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ADDITIVITY OF MEASURE
IMPLIES DOMINATING REALS

ARNOLD W. MILLER

ABSTRACT. We show that additivity of measure (A(m), the union of lessthan
continuum many measure zero sets has measure zero) implies that every family
F C w of cardinality less than continuum is eventually dominated (this is the
property D). This yields as a corollary from known results that A(m)+B(c) —
A(c). A(c) is the property that the union of less than continuum many first
category sets has first category and B(c) is the property that the real line is
not the union of less than continuum many first category sets. Also, a new
property of measure and category is introduced, the covering property, C(m)
(C(c)), which says that for any family of measure zero (first category) sets of
cardinality less than the continuum there is some measure zero (first category)
set not covered by any member of the family. By dualizing the proof that
A(m) — D we show that wD — C(m). The weak dominating property, wD,
says that no small family contained in w* dominates every element of w*.

Let A(m) stand for the proposition that the union of less than continuum many
measure zero sets has measure zero. Let B(m) mean that the real line is not the
union of less than continuum many measure zero sets. Let U(m) stand for the
proposition that every set of reals of cardinality less than the continuum has measure
zero. And finally, let C(m) stand for the proposition that there does not exist a
family I of measure zero sets such that I has cardinality less than continuum and
every measure zero set is covered by some element of I. (The letters A, B, U, C
are short for additivity, Baire, uniformity, covering.) A(c), B(c), U(c) and C(c) are
defined similarly with “first category” (meager) replacing measure zero. Of course,
these properties make sense for any ideal of sets of real numbers. The following
implications hold for any nontrivial ideal (I should contain all singletons but not
the whole real line):

B
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U

For example, to see that U = C suppose J C I covers every element of J. Then
pick for each J € J some z; ¢ J. Then the set {z;: J € J} will not be in I.

Next, let us introduce two properties concerning the eventually dominating order
on w*. The symbol “V*” stands for “for all but finitely many”, and the symbol
“3°” is short for “there exist infinitely many”. The symbol D (for dominating)
stands for the property that for every 7 C w“ of cardinality less than continuum
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there exists g € w* such that for all f € 7,
Venew f(n)<g(n).

The property wD (for weak dominating) is defined exactly the same, except the
conclusion is

I*new f(n)<g(n).

Note that for every compact subset K of w“ there exists f € w“ such that
K CK;={ge€w’:Vng(n) < f(n)} and also for every f € w*, Ky is compact.
Let b stand for the o-ideal generated by the compact subsets of w®. The following
implications are easy to verify:

D@A(b)/ \C(b)cer

Tomek Bartoszyniski (Warszawa) has shown that D holds iff every union of less
than continuum many compact subsets of w* is meager.

The following diagram adds the properties D and wD to the preceding diagram.
All the nondotted implications hold for the ideal of measure zero sets and the ideal
of first category sets. In addition, the dotted implications hold in the case of first

category:

In the case of category, these implications are already known. To see that A(c) =
D we have the following result.

THEOREM 1 (MILLER [2, 1.2]). A(c) < B(c)+D.

The implication wD = C(c) is a corollary to the proof of Theorem 1. For
completeness we will give the proof here.
DEFINITIONS. For ¢ a finite sequence in 2<% let [t] = {r €2¥: t C z}.

LEMMA 2. Suppose M C N are models of ZFC* (some reasonable finite subtheory
of ZFC) and for every nowhere dense closed set A coded in N there ezists a first
category set B coded in M such that A C B. Then for every f € N Nw* there exists
a g € M NwY such that for alln < w*, f(n) < g(n).

Proor. Suppose f € NNw® and for every g € mNw® 3%°n g(n) < f(n). We may
assume that f is strictly increasing. Let nx = f(k). Note that for each X € [w]“ N
M, 3%k |[ng,nkg+1] N X| > 2. (Otherwise obtain X € [w]¥ N M, Yk, |[ng, ne+1] N
X| <1 and hence by throwing out finitely many elements of X we can assume for
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all k. If g enumerates X, then g dominates f.) Now let C = {h € 2¢: Vk h(ni) = 1}.
C is obviously closed nowhere dense, and we claim that it is not covered by any first
category set coded in M. To see this, let {C,: n < w} be an increasing sequence
of closed nowhere dense subsets of 2* coded in M. Construct (in M) an increasing
sequence my, < w for k < w as follows. Let mq =0. Given my choose my,; so that
for every s € 2™+ there exists t € 2™*+! such that t C s and [t]| N Cyx = Q.

Since 3%k 3l n; < my < M1 <Mypq, it is easy to see that for each n, CNC, is

nowhere dense relative to C, hence C' is not covered by |, <w Cn- ]

THEOREM 3. wD = C(c).

Proor. If C(c) fails and wD is true, then clearly by the reflection principle
there are models M C N of ZFC* satisfying the hypothesis of Lemma 2, but not
the conclusion. O

REMARK. Of course, the amount of ZFC used in Lemma 2 is trivial and the
reader can easily construct from a covering family of meager sets a dominating
family in w*. Nevertheless, we prefer this statement of Lemma 2 as it emphasizes
the connection between our properties and extensions of models of set theory.

REMARK. The implication A(c) = D is proved by using a sort of dual of Lemma
2. Namely, suppose M C N are models of ZF'C* and there exists a first category
set C coded in N which covers every nowhere dense closed set coded in M. Then
there exist f € N Nw* such that or all g€ M Nw*, V°ng(n) < f(n).

THEOREM 4 (DUE TO J. CiIcHOK AND F. GALVIN). Suppose M C N are models
of ZE'C*. Then the following are equivalent:

(1) Every nowhere dense closed set coded in N s covered by a first category set
coded in M.

(2) Every first category set coded in N is covered by a first category set coded in
M.

(3) Every nowhere dense closed set in N s covered by a nowhere dense set coded
mn M.

Proor. Clearly (3)=(1) and (2)=>(1). Define z = y for z, y € 2¥ iff V°n <
wz(n) = y(n) and define X* = {y € w¥: 3z € X z =~ y} for X C 2¥. For any
X C 2% X has first category iff X* has first category. Also, for any X C 2% first
category, there exists P C 2* nowhere dense such that X C P*. To build such a P
proceed as follows. Consider forcing with the partial order P whose elements have
the form (n, P) where n < w and P C 2¢ is a nowhere dense closed set. Order P by
(m, P) < (n,P)iffm >n, P D P, and for every s € 2™ if [s|NP # O, then [s]|NP # &
(i.e. (n, P) says the perfect set we are building looks like P up to level n). If G
is P-generic over M, then let Pg be the closure of (J{P: 3n (n,P)€ G}. Pg is a
nowhere dense closed set such that for all P nowhere dense closed sets coded in M
there exists n such that for all £ € P there exists y€ Pg, z | (w—n) =y [ (w—n).
Thus if P = Pg for some G P-generic over a countable M containing a code for
X, then X C P*. To see that (1)=(2) suppose that X is first category and coded
in N. Let P be nowhere dense and X C P*. By (1) there exists Y first category
coded in M and P CY. Then Y* is first cateogry, coded in M, and X CY*.

To see that (1)=-(3) first note that by Lemma 2 every f € N Nw" is dominated
by some g € M Nw*. Suppose P is closed nowhere dense and coded in N. Since
P is covered by a first category set coded in M we can find (in M) a set {rp: n <
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w} C 2% which is dense and disjoint from P. In N there exists f € w* such that
foralln <w
[re I f(W]NP=0.

Let g € M Nw* dominate f and note that

G= U [7n I g(n)]
n<w
is an open dense set coded in M and disjoint from P. O

We now start the proof of the main result of this paper, A(m) — D and wD —
C(m). For g € w* let

Hy = {z€2*|3n z | [g(n), g(n) +n) = 0}.

Note that H, is a Borel set of zero-measure with a code in any model of ZFC*
containing g. For G C 2* an open set and n < w, define G,, = |J{[s]: s € 2™, [s] C
G}. Define a decreasing sequence €; > 0 so that

E 2k26k < —.
k=0 2

For G C 2“ open, define fg € w¥ strictly increasing so that for all n < w the
measure of G — G, (n) is less than €.

LEMMA 5. Suppose G 1s an open set of measure less than % IfHy C G, then
Von g(n) < fa(n).

PROOF. Suppose 3°n fg(n) < g(n) and let h € w* be strictly increasing and
for each n, fo(h(n)) < g(h(n)) and g(h(n)) + h(n) < g(h(n +1)). (Thus the intervals
[g(h(n)), g(h(n)) + h(n)) are disjoint.)

For z€2¥ and n < m < w, z | [n,m) =0 means that z(I) = 0 for all integers !
with n <l <m. Let

P={z€2”|Vn z I [g(h(n),g(h(n)) + h(n)) = 0}.

Now P is a closed subset of H, and we will show that P is not contained in G, a
contradiction. Define the clopen set Cj for each k < w by C_; =2“ and

Cr = Ck—1n{z €2 z [ [g(h(k)), g(h(K)) + h(K)) = 0}.

Now P =(j«,, Ci and thus by compactness it is enough to show that for all k¥ < w,
=(Cx C G). This will be shown by proving that u(G N C) < u(Ck).
Claim. /J,(G N C}c) < (1/2h(k)) /J,(G N Ck—l) + €n(k)-

PRrROOF.
(1) WG N Cx) < WG — Gyniy)) + (G g(niry) N Cr),
(2) #(G = Gg(n(ky) < €n(k)s
1
(3) #Gotnan N Ck) = s MGt 0 G -1),
1
(4) (G g(h(ie)) N Ck—1 £ ——(G N Ci—1).

2h(k) 2h(k)
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Formulae (1) and (4) are trivial. Formula (2) follows from the fact that fg(h(k)) <
g(h(k)). So G —Gy(n(k)) € G — G s5(h(k)) Which has measure less than €jx). Formula
(3) is true because

(a) Gg(h(k)) =J{[g]: s€ 29(h(k)), [s] € G} and

b) Ch = Ci1 N {z €21 2 | [g(h(k)), (k) + h(K)) = 0}.

Thus G g(a(k))NCk—1 is a union of [s] for some s € 29(~(k)) " From the four formulae
the claim is easily proved. ]

Now for each k < w, we have u(Ck) = u(Cx—1))/2"*. Thus from the claim

MGNCx)  UGNCy1) | €rik)

WCr) ~ wCr-1)  M(Cr)
Now 1 >
=2 :L__:oh(i) < Q(h("))z_
#(Cn)
By induction
Gne k -
H( ) < u(G)+ Z €h(i)2h(7’)2‘

N(Ck) i=0
But by the choice of the ¢,, this is less than 1 so G does not cover Cy. a

LEMMA 6. Suppose M C N, are models of ZFC* and for every measure zero set
A coded in N there ezists an open set B of measure less than % coded in M such that
A C B. Then for every g € N Nw¥ there exists f € M Nw* such that for alln < w,

g(n) < f(n).

PrOOF. Suppose g € N Nw" and let Hy be the measure zero set constructed
above. If G is an open set of measure less than % coded in M such that H; C G,
then we have by Lemma 5 that fo € M Nw” eventually dominates g. ]

LEMMA 7. Suppose M C N are models of ZFC* and for every f € NNw*, there
ezists g € M Nw* such that 3%°n f(n) < g(n). Then there does not exist an open G

coded in N of measure less than & such that G covers every measure zero set coded
n M.

Proor. Suppose G is an open set coded in N of measure less than % Then let
g € M Nw* such that 3°n fg(n) < g(n). By Lemma 5, G does not cover Hy. O

THEOREM 8. A(m)— D and wD — C(m).

Proor. This follows from Lemmas 6 and 7 and the reflection principle. a

REMARK. In light of this theorem it is tempting to conjecture that A(m) <
B(m)+ D. But it was pointed out to me by Cichoni and Kamburelis that this is
not true. If one starts with a model in which the continuum is ws and D holds and
then adds ws random reals, then in the resulting model it is not difficult to show
that B(m)+ D+ —U(m) is true.

THEOREM 9. A(m)+ B(c) — A(c).

Proor. This is a corollary of Theorems 8 and 1. ]

REMARK. Up until now the only known implications among the properties A, B
and U were that A — B and A — U and Rothberger’s Theorem [4] that B(c) —
U(m) and B(m) — U(c).
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REMARK. Recently Bartosyriski showed that, in fact, A(m) — A(c). He used
in part the results of this paper. Working independently Raissonier and Stern
obtained the result of this paper and also of Bartosynski. Bartosynski also obtained
the characterization of A(m):

A(m) - VF € [w?]<¢ 3h, € [w]* for n<w
VfeF Yy f(n)€ hnp.

Kamburelis and Krawczyk showed that in the domainating real plus random real
iteration, ~A(m) + A(c) + B(m) holds. They used the above characterization to see
—~A(m). Several people have also noticed that C(c) — C(m) by dualizing the proof
that A(m) — A(c).

REMARK. Both —C(c)+ —C(m) and ~U(c) + ~U(m) + wD are consistent. The
two models concerned are discussed in Miller [2, second to last paragraph on p.
107]. The iterated Sacks real model satisfies ~C(c) + =C(m). If one starts with a
model in which D holds and CH fails and then iteratively adds w; random reals
with finite supports, then in the resulting model both U(m) and U/(c) fail; however
wD is true (wD follows from the results in §4 of Miller [2]).

REMARK. Here is an updated version of the chart from Miller [3]. That chart
was first made by Kunen [1].

Add T F F F F F
Category Baire T T T F F F
Measure Unif T T F T F F
Add Baire Unif Cov T T T T T F
T T T T MA
Dominating| Iterated Infinitely
F T T T and random| random equal and
reals reals random
reals
Random
F
T F T reals
Dominating | Eventually Cohen Mathias Infinitely
F reals different reals reals ? equal
F T T reals reals
wy-
F F F T ? iteration ?
of random
reals
Silver
F F F F ? or Sacks
reals

REMARK. I want to thank Cichori and Kamburelis for some very helpful sug-
gestions on the contents of this paper.
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