. Then each W_n is $\Sigma_{<\alpha}^0$ as in the proof of Theorem 7. Thus W is Π_{α}^0 , but not Σ_{α}^0 . If W were Σ_{α}^0 , then $A = W \cap C$ would be as well.

References

- Erdös, P.; Some remarks on set theory. Proc. Amer. Math. Soc. 1, (1950). 127-141.
- [2] Farah, Ilijas; Solecki, Sławomir; Borel subgroups of Polish groups. Adv. Math. 199 (2006), no. 2, 499-541.