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0. Introduction

The theory of cardinal invariants of the continuum is a large subfield of set theory

[2]. Its subject of study is the comparison of various cardinal numbers typically

defined as “the smallest size of a set of reals with certain properties”. Occasionally

it is possible to prove inequalities between these cardinals, but more often than

not the inequalities are independent of the usual axioms of set theory. Historically,

certain forcing extensions were identified as the standard tools for proving these

independence results; let me name various iterations of Sacks, Cohen, Solovay or

Laver real forcings as good examples. In this paper, I prove that in a certain precise

sense some of these extensions are really the optimal tools for establishing a broad

syntactically defined class of independence results. I will deal with the following

class of invariants.

Definition 0.1. A tame invariant is one defined as min{|A| : A ⊂ R, φ(A)∧ψ(A)}

where the quantifiers of φ(A) are restricted to the set A or to the natural numbers

and ψ(A) is a sentence of the form ∀x ∈ R ∃y ∈ A θ(x, y) where θ is a formula

whose quantifiers range over natural and real numbers only, without mentioning

the set A. A real parameter is allowed in both formulas φ and ψ.

Most cardinal invariants considered today are tame. For example:

• a = min{|A| : A ⊂ [ω]ω, φ(A)∧ψ(A)} where φ(A) = “A is an infinite set consisting

of mutually almost disjoint sets” and ψ(A) = “∀x ∈ [ω]ω ∃y ∈ A x∩y is infinite”.

• add(meager) = min{|A| : A ⊂ R, ψ(A)} where ψ(A) = “ ∀x ∈ R ∃y ∈ A if x

codes a countable sequence of closed nowhere dense sets then y codes a closed

nowhere dense set not covered by their union”. In this case the sentence φ is not

needed, that is we set φ = true.
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From these examples it is clear that in a definition of a tame invariant the

sentence φ describes the internal structure of the set A while ψ is a statement

about “large size” of the set A. It is a routine matter to write invariants like t, u, s

as well as all the invariants in the Cichon diagram [2] in a tame form. On the other

hand, g and h apparently cannot be so written.

Theorem 0.2. Suppose that there is a proper class of measurable Woodin cardinals.

If x is a tame cardinal invariant such that x < c holds in some set forcing extension

then x < c holds in the iterated Sacks extension.

Here, the iterated Sacks extension is obtained as usual by a countable support

iteration of length c+ of Sacks forcing [2]. The theorem says that this extension is

the optimal tool for proving the consistency of inequalities of the type x < c where

x is a tame cardinal invariant. There are two immediate consequences; I will state

them in a rather imprecise form to retain their flavor. First, as in Pmax [16], we get

mutual consistency: if xi : i ∈ I are tame invariants such that xi < c is consistent for

each i ∈ I then even the conjunction of these inequalities is consistent. Restated, c

cannot be written as a nontrivial maximum of several tame invariants. And second,

if x is a tame invariant such that x < c is consistent then so is ℵ1 = x < c = ℵ2.

The proof of the theorem is flexible enough to give a host of related results.

Definition 0.3. A cardinal invariant y can be isolated if there is a forcing Py such

that for every tame invariant x, if x < y holds in some set forcing extension then it

holds in the Py extension.

Thus the forcing Py can be understood as increasing the invariant y in the

gentlest way, leaving all tame invariants smaller than y if possible. Hence the ter-

minology. Theorem 0.2 says that c can be isolated. I also have:

Theorem 0.4. Suppose that there is a proper class of measurable Woodin cardinals.

The following invariants can be isolated :

• c; Pc is the iterated Sacks forcing.

• b; Pb is the iterated Laver forcing.

• d; Pd is the iterated Miller forcing.

• h; Ph is the iterated Mathias forcing.

• cov(meager); one can use either a finite support or a countable support iteration

of Cohen reals.

• cov(null); use either a large measure algebra or a countable support iteration of

Solovay reals.

• non(strong measure zero); iterate forcings known as PTg [1].

• add(null); the forcing does not appear in published literature.

Amusingly enough, the proofs show that the minimum of any combination

of invariants considered above can be isolated too by a countable support itera-

tion in which the relevant forcings alternate. There are invariants which cannot
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be isolated. A good example is cof(meager ideal) since it can be written as

max(d, non(meager)). Both of the inequalities d < cof(meager), non(meager) <

cof(meager) are consistent [2, 2.2.11, 7.6.12 and 7.5.8]. An invariant that can-

not be isolated for a more complicated reason is non(meager). As shown in [2],

cof(meager) = cov(Ied) where Ied is the σ-ideal on ωω generated by the sets

AX = {f ∈ ωω : ∃g ∈ X g ∩ f is infinite} as X ranges over all countable sub-

sets of ωω. Now clearly cov(Ied) ≤ sup{d, cov(Ied(h)) : h ∈ ωω} where Ied(h) is the

variation of the ideal Ied for the space of all functions pointwise dominated by h.

However, the inequalities d < cov(Ied) as well as cov(Ied(h)) < cov(Ied) for every

fixed function h ∈ ωω are consistent [2, 13]. Ergo, the invariant non(meager) cannot

be isolated. This example was pointed out by Bartoszynski.

A curious twist of events occurs in the case of the tower number t.

Theorem 0.5. Suppose that there is a proper class of measurable Woodin cardinals.

There is a forcing Pt such that for any tame invariant x, if ℵ1 = x < t holds in

some forcing extension then it holds in the Pt extension.

Thus it may be impossible to isolate t from invariants like p for which p < t

necessitates ℵ1 < p. At the same time it is possible to choose the poset Pt to make

t arbitrarily large. Nothing like that occurs in the cases considered before. Also the

forcing Pt is undefinable, even though it is in some sense the expected thing.

The results stated above raise a number of obvious questions. For many in-

variants one would like to find out whether they can be isolated or not. If yes then

what is the suitable forcing? If no, is there a clear reason? Above, I stated essentially

everything I know in this direction at this point. That leaves two of the invariants

in the Cichon diagram without a status. Another issue is the use of large cardinal

hypotheses in the above theorems. Even though the proofs contain references to

determinacy of certain integer games of transfinite length and to Σ2
1 absoluteness,

I have no indication that the hypotheses used are optimal or necessary at all.

The paper is organized as follows. The first section contains the analysis of

the iterations of Sacks forcing from the descriptive set theoretic point of view.

The complete proof of Theorem 0.2 can be found in Sec. 2. In Sec. 3, I indicate

the changes necessary to prove that b, d, h and non(strong measure zero) can be

isolated. Section 4 contains the argument for Theorem 0.5.

The paper uses two important results whose proofs remain unpublished.

Fact 0.6 ((Σ2

1
absoluteness) (Woodin)). Suppose that there is a proper class of

measurable Woodin cardinals. For every boldface Σ2
1 sentence φ, if φ holds in some

generic extension then it holds in every generic extension satisfying the continuum

hypothesis.

Fact 0.7 (Transfinite projective determinacy). Suppose that there is a proper

class of Woodin cardinals. Then every integer valued game of every fixed transfi-

nite countable length with projective outcome is determined. Moreover there is a

winning strategy which is weakly homogeneous in every Woodin cardinal.
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The assumptions of the previous Fact are not optimal. Its proof consists of three

parts. The determinacy of the games was independently established by Neeman

and Woodin. By a result of Martin [8], the games must have winning strategies in

a certain definability class. All sets in that definability class turn out to be weakly

homogeneous as shown by Neeman and Woodin independently.

The following fairly well known fact is the only property of weakly homogeneous

sets we shall need.

Fact 0.8 (Weakly homogeneous determinacy and absoluteness [15]). Sup-

pose that δ is a supremum of Woodin cardinals with a measurable cardinal above

it and T ⊂ (ω×Ord)<ω is a < δ-weakly homogeneous tree. Then L(R)[p[T ]] |= AD

and the theory of the model L(R)[p[T ]] with an arbitrary real parameter is invariant

under forcing extensions of size < δ.

My notation follows the set theoretic standard set forth in [4], with one excep-

tion: the concatenation of sequences r and s is denoted simply by rs. Sequences of

reals are denoted by r, s . . . For a Polish space X the expression Borel(X) stands

for the collection of all Borel subsets of X. The spaces Rα for a countable ordinal α

are understood to come equipped with the product topology. A projective formula

is one whose quantifiers range over reals and integers only, and Σ2
1 sentences are

those of the form ∃A ⊂ R θ(A) where θ is projective. Projective sets are usually

confused with their definitions. For a tree T the symbol [T ] stands for the set of

all its branches and p[T ] for the projection of this set into a suitable Polish space.

ADR is the statement “all real games of length ω are determined”. For a Woodin

cardinal δ the expressions P<δ and Q<δ stand for the full nonstationary tower forc-

ing on δ and its countably based variation respectively. The reader is referred to

[2, 4, 12, 15] for all unfamiliar concepts.

1. The Sacks Forcing

The key to the proof of Theorem 0.2 is the understanding of Sacks forcing and

its countable length countable support iterations in the context of determinacy.

The well-known perfect set theorem can be restated to say that under ZF+AD the

Sacks forcing is (isomorphic to) a dense subset of the algebra Power(R) modulo the

ideal of countable sets, ordered by inclusion. It turns out that under the stronger

determinacy hypothesis of ZF + DC + ADR, for every countable ordinal α the

countable support iteration of Sacks forcing of length α is a dense subset of the

algebra Power(Rα) modulo a suitable σ-ideal Iα on Rα. This is the driving idea

behind the arguments.

1.1. The geometric reformulation of Sacks forcing iterations

First, it is necessary to restate the definition of the countable support iteration of

countable length of Sacks forcing in order to make the complexity analysis possible.

A similar if not identical work was done by Kanovei in [5].
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Definition 1.1. For an ordinal α ∈ ω1 define the poset Sα to consist of the

nonempty Borel sets p ⊂ Rα satisfying these three conditions:

• For every ordinal β ∈ α the set p � β = {s ∈ Rβ : ∃r ∈ p s ⊂ r} is Borel. (The

projection condition; really for convenience only.)

• For every ordinal β ∈ α and every sequence s ∈ p � β, the set {t ∈ R : s〈t〉 ∈ p �

β + 1} is perfect. (The Sacks condition.)

• For every increasing sequence β0 ∈ β1 ∈ · · · of ordinals below α and every

inclusion increasing sequence of sequences s0 ∈ p � β0, s1 ∈ p � β1 . . ., the

sequence
⋃

n sn is in the set p �
⋃

n βn. (The countable support condition.)

The sets Sα are ordered by inclusion.

It is not hard to see that the posets Sα are naturally isomorphic to the countable

support iteration of α many Sacks reals, if α ∈ ω1. If G ⊂ Sα is a generic filter

then G is given by the sequence rgen ∈ Rα with {rgen} =
⋂
{p : p ∈ G}. This is

done in the following lemma. The proof is completely unenlightening and should

be skipped on the first reading of the paper. It is however useful to notice that the

argument depends only on the definability and properness of Sacks forcing.

Lemma 1.2. Suppose α is a countable ordinal.

(1) For every β ∈ α the poset Sβ is naturally completely embedded in Sα and the

factor Sα/Sβ is naturally isomorphic to Sα−β.

(2) Sα 
 for some unique sequence rgen ∈ Rα the generic filter is just the set

{p ∈ Šα : rgen ∈ p}.

(3) If α is a limit ordinal then Sα is the inverse limit of the posets {Sβ : β ∈ α}.

(4) Sα is proper.

(5) For every countable elementary submodel M of sufficiently large structure con-

taining all the relevant information, for every forcing P ∈ M adding a real

ṡ ∈M and every P -name ṗ ∈M for a condition in Sα there is a Borel relation

B ⊂ R × Rα so that

(a) whenever β ∈ α then the relation B � β = {(s, r) ∈ R×Rβ : ∃t (s, rt) ∈ B}

is Borel,

(b) whenever (s, r) ∈ B then s is M -generic for P , r is M [s]-generic for Sα

and r ∈ ṗ/s,

(c) for every M -generic real s for P the set {r ∈ Rα : (s, r) ∈ B} is a condition

in Sα. It follows from (b) that this condition strengthens ṗ/s.

Here (5) really amounts to saying that there is a constructive method for obtain-

ing master conditions. Note that by (2) and an absoluteness argument the condition

obtained in 5(c) must be master for the model M [s].

Proof. This is a completely standard simultaneous transfinite induction argument.

I will show how (5) is obtained at limit stages and why (1) holds at successor stages.
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The reader should refer to [2, 12] for many similar arguments. The following simple

computation will be used throughout.

Claim 1.3. Suppose M is a countable transitive model of ZFC, P ∈M is a partial

order adding a single real ṡgen and τ ∈M is a P -name for a real. Then

(1) the set A = {s ∈ R : the equation s = ṡgen defines an M -generic filter} is Borel,

(2) the function τ/s : A→ R is a Borel function.

Proof. I will prove (1); (2) is similar. The set B of allM -generic filters on RO(P )M

is Borel in the product topology on Power(RO(P )M ) since its elements x are subject

to the Borel conditions “x is closed upwards”, “x is a filter” and “xmeets every open

dense set in M”. The function F : Power(RO(P )M) → R defined by F (x)(n) = 0

if and only if ‖ṡgen(ň) = 0‖M ∈ x is continuous, and one to one on the set B. Thus

the set A is a one to one continuous image of a Borel set, therefore Borel.

To see how Lemma 1.2(1) is obtained at a successor stage α = β + 1, we will

prove that Sα 
 rgen(β) is V [rgen � β]-generic Sacks real. In order to do that,

suppose p0 ∈ Sα is an arbitrary condition and (q0, τ) ∈ Sβ∗Sacks is a condition

such that q ⊂ p � β and q0 
 τ is a perfect subset of the set {t ∈ R : rgen〈t〉 ∈ p}.

It will be enough to produce a condition p1 ⊂ p0 in Sα such that p1 
 rgen � β ∈ q0
and rgen(β) ∈ τ/rgen � β. And indeed, if M is a countable elementary submodel of

some large structure containing all relevant objects and q1 ⊂ q0 is a condition in

Sβ consisting of sequences M -generic for this poset — and such a condition exists

by the induction hypothesis (5) —, then we can put p1 = {r ∈ p0 : r � β ∈ q1 and

r(β) ∈ τ/r � β} and the condition p1 ∈ Sα will be as required.

Now suppose that α is a countable limit ordinal and Lemma 1.2(1)–(5) have

been verified for all ordinals β ∈ α. To prove (5) at α fix a countable elementary

submodel M of some large structure Hλ containing α and choose a forcing P ∈M

adding a real ṡ and a P -name ṗ ∈ M for a condition in Sα. Choose an increasing

sequence 〈αn : n ∈ ω〉 of ordinals converging to α starting with α0 = 0, and an

enumeration 〈Ḋn : n ∈ ω〉 of all P -names for open dense subsets of Sα in M. By

induction on n ∈ ω choose P ∗ Sαn
-names ṗn ∈M so that ṗ = ṗ0 and

• P ∗ Sαn

 ṗn ∈ (Sα)V P

, ṗn ∈ Ḋn−1, rgen ∈ ṗn � α̌n,

• P ∗ Sαn+1 
 if rgen ∈ ṗn � αn+1 then ṗn+1 ⊂ ṗn.

So for each n ∈ ω q̇n = {t ∈ Rα−αn : rgent ∈ ṗn} is an P ∗ Sαn
-name for a

condition in Sα−αn
, q̇n ∈M .

By the induction hypothesis there are Borel relations Bn ⊂ R×Rαn ×Rαn+1−αn

so that

• for every natural number n and all (s, r, t) ∈ Bn we have that s is an M -generic

real for the poset P, r is an M [s]-generic sequence for Sαn
and t is an M [s][r]-

generic sequence for Sαn+1−αn
such that t ∈ (q̇n/s, r) � [αn, αn+1),
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• whenever s is an M -generic real for the poset P and r is an M [s]-generic sequence

for Sαn
then the set {t ∈ Rαn+1−αn : (s, r, t) ∈ Bn} is a condition in Sαn+1−αn

.

Let B ⊂ R × Rα be the relation given by (s, r) ∈ B ↔ ∀n ∈ ω (s, r � αn, r �

[αn, αn+1) ∈ Bn. This is obviously a Borel relation, 5(a) holds for it and 5(b) and

5(c) can be easily verified:

• If (s, r) ∈ B then for all natural numbers n < m we have r � αm ∈ (ṗn/s, r � αn) �

αm by the choice of the names ṗn, q̇n and the relations Bn. By the countable

support condition applied to the sets ṗn/s it must be the case that r ∈ ṗn/s, r �

αn for all n ∈ ω, in particular r ∈ ṗ/s and r is an M [s]-generic sequence for Sα.

• Whenever s is an M -generic real for the poset P, we have {r ∈ Rα : (s, r) ∈ B} =

{r ∈ Rα : ∀n ∈ ω (s, r � αn, r � [αn, αn+1) ∈ Bn} and the latter set is easily

verified to be a condition in Sα.

Thus (5) has been proved for α. �

1.2. The dichotomy

The following is the key dichotomy and the only new result in this section.

Lemma 1.4.

(1) (ZF +DC + ADR) Suppose that α ∈ ω1 and A ⊂ Rα. Then either there is a

condition p ∈ Sα with p ⊂ A or there is a function g : R<α → [R]ℵ0 such that

∀r ∈ A ∃β ∈ α r(β) ∈ g(r � β).

(2) (ZFC + there is a proper class of Woodin cardinals) Suppose that α ∈ ω1 and

A ⊂ Rα is a projective set. Then the same dichotomy as in (1) holds for the

set A.

The first item can be reworded thus: under ZF + DC + ADR, the poset Sα is

a dense subset of the algebra Power(Rα) modulo the σ-ideal Iα generated by the

sets Bg = {r ∈ Rα : ∃β ∈ α r(β) ∈ g(r � β)} as g varies through all functions

from R<α to [R]ℵ0 . This is a handsome way of putting things. However, the proof

of (1) uses some hard unpublished theorems of Martin and Woodin and works in

a choiceless environment unfamiliar to some prospective readers. Since I will need

the dichotomy for projective sets only, I choose to include just the proof of (2). The

assumption of (2) can be reduced to the existence of ω1 Woodin cardinals.

Proof of Theorem 1.4(2). Let α ∈ ω1 and A ⊂ Rα be a projective set. Consider a

real game of length α where players Adam and Eve play reals sβ and rβ respectively

for β ∈ α so that the real sβ codes in some fixed way a countable set of reals and

rβ is not one of them. Eve wins if the α-sequence of her answers belongs to the

set A. Since real games of length α are easily simulated by integer games of length

ω ·α, by the Transfinite Determinacy Fact 0.7 the game is determined and moreover
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there is a weakly homogeneous winning strategy. It is therefore enough to prove the

following two claims:

Claim 1.5. Adam has a winning strategy iff there is a function g : R<α → [R]ℵ0

such that ∀r ∈ A ∃β ∈ α r(β) ∈ g(r � β).

Claim 1.6. Eve has a weakly homogeneous winning strategy iff there is a condition

p ∈ Sα with p ⊂ A.

Now the first claim is a virtual triviality. The right-to-left direction of the second

claim is not hard either. If p ⊂ A for some condition p ∈ Sα then Eve can defeat

Adam merely making sure that at each stage β ∈ α the sequence rβ of answers she

produced so far is in the set p � β and choosing her next answer from the perfect set

{t ∈ R : rβ〈t〉 ∈ p � β + 1} minus the countable set coded by Adam’s challenge sβ .

With a little care the choice can be made uniformly so that the winning strategy

is not only weakly homogeneous but Borel.

That leaves us with the left-to-right direction of Claim 1.6. Let σ be a weakly

homogeneous winning strategy for Eve. Call a pair 〈s, r〉 of real sequences of length

≤ α good if it represents a (partial) play of the game in which Eve follows the

strategy σ. Thus there is a suitably weakly homogeneous tree T whose projection

is the set of all good pairs of sequences of length ≤ α.

By transfinite induction on β ≤ α prove that for every ordinal γ ∈ β and every

good pair 〈s0, r0〉 ∈ Rγ × Rγ there is a condition p ∈ Sβ−γ such that for every

sequence r1 ∈ p there is s1 ∈ Rβ−γ such that the pair 〈s0s1, r0r1〉 ∈ Rβ × Rβ is

good. This will clearly suffice considering the case β = α, γ = 0 and s0 = r0 = 0

and the fact that σ is a winning strategy for Eve.

Suppose first that β = β′ +1 is a successor ordinal and the induction hypothesis

has been verified for β′. Let γ ∈ β and let 〈s0, r0〉 ∈ Rγ ×Rγ be a good pair. By the

induction hypothesis there is a condition p′ ∈ Sβ′−γ such that for every r ∈ p′ there

is s such that the pair 〈s0s, r0r〉 is good. Now, whenever we have such a good pair

then the set Xs,r = {t ∈ R : for some u ∈ R the pair 〈s0s〈u〉, r0r〈t〉〉 is good} must

be uncountable; in the opposite case Adam would defeat the strategy σ by playing

s0, s and then a code for the set Xs,r. As Xs,r ∈ L(R)[p[T ]] and L(R)[p[T ]] |= AD

the set Xs,t must have a perfect subset. By the Weakly Homogeneous Absoluteness

Fact 0.8, p′ 
 there is a sequence s such that 〈s0s, r0rgen〉 ∈ p[Ť ] and there is a

perfect set c such that ∀t ∈ c∃u ∈ R 〈s0s〈u〉, r0rgen〈t〉〉 ∈ p[Ť ]. Pick Sβ′−γ names

s, ċ for these two objects, let M be a countable elementary submodel of a large

enough structure containing all the relevant information and using Lemma 1.2(5)

find a condition q ⊂ p′ in Sβ′−γ consisting of M -generic sequences only. Then

p = {r ∈ Sβ−γ : r � β′ ∈ q ∧ r(β′) ∈ ċ/r � β} is the sought condition in the poset

Sβ−γ .

Now suppose β ≤ α is a limit ordinal and the induction hypothesis has been

verified up to β. Suppose that γ ∈ β and 〈s0, r0〉 ∈ Rγ × Rγ is a good pair. Let
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γ = β−1 ∈ β0 ∈ β1 ∈ . . . be an increasing ω-sequence of ordinals converging to β.

By induction on n ∈ ω perform the following three tasks:

• Let rn+1 be the Sβn−γ-name for the part of the generic sequence of reals between

βn−1 and βn.

• Choose an Sβn−γ-name sn+1 for a βn − βn−1-sequence of reals so that Sβn−γ 


if there is a sequence s such that 〈s0s1 . . . sns, r0r1 . . . rn+1〉 ∈ p[Ť ] then sn+1 is

such a sequence.

• (Even for n = −1) Choose an Sβn−γ-name ṗn+1 for a condition in the forcing

Sβn+1−βn
such that Sβn−γ 
 if 〈s0s1 . . . snsn+1, r0r1 . . . rn+1〉 ∈ p[Ť ] then ṗn+1 ⊂

{r ∈ Rβn+1−βn : ∃s ∈ Rβn+1−βn 〈s0s1 . . . snsn+1s, r0r1 . . . rn+1r〉 ∈ p[Ť ]}.

For the third item note that the induction hypothesis has been proved up to β

and that by the Weakly Homogeneous Absoluteness Fact 0.8 it holds up to β even

in the Sβn−γ extension.

Now choose a countable elementary submodel M of a large enough structure

containing all the relevant information and use Lemma 1.2(5) to find Borel relations

Bn ⊂ Rβn−γ×Rβn+1−βn for n = −1, 0, 1, 2 . . . such that for all pairs 〈tn, tn+1〉 ∈ Bn

the sequence tn is M -generic for Sβn−γ and the sequence tn+1 ∈ ṗn+1/tn is M [tn]-

generic for Sβn+1−βn
, and moreover for every M -generic sequence tn ∈ Rβn−γ the

set of all sequences tn+1 with 〈tn, tn+1〉 ∈ Bn is a condition in the poset Sβn+1−βn
.

Let p = {r ∈ Rβ−γ : for every n = −1, 0, 1, . . . the pair 〈r � [γ, βn), r � [βn, βn+1)〉

is in the relation Bn}. It is not difficult to verify that p ∈ Sβ−γ is the desired

condition. �

2. The Absoluteness Argument

Towards the proof of Theorem 0.2, suppose that there is a proper class of measurable

Woodin cardinals, x is a tame cardinal invariant, x = min{|A| : A ⊂ R, φ(A)∧ψ(A)}

where φ(A) is a statement quantifying over the natural numbers and elements of

A, and ψ(A) is a sentence of the form ∀x ∈ R ∃y ∈ A θ(x, y) where θ is a formula

whose quantifiers range over natural and real numbers only, and suppose that x < c

holds in some set generic extension V [G].

Move into the model V [G]. There must be a set A ⊂ R such that φ(A) ∧ ψ(A)

holds and |A| < c. I will prove that the Sacks forcing and its countable support

iterations preserve the properties φ and ψ of the set A. Certainly φ(A) is preserved

because of its simple syntactical form. However the preservation of ψ(A) could pose

problems since some iteration Sα could add a real ẋ such that Sα 
 ∀y ∈ Ǎ ¬θ(ẋ, y).

2.1. The countable case

First consider the case of an arbitrary countable ordinal α ∈ ω1. Fix a condi-

tion p ∈ Sα and an Sα-name ẋ for a real. Strengthening the condition p if neces-

sary we may identify ẋ with a Borel function ẋ : p → R with the understanding
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that the new real is the value of this function on the generic α-sequence of reals.

I will show

∃q ≤ p ∃y ∈ A ∀r ∈ q θ(ẋ(r), y) . (2.1)

Of course, then by projective absoluteness q 
 θ(ẋ, y̌) and as p, ẋ were arbitrary,

Sα 
 ∀x ∈ R ∃y ∈ Ǎ θ(x, y) = ψ(Ǎ) as desired.

Suppose (2.1) fails. Then for every real y ∈ A the set By = {r ∈ p : θ(ẋ(r), y)}

contains no condition q ≤ p in the forcing Sα as a subset. Since the sets By are

projective, we can use the dichotomy Lemma 1.4 to find functions gy : R<α → [R]ℵ0

such that for every real y ∈ A and every α-sequence r ∈ p θ(ẋ(r), y) implies

∃β ∈ α r(β) ∈ gy(r � β). Now by transfinite induction on β ∈ α build an α-sequence

r ∈ p such that for every ordinal β ∈ α r � β ∈ p � β and ∀y ∈ A r(β) /∈ gy(r � β).

This is rather easy; at each level β ∈ α use the fact that
⋃

y∈A gy(r � β) is a set

of size |A| · ℵ0 < c while the set {t ∈ R : (r � β)〈t〉 ∈ p � β + 1} is perfect,

therefore of size c and so must contain a real not in the above union. Now look at

the real ẋ(r). By the choice of the functions gy and the sequence z we should have

∀y ∈ A ¬θ(ẋ(r), y), contradicting the property ψ of A. (2.1) follows.

2.2. The uncountable case

The results of the previous subsection can be extended by a rather standard argu-

ment to show that for every ordinal α the countable support iteration Sα of Sacks

forcing of length α preserves the statement ψ(A). Just use the following lemma:

Lemma 2.1 (ZFC+projective absoluteness). Suppose that θ(x, y) is a projec-

tive formula and A ⊂ R is a set such that for every ordinal β ∈ ω1, every condition

p ∈ Sβ and every Borel function f : p → R there is a condition q ≤ p and a real

y ∈ A such that for every sequence r ∈ q, θ(f(r), y) holds. Then for every ordinal

α, Sα 
 ∀x ∈ R∃y ∈ Ǎ θ(x, y).

Note that the assumptions of the lemma were shown to hold in the model V [G]

in the previous subsection.

Proof. First, a small observation. Suppose β ∈ ω1 and α are ordinals and π : β → α

is an increasing function. Then π can be naturally extended into an order-preserving

map π : Sβ → Sα where π(p) is the unique condition in Sα with support π′′β such

that ∀γ ∈ β π(p) � π(γ) 
Sπ(γ)
(π(p))(π(γ)) = {t ∈ R : 〈ṙπ(ξ) : ξ ∈ γ〉〈t〉 ∈ p � γ+1},

where ṙζ is the ζ-th Sacks generic real. It is not hard to see that π(p) 
Sα
〈ṙπ(ξ) :

ξ ∈ β〉 ∈ p.

Now suppose that θ, A satisfy the assumptions of the lemma, α is an ordinal,

q0 ∈ Sα is a condition and ẋ is an Sα-name for a real. I will produce a condition

q1 ≤ q0 and a real y ∈ A such that q1 
 θ(ẋ, y̌). This will prove the lemma. Choose

a countable elementary submodel M of some large structure containing all relevant

objects and let β = o.t.M ∩ α and π : β → α be the inverse of the transitive
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collapse. A standard countable support iteration argument similar to the proof of

Lemma 1.2(5) gives a condition p0 ∈ Sβ such that π(p0) ≤ q0 and for every r ∈ p0

the sequence r ◦ π−1 is M -generic for the poset Sα. Let f : p0 → R be the Borel

function defined by f(r) = ẋ/r ◦ π−1. Thus π(p0) 
 ẋ = ḟ(〈ṙπ(ξ) : ξ ∈ β〉). The

assumptions of the lemma can be now employed to provide a real y ∈ A and a

condition p1 ≤ p0 such that ∀r ∈ p1 θ(f(r), y)). By the projective absoluteness and

the last sentence of the first paragraph of this proof, setting q1 = π(p1) we have

q1 ≤ q0, q1 
Sα
θ(ẋ, y̌) as desired.

2.3. The wrap-up

To restate the above work, let

χ(A) = ∀α ∈ ω1 ∀p ∈ Sα ∀ẋ : p 7→ R Borel ∃y ∈ A ∃q ∈ Sα q ≤ p∧∀r ∈ q θ(ẋ(r), y) .

Note that χ(A) is a projective statement about the set A ⊂ R. We proved that

V [G] |= χ(A) and that χ(A) implies in ZFC + projective absoluteness that for

every ordinal α Sα 
 ψ(Ǎ). Again,

V [G] |= ∃A ⊂ R φ(A) ∧ χ(A) .

Note that the sentence on the right hand side of the |= sign is Σ2
1.

Now back to the ground model V. Suppose first that V satisfies the continuum

hypothesis. Then by the Σ2
1 Absoluteness Fact 0.6, V |= ∃A ⊂ R φ(A) ∧ χ(A). Fix

a set A ⊂ R with φ(A) ∧ χ(A) and iterate Sacks reals ω2 times with countable

support to get a model V [H ]. By the above work,

V [H ] |= φ(A) ∧ ψ(A), x ≤ |A| ≤ |cV | = ℵ1 < c = ℵ2
V = ℵ2

as desired. If the continuum hypothesis fails in the ground model V, iterate the

Sacks reals c+ many times anyway to get the model V [H ]. Let V [K] ⊂ V [H ]

be the intermediate extension given by the first ω1 many generic reals. As is well

known, V [K] |= CH and V [H ] is an ω2 iterated Sacks extension of the model V [K].

One can then repeat the above argument with V replaced with V [K] to see that

V [H ] |= x < c. Theorem 0.2 follows.

3. Other Invariants

Many invariants of the form cov(I), where I is a Borel generated σ-ideal on the real

line, can be isolated by a countable iteration of the forcing Borel(R) modulo I, and

the proof follows closely the scenario of the previous two sections. It is just sufficient

to verify that this forcing is proper (this fact is used in setting up the geometric

representation of the iteration as in Sec. 1.1), that under AD every I-positive set of

reals has a Borel positive subset (this is needed for the successor step in the proof

of Claim 1.6) and that cov(I) = cov(I � B) for every positive Borel set B, this is

tacitly used in the proof of (2.1) in Sec 2.1. The invariants c = cov(countable), b,

d and some others conform exactly to this scenario. For the invariants non(strong

measure zero) and h further changes are necessary.
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3.1. The dominating number

Clearly the dominating number is the covering number of the ideal of bounded

subsets of ωω. The countable support iteration of Miller forcing [11] will isolate it

as the following two lemmas show.

Lemma 3.1 ([6]). Every Borel unbounded subset of ωω contains all branches of

some superperfect tree. Under AD this generalizes to all unbounded sets.

Thus the Miller forcing is a dense subset of the factor algebra Borel (ωω) modulo

the bounded sets.

Lemma 3.2. For every superperfect tree T ⊂ ω<ω there is a continuous function

F : ωω → [T ] such that preimages of bounded sets are bounded.

Proof. Thinning the tree T out if necessary we may assume that every splitnode

of T has in fact infinitely many immediate successors. The natural homeomorphism

F : ωω → [T ] will have the required property.

Thus d = cov(bounded) = cov(bounded ideal restricted to B) for every Borel

unbounded set B ⊂ ωω. The argument in Secs. 1 and 2 now goes through with the

obvious changes, replacing c with d, the countable ideal with the bounded ideal,

and the Sacks condition in Definition 1.1 with the obvious Miller condition.

3.2. The bounding number

The countable support iteration of Laver reals [7] isolates b. Consider the σ-ideal

IL on ωω generated by the sets Ag = {f ∈ ωω : for infinitely many n ∈ ω f(n) ∈

g(f � n)} where g varies through all functions from ω<ω to ω. We have the almost

obvious

Lemma 3.3. b = cov(IL).

Proof. The map G : ωω → IL defined by G(f) = Ag where g(t) = f(|t|) for every

sequence t ∈ ω<ω, has the property that preimages of non-covering subsets of IL are

bounded. This proves that cov(IL) ≤ b. On the other hand, fixing an enumeration

{un : n ∈ ω} of ω<ω, the map H : IL → ωω sending the set Ag to the function

f : n 7→ g(un), has the property that preimages of bounded sets do not cover the

whole real line. Thus b ≤cov(IL).

As in the previous subsection, I will prove that the Laver forcing is a dense

subset of the algebra Borel(ωω) modulo the ideal IL:

Lemma 3.4. Every Borel IL-positive set contains all branches of some Laver tree.

Under AD this generalizes to all IL-positive sets.
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Proof. Suppose A ⊂ ωω is a set and define an infinite game by letting players

Adam and Eve play sequences tn ∈ ω<ω and bits bn ∈ 2 respectively, observing

the following rules: b0 = 1 and whenever Eve accepts a sequence tn — that is,

plays bn = 1 — then Adam submits one-step extensions tn+1, tn+2, . . . of tn until

Eve accepts one of them. The last number on the sequences tn+1, tn+2, . . . must

increase. Adam wins if either Eve accepted only finitely many times or else
⋃
{tn :

bn = 1} ∈ A. The following two claims will complete the proof of the lemma [9]:

Claim 3.5. Adam has a winning strategy if and only if the set A contains all

branches of some Laver tree.

Proof. For the right to left direction fix a Laver tree T with [T ] ⊂ A. Let Adam

set t0 =trunk of T , and if tn ∈ T has been played and accepted by Eve then let

Adam submit immediate successors of the node tn in the tree T in the increasing

order until Eve accepts one of them. This is obviously a winning strategy for Adam.

For the left to right direction let σ be a winning strategy for Adam and let

T ⊂ ωω be the tree of all sequences that can possibly arise in a run of the game

GA in which Adam follows the strategy σ. Note that for each node t ∈ T there is a

unique shortest run τ(t) such that it respects σ and t occurs in it, and if t ⊂ s are

both in the tree T then τ(t) ⊂ τ(s). It follows that every branch f ∈ [T ] is a result

of the run
⋃
{τ(t) : t ⊂ f} and therefore must belong to the set A. It is also clear

from the definition of the game GA that T is a Laver tree with trunk σ(0).

Claim 3.6. Eve has a winning strategy if and only if A ⊂ Ag for some function

g : ω<ω → ω.

Proof. For the right to left direction fix a function g such that A ⊂ Ag . Let Eve

accept a sequence tn, a one-step extension of some previously accepted sequence

tm as soon as the last number on tn exceeds g(tm). The result of such a play must

fall outside of the set Ag and therefore this is a winning strategy for Eve.

For the left to right direction let σ be a winning strategy for Eve. For every

sequence s ∈ ω<ω let Ts be the tree of all sequences that can be accepted by Eve

in some run of the game where he follows the strategy σ and Adam plays t0 = s.

It follows that for all sequences s ⊂ t, if t ∈ Ts then all but finitely many one-step

extensions of t must belong to the tree Ts — otherwise Adam could win by first

getting to t and then submitting all the one-step extensions of t which do not belong

to the tree Ts. Also, [Ts] ∩A = 0 for all s ∈ ω<ω. To see this, fix a branch f ∈ [Ts]

and define S to be the tree of all partial runs of the game GA in which Adam set

t0 = s, Eve followed the strategy σ and the last move of Adam was accepted and it

is an initial segment of the branch f. The tree S is ordered by extension. It follows

from the “increasing” rule of the game GA that the tree S is finitely branching —

each run τ ∈ S has at most 2f(n) immediate successors where n is the length of the

last move of τ . Also, the tree S has height ω, so it must be illfounded. Any infinite
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branch of the tree S yields a run of the game GA following the winning strategy σ

whose result was the function f. Thus f /∈ A.

Now define a function g : ω<ω → ω by setting g(t) = an integer such that for

every s ⊂ t, if t ∈ Ts then g(t) is larger than all of the finitely many numbers n

such that t〈n〉 /∈ Ts. I claim that A ⊂ Ag . If this were not true then there would

be a function f ∈ A such that for some n ∈ ω, for all larger numbers m necessarily

g(f � m) ∈ f(m). But then f ∈ [Tf�n] by the definition of the function g, so by the

previous paragraph f /∈ A. A contradiction!

The last thing that must be verified before unleashing the technology developed

in Secs. 1 and 2 is that cov(IL) =cov(IL � B) for every Borel IL positive set

B ⊂ ωω:

Lemma 3.7. For every Laver tree T there is a continuous function F : ωω → [T ]

such that preimages of IL-small sets are IL-small.

Proof. The natural homeomorphism F : ωω → [T ] has the required property.

3.3. The uniformity of the strong measure ideal

This invariant has a definition that is not suitable for our purposes for syntactical

reasons. I will use the following combinatorial characterization of this invariant.

For a function g ∈ ωω let Iie(g) be the σ-ideal on Πng(n) generated by the sets

Af = {h ∈ Πng(n) : h ∩ f is finite}. Then

Lemma 3.8 ([2, 8.1.14, 10]). non(strong measure zero) = min{cov(Iie(g)) :

g ∈ ωω}.

Thus a natural attempt at isolating non(strong measure zero) is the count-

able support iteration of the forcings Borel(Πng(n)) modulo the ideal Iie(g) for

all possible (names for) functions g ∈ ωω. The following two lemmas show that

this attempt will actually work. Lemma 3.9 gives us the representation of the forc-

ings suitable to prove that they satisfy Axiom A, and yields the crucial dichotomy.

Lemma 3.12 provides the necessary homogeneity in the covering number.

Fix a function g ∈ ωω. A nonempty tree T ⊂ ω<ω will be called g-thick if the

sequences in T are everywhere dominated by the function g, and for every sequence

t ∈ T there is a natural number n such that for everym ∈ g(n) there is an extension

s ∈ T of the sequence t such that s(n) = m. It is quite obvious that if T is a g-thick

tree then [T ] ⊂ Πng(n) is an Iie(g)-positive set. In fact,

Lemma 3.9. For every function g ∈ ωω, every Borel Iie(g)-positive set contains

all branches of some g-thick tree. Under AD this generalizes to all Iie(g)-positive

sets.
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Proof. Let g ∈ ωω be a function and let A ⊂ Πng(n) be a set. Define a game GA

by setting

Adam t0, n0 t1, n1 t2, n2 · · ·

Eve m0 m1 m2 · · ·

where n0, n1, . . . is an increasing sequence of natural numbers, mi ∈ g(ni) and

0 = t0 ⊂ t1 ⊂ . . . are sequences of natural numbers dominated by the function g,

dom(ti) ∈ ni and ti+1(ni) = mi. Adam wins if
⋃
tn ∈ A. The following two claims

will complete the proof of the lemma [9]:

Claim 3.10. Adam has a winning strategy if and only if the set A contains all

branches of some g-thick tree.

Proof. For the right to left direction fix a g-thick tree T with [T ] ⊂ A. Adam will

easily win by making sure that for each of his moves ti ∈ T , and that ni is such

that for every m ∈ g(ni) there is an extension s ∈ T of the sequence ti such that

s(ni) = mi.

For the left to right direction fix a winning strategy σ for Adam. Let T be the

closure under initial segment of the set of all sequences arising in partial runs of

the game GA in which Adam follows the strategy σ. It is immediately clear that

T is a g-thick tree and if h is a branch through T then there is a unique run

of the game in which Adam follows the strategy σ and obtains the function h.

Ergo, [T ] ⊂ A.

Claim 3.11. Eve has a winning strategy if and only if A ⊂
⋃

k Afk
for some

functions fk ∈ Πng(n), k ∈ ω.

Proof. For the right to left direction let A ⊂
⋃

k Afk
. Eve will easily win by fixing

a bookkeeping function b : ω → ω such that for every number k the set b−1{k} is

infinite, and then playing mi = gb(i)(ni).

For the left to right direction let σ be a winning strategy for Eve. For each

partial run τ of the game GA where Eve followed the strategy and Adam made

the last move ti let fτ ∈ Πng(n) be the function defined by fτ (n) = σ(τ〈n〉).

Then necessarily A ⊂
⋃

τ Afτ
. If this failed, then there would be a function h ∈ A

with infinite intersection with each fτ . And then Adam could beat the strategy σ by

inductively constructing a run of the game which respects the strategy σ and results

in the function h. Assuming that the partial run τi has been constructed so that

Adam made a last move ti ⊂ h in it, he finds a number ni such that h(ni) = fτi
(ni)

and the game continues into τi+1 = τi〈ni, h(ni) = σ(τi〈ni〉), h � ni + 1〉.

Thus for every function g ∈ ωω the forcing Borel(Πng(n))/Iie(g) has a dense

set consisting of the g-thick trees. It follows easily that the forcing satisfies Axiom

A. The following lemma shows that min{cov(Iie(g) restricted to an arbitrary Borel
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positive set), g ∈ ωω} = min{cov(Iie(g)) : g ∈ ωω}, which will be used in the proof

of the relevant variation of (2.1) in Sec. 2.1.

Lemma 3.12. For every function g ∈ ωω and every g-thick tree T there is a

function h and a continuous map F : Πnh(n) → [T ] such that the preimages of

Iie(g)-small sets are Iie(h)-small.

Proof. Fix a function g ∈ ωω and a g-thick tree T. By induction on n ∈ ω construct

finite sets Xn ⊂ T so that X0 = {0}, for each node t ∈ Xn there is an integer k

such that the set Xn+1(t) = {s ∈ Xn+1 : t ⊂ s} consists of sequences of length

k + 1 and for every m ∈ g(k) there is a unique s ∈ Xn+1 with s(k) = m. Moreover

make sure that Xn+1 =
⋃

t∈Xn
Xn+1(t). This is not hard to do; the sequences in

any of the sets Xn will be pairwise incompatible and the union in the last sentence

will always be a union of disjoint sets.

It will be convenient to define the function h so that its range consists of finite

sets rather than natural numbers. Simply let h(n) = {Y ⊂ Xn+1 : ∀t ∈ Xn |Y ∩

Xn+1(t)| = 1}. The map F : Πnh(n) → [T ] will be defined by F (f) = the unique

function e ∈ [T ] such that for all numbers n the set f(n) contains an initial segment

of e. It is not hard to check the required properties for the function F.

To compare the forcing PTg of [1] with the forcing Borel(Πng(n)) modulo Iie(g)

note that the former is a somewhere dense subset of the latter. A moment’s thought

will then reveal that a suitable iteration of the PTg forcings must isolate the in-

variant non(strong measure zero) as well.

3.4. The distributivity of the algebra Power(ω) modulo finite

It is well known that an iteration of Mathias forcing will increase the invariant h de-

fined as the minimum cardinality of a collection of open dense subsets of the algebra

Power(ω) modulo finite with empty intersection. Actually h is isolated through this

iteration. The proof of this fact is a little different from the previous cases since

Mathias forcing cannot be written as Power(R) modulo a Borel generated ideal

under any determinacy hypothesis. It is necessary to settle for a more complicated

representation of the forcing. First, some notation. For sets a, b ⊂ ω let a ⊂∗ b

mean that a is included in b up to a finite number of elements. [a] then denotes

the equivalence class of the set a in the algebra Power(ω) modulo finite, for a set

A ⊂ Power(ω) write [A] = {[a] : a ∈ A} and let IM be the σ-ideal on Power(ω)

consisting of those sets A for which [A] is nowhere dense in the algebra Power(ω)

modulo finite.

Lemma 3.13.

(1) (ZF +DC + ADR) Let T ⊂ (2 ×Ord)<ω be a tree. Then either p[T ] ∈ IM or

there is a condition p ∈ M so that p 
 the generic real is in p[Ť ].
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(2) (ZFC) Let T ⊂ (2 × Ord)<ω be a < δ-weakly homogeneous tree, where δ is a

supremum of ω Woodin cardinals. Then the same dichotomy as in (1) holds.

With some additional work, (1) could be restated to say that under ZF + DC +

ADR Mathias forcing is naturally forcing isomorphic to the algebra PowerPower(ω)

modulo the ideal IM . It is methodologically important to observe that IM is not a

Borel generated ideal.

Proof of Theorem 3.13(2). The following well known geometric condition for

Mathias genericity will be used:

Claim 3.14 ([14]). Suppose that a ⊂ ω is an external V -generic Mathias real and

b ⊂∗ a is an infinite external set. Then b is a V -generic Mathias real.

Now let T be a suitably weakly homogeneous tree such that p[T ] /∈ IM . Then

there is an infinite set c ⊂ ω such that the set [p[T ]] is dense below [c] in the

algebra Power(ω) modulo finite. Let a ⊂ c be a V -generic Mathias real. By the

weakly homogeneous absoluteness there is an infinite set b ∈ V [a] such that b ∈ p[T ]

and b ⊂∗ a. By the above claim, the set b is a V -generic Mathias real and by a

wellfoundedness argument involving the tree T V [b] |= b ∈ p[T ]. So there must be

a condition p ∈ M such that p 
 the generic real is in p[Ť ].

On the other hand, suppose that some condition p ∈ M forces the generic real

into p[Ť ]. Choose a countable elementary submodel M of a large enough structure

containing all the relevant objects and consider the set A = {a ⊂ ω : a is a Mathias

M -generic real meeting the condition p}. This set is nonempty, Borel by Claim 1.3

and its projection into the algebra Power(ω) modulo finite is open by Claim 3.14.

By the choice of the condition p we also have A ⊂ p[T ]. Lemma 3.13(2) follows. �

The proof of the previous lemma also yields

Claim 3.15. Every suitably weakly homogeneous set not in IM has a Borel subset

not in IM .

With the above facts in hand, the geometric analysis of countable iterations of

Mathias forcing proceeds just as in Sec. 1.1 replacing the countable ideal by the

ideal IM everywhere, and with the Sacks condition in Definition 1.1 replaced by

the Mathias condition-splitting into an IM -positive set. The reader is urged to use

Lemma 3.13(2) to prove on his own that the Mathias forcing is forcing isomorphic

to the algebra Borel(Power(ω)) modulo IM . The dichotomy Lemma 1.4 must be

reformulated. Let α ∈ ω1 and let A ⊂ Rα be a projective set. Consider the game

GA of α many rounds where at round β ∈ α Eve plays an infinite set tβ ⊂ ω, Adam

plays an infinite set sβ ⊂∗ tβ and Eve plays a set rβ ⊂∗ tβ in this order. Eve wins

if the sequence 〈rβ : β ∈ α〉 belongs to the set A.

Under the assumption of proper class many Woodin cardinals (actually ω1 many

suffice) the game is determined and there are two possibilities:
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(1) Adam has a winning strategy.

(2) Eve has a weakly homogeneous winning strategy and then by an argument

essentially identical to that in Sec.1.2 using Claim 3.15, there is a condition

p ∈ Mα with p ⊂ A.

Note that we could not use a game similar to the original one because there it

is important that Adam can play arbitrarily large sets in the relevant ideal. Here

the ideal is not Borel generated and so we would not get a real game and the

determinacy of the game would be open to question.

The argument for the h version of Theorem 0.2 then proceeds exactly as in

Sec. 2 except that the proof of (2.1) has to be changed. Let me recall the setup

there. There is a tame invariant x = min{|A| : A ⊂ R, φ(A) ∧ ψ(A)} where the

quantifiers of φ(A) is are restricted to the set A and the natural numbers and

ψ(A) = ∀x ∈ R ∃y ∈ A θ(x, y) where θ is a formula whose quantifiers range over

natural and real numbers only. We work in a model where x < h and A is a witness

for it, that is |A| < h, φ(A)∧ψ(A), also we have α ∈ ω1 and a condition p ∈ Mα and

a Borel function ẋ : p→ R. We want to show that ∃y ∈ A∃q ≤ p∀r ∈ q θ(ẋ(r), y).

For each real y ∈ A, let By = {r ∈ p : θ(ẋ(r), y)}. If Eve had a weakly ho-

mogeneous winning strategy for one of the games GBy
then by (2) above for that

real y ∈ A there would be a condition q ≤ p such that q ⊂ By and we would be

done. So it is enough to derive a contradiction from the assumption that Adam has

a winning startegy σy for every game GBy
, y ∈ A. By a simultaneous transfinite

induction on β ∈ α build partial plays of games GBy
for all y ∈ Y played according

to the strategies σy so that

• writing tβy, sβy, rβy for the moves at the β-th round of the partial play we build

for y ∈ A, the set rβy ⊂ ω does not depend on y. We can write rβ to denote this

set,

• 〈rγ : γ ∈ β〉 ∈ p � β.

To find the moves tβy, sβy, rβ under the assumption that the partial plays

〈tγy, sγy, rγ : γ ∈ β〉 were constructed for all y ∈ A, let Dy = {r ⊂ ω : there

are sets t, s ⊂ ω such that the sequence 〈tγy, sγy, rγ : γ ∈ β〉〈t, s, r〉 is a legal partial

play of GBy
observing the strategy σy}. It follows from the definitions that the sets

Dy, y ∈ A are closed under finite changes of their elements and that they are all

open dense in the algebra Power(ω) modulo finite. Since |A| < h, the intersection

of all of these sets is open dense as well and has an element rβ in common with the

somewhere dense set {r ⊂ ω : 〈rγ : γ ∈ β〉〈r〉 ∈ p � β + 1}. The induction step is

concluded by finding sets tβy, sβy ⊂ ω witnessing that rβ ∈ Dy, for all y ∈ A.

Now look at the sequence r = 〈rβ : β ∈ α〉. Since the strategies σy were

winning for Adam and in the previous paragraph we produced plays following these

strategies whose outcome was the sequence r, it must be that θ(ẋ(r), y) fails for

every real y ∈ A. This contradicts the property ψ of the set A.
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4. The Tower Number

The proof of Theorem 0.5 is really just a variation on an argument of Woodin

concerning the maximization of Σ2 theory of the model 〈Hℵ2 ,∈, ω1〉. Let δ be a

measurable Woodin cardinal such that for every tame invariant x, if there is a

forcing extension satisfying ℵ1 = x < t then there is such an extension of size

< δ. Without loss of generality assume that 2δ = δ+. Let Pt be a partial order

with the following definition. It is a two step iteration P0 ∗ Ṗ1 where P0 is again

a two step iteration R0 ∗ Ṙ1. Here R0 is just the Levy collapse of δ to ω1 and

R1 = {〈c,D〉 : c ⊂ δ is a closed bounded set such that every limit point κ of it is

a weakly compact cardinal of V and the set c ∩ κ diagonalizes the weakly compact

filter on κ. The set D ⊂ δ belongs to the weakly compact filter on δ as computed in

V }. The poset R1 is ordered by 〈c1, D1〉 ≤ 〈c0, D0〉 if c1 end-extends c1, D1 ⊂ D0

and c1 \ c0 ⊂ D0. Having defined the poset P0, P1 is just an arbitrary σ-centered

forcing of size δ+ = ℵ2 in the model V P0 making MA(σ-centered) and c = ℵ2 true.

The forcing Pt deserves an aside. The first step in the iteration defining the

poset P0 collapses δ to ℵ1 and the second step adds a rather mysterious club subset

of δ without adding reals or collapsing δ = ℵ1 or δ+ = ℵ2. In some sense the model

V P0 is supposed to be the most generic model of ♦ and the model V P0∗P1 should

be the most generic model of MA(σ-centered) + c = ℵ2. The key properties of the

forcing P0 are summed up in the following lemma.

Lemma 4.1 ([17] (Woodin)). Let γ be any Woodin cardinal above δ. For every

poset Q of size less than δ there are external V -generic filters G0∗G1 ⊂ Q∗Ṗ<γ and

H0 ⊂ P0 so that G1∩Q̇<δ is a V [G0]-generic filter, V [G0][G2] ⊂ V [H0] ⊂ V [G0][G1]

and V [G0][G1] |= δ = ℵ1 = |(Power(δ+))V |.

Let j : V [G0] → M and i : V [G0] → N be the elementary embeddings derived

from the filters G2, G1 respectively. There is a natural factor embedding k : M → N

such that i = j ◦ k and since δ = ℵM
1 = ℵN

1 , necessarily crit(k) > δ. The point in

the definition of the forcing P0 is that the model V [H0] can be sandwiched between

the elementarily equivalent models M and N as far as subsets of ω1 are concerned.

Back to the proof of Theorem 0.5, let x = min{|A| : A ⊂ R, φ(A) ∧ ψ(A)} be a

tame invariant and let Q be a forcing of size less than δ such that Q 
 ℵ1 = x < t.

I must prove that P0 ∗ Ṗ1 
 ℵ1 = x < t. Choose a Woodin cardinal γ > δ and find

the external objects G0, G1, G2, H0 as in Lemma 4.1 and write j : V [G0] → M

and i : V [G0] → N for the elementary embeddings derived from the filters G2, G1

respectively. The model N is elementarily equivalent to V [G0] and so t > ℵ1, p > ℵ1

and by a theorem of Bell [3], MAℵ1(σ-centered) are all true there. Moreover, since

the model is closed under < γ sequences in V [G0][G1], the set Power(δ+V )∩ V [H0]

is in N and has size ℵ1 there. In particular, the forcing P1 ∈ V [H0] is in N , it is

σ-centered and by an application of Martin Axiom there is a V [H0]-generic filter

H1 ⊂ P1 in N. I will show that V [H0][H1] |= x = ℵ1 and that will complete the

proof of Theorem 0.5.
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Let A ⊂ R ∩ V [G0] be a witness to x = ℵ1 in V [G0], that is V [G0] |= |A| = ℵ1,

φ(A) ∧ ψ(A). Look at the set jA ∈ M. Since the set has size ℵ1 in the model and

the critical point of the factor embedding k : M → N is above ℵM
1 = δ, it must

be that iA = kjA = jA ∈ M ⊂ V [H0] ⊂ V [H0][H1]. Now the set iA has the

properties φ and ψ in the model N by elementarity of the embedding i, and it can

be argued that it has these properties in the smaller model V [H0][H1] as well. For

the property φ is certainly absolute, and if ψ(iA) = ∀x ∈ R∃y ∈ iA θ(x, y) failed in

the model V [H0][H1] as witnessed by a real x then it would fail in the model N for

the same real x, since the reals of both models are generic extensions of the ground

model V and therefore agree on the truth of the projective formula θ(x, y). Thus

V [H0][H1] |= iA is a witness to ℵ1 = x as desired.
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