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Analytic subspace of the reals without an analytic basis.

A Hamel basis is a basis for the reals R considered as a vector space over
the field of rationals Q.

Theorem 1. (Erdos and Sierpinski [1]) There is no analytic Hamel base.

Proof. Suppose on the contrary that B is such a basis. R is the countable
union of sets of the form ¢;B + ...q,B, where q,...,q, € Q. These sets
are all analytic, hence have the property of Baire and thus, by the Baire
category theorem, for some ¢,...,q, € Q, the set A= ¢ B+ ...q,B is non
meager. There is an interval I C R such that A is comeager in I. Pick any
distinct x1,...,2, € B. Let ¢ € Q and J C I be a subinterval such that
q(z1+...+x,)+ Ais comeager J. Note that ¢ can be chosen so that ¢ # ¢;,
for each 7. This will ensure that there will be none of the x; will be canceled
out by elements of A. Then

W= (¢gz14+...4x,) +ANA#D

because both terms of the intersection above are comeager in J. Any element
of W will be at the same time a linear combination of at least n+ 1 elements
of B and also n elements of B. This contradicts the linear independence of
B X

Theorem 2. Every proper analytic subspace of R is measure zero and mea-
ger.

Proof. For the first claim, suppose that A is an analytic subspace of R has
positive measure. Then by Steinhaus’ theorem, A — A (the set of differences
of elements of A) contains a nontrivial interval. Hence A must be all of R.
For the second claim, suppose that A is an analytic subspace which is
non-meager. A has the property of Baire and hence there is an open interval
I in which A is comeager. Fix any a € R. Let ¢ € Q be small enough that
ga is less than the length of I. Then J = (ga + I) N I is non empty and
ga + A and A are both comeager in J. In other words, there exist =,y € A
such that g + x = y. Hence o = é(y —1x) € A. We see that A =R.
X



The following answers a question raised by Ashutosh Kumar.

Theorem 3. There exists a proper (and hence meager) analytic subspace of
R with no analytic basis.

We begin by describing the subspace in question.
Let €, be a decreasing sequence of positive rational numbers such that
for every k and each N > k,

Z ken S ;LEN

n>N

This condition requires the €, to be a very rapidly decreasing sequence.
Now let P be the set defined by

P= {anen cxp € {—1,0,1}}
new

P is essentially a very sparse Cantor set. We now take the subspace A to
be span(P). Our first objective is to show that A is a proper subspace of R.
To this end, we make the following observations: A is the union of all sets
of the form ¢; P + ... + ¢, P, where the ¢; are rational numbers. By taking
common denominators, we can write such sets as =(p1P + ... + p,P), for
some py,...,p, € w. If welet k =p; + ...+ p,, then

(mP+...4+pP)CP+P+...+P
k times

We give this latter set the name Q)x. Observe that Q) can be described
by

Qe =1{D_wnen:an € {~k,~k+1,... k—1k}}
new
PP+ ...+ p,P C Qf and hence %(plP +...4+p,P)C %Qk Note that
of course each %Qk is also a subset of A.
Before proceeding, note that throughout we will use the notation ¢ for
the rational number > o(n)e,, where o is a finite sequence of integers.
We now show that A is a proper subspace via the following two lemmas.



Lemma 4. Suppose that o,7 € {—k,...,k}~“ such that |o| = |7| > k. If
0 <oy T, then every point in QF is less than every point in Q.

Proof. 1t suffices to prove this lemma for the case in which there exists ~
such that ¢ = 4% and 7 = 7°(i + 1), for some ¢ € {—k,...,k — 1}. Let
M = |y|. The greatest element of Q7 is

a:&—l—Zken:ﬁ%—ieM—i—Zken

n>M n>M

and the least element of ()7 is

B=%—= Y ken="4+ (iexy — Y key)

n>M n>M
Therefore,
1
b—a=¢ey— 22]{,‘6”2§EM>0

n>M

Lemma 5. Each QF is nowhere dense, for |o| > k.

Proof. Fix any interval I such that I N Q7 # (. Choose 7 O o such that

7i,7(i+1) € I, for some i € {—k,...,k —1}. Then every clement of
7" is less than every element of Q) (1) by the previous lemma. Therefore,
between all Q) are closed sets, we may take an interval J between QF ¢ and
Qs G+ " J is disjoint from Q7, because Q7 is the disjoint union of Q] for
7| = |7| + 1 and by the previous lemma, no such @] intersects J.

X

This shows that each ()7 is nowhere dense. Hence (), is as well, being a
finite union of such Q7. It follows that each L@y, is nowhere dense and hence
A= Um7k€w #Qk is meager. A is therefore proper.

Now we get to our main claim.

Lemma 6. A has no analytic basis as a vector space over Q.



We begin with some remarks about the set P. As in the above lemma,
for o0 € {—1,0,1}<, we define

N, = {Z Tn€n Ty € {—1,0,1} & o(n) =z, for n < |o|}
ncw
Note that although the N, are closed sets in R (and hence in P), they are

also relatively open in P. In fact, they form a base for the relative topology
on P.

Proof of Lemma 6. Suppose towards a contradiction that B is an analytic
basis for A. We may assume, without loss of generality, that 1 € B.
Otherwise, suppose that zi,...,z, € B and ¢,...q, € Q are such that
1=aqz1+ ...+ guxn. Then [(¢ — 1)x1 + @22 + ... quxy] + 1 = 1. Hence
(1 — Va1 + gexa + . .. guxy] + B is an analytic basis for A which contains 1.

Since B is a basis, the generating set P of A must be covered by a union
of set of the form

@q(BNL)+...+q¢.(BNI,)

where q1,...,q, € Q and I, ..., I, are pairwise disjoint intervals with ratio-
nal endpoints. To avoid confusion later on, we assume here that all ¢; are
nonzero and that each B N I; is nonempty.

P is an uncountable closed set and hence a Baire space when regarded as
a topological subspace of R. Because the union described above is countable,
the Baire category theorem yields that there are q1,...,q,, I1, ..., I, as above
such that

W:ql(Bﬂ11)+...+qn(BﬂIn)

is non-meager in P. W is analytic, hence has the Baire property. We there-
fore obtain o € {—1,0, 1}* such that W is comeager in N,,. (Because the N,
are a base for the relative topology on P.)

We now define a homeomorphism 7 of N, as follows: If z € N,, then
Z =0+ 5, Tnn, for some sequence (z, : n € w) € {—1,0,1}*. We
define 7(z) = 6 — anw Tn€pn. It is clear that 7 is an autohomeomorphism
of N,.

It follows that 7=(T¥) is also comeager in N,, and hence WNx (W) # (.
Let 2z € WNa Y(W). Then z,7(z) € W. Note that we may assume that z



(and hence 7(z)) are irrational. This follows from the fact that the rationals
are meager in N,.
We may now take x;,y; € B N I; such that

Z=qQx1+ ...+ gy

(z) = qh + -+ @Yn
Thus

z4+71(2)=q(xi+y1) + .+ G+ yn)

By the definition of 7, z + m(2) = 6 € Q. Note that since the I; are
disjoint, for each j and i # j x; # x;,v;. Further, because z ¢ Q, z # 7(z),
we have that for at least one j, x; # y;. We have therefore expressed a
rational number (namely &) as a sum of n + 1 distinct elements of the basis
B. On the other hand, 1 € B and any rational can be expressed as a rational
scalar multiple of 1, i.e. a linear combination of length 1. By independence,
such linear combinations are unique and so the above leads to a contradiction.

X

We conclude with some further notes.

Theorem 7. For all « > 2 there exists a Q-subspace A of R which is 39,
but not IIY.

Proof. Let C' C R be a perfect, linearly independent set. Choose B C ('
which is 32 but not II. Take A to be the linear span of B.

First of all, A is not I1?. To see this, observe that, by the independence
of C, ANC = B. If A were IT?, then B would be as well.

Secondly, A is 3%. Observe that A is the union of sets of the form.

q(BNL)+...+q¢.(BNI,)

Where the ¢; are nonzero rational numbers and the I; are disjoint intervals
with rational endpoints. We can define a homeomorphism

n

[[cnn) s aCnn)+...+(CN1)

i=1



by (z1,...,2,) = qix1+ ... + ¢ux,. Under this map, [, (BN I;) maps
onto ¢;(BN 1)+ ...+ ¢(BnNI,). Hence this latter set of is of the same
Borel class as B, namely 2. Since the union above is countable, A is also

0,
X

Theorem 7 is also a consequence of Theorem 2.5 of Farah and Solecki [2]
but has a shorter proof.

Theorem 8. For all o > 3, there exists a Q-subspace W of R which is TI?,
and not 2.

Proof. Let C' C R be a perfect, independent set over Q. Let Ag D A; D ...
be subsets of C' which are X% and such that A =0, ., A, is I \ 2. Let
W, = spang(4,) and W = (1, W,. Then each W, is X% as in the proof
of Theorem 7. Thus W is II, but not 2. If W were X°, then A=W NC

would be as well. X
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