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0. Definitions and description of the results

This paper is concerned with combinatorial properties of families of infinite
subsets of w, the set of natural numbers 0, 1,2, ... . Before introducing the notion of
a happy family, for the suggestion of which phrase the author is indebted to
Professor J.N. Crossley, we state the notational conventions that will be followed
throughout the paper and review some familiar concepts.

0,1,2,... are identified with finite Neumann ordinals, so that 0 is the empty set,
1=1{0},2=1{0,1},..., and if x is a nonempty subset of w, [ | x = inf x. The variables
i,j.k,I,m,n will be used to denote arb’ rary members of w, 5t u, will denote
arbitrary finite subsets of w, S, T, W, X, Y, Z arbitrary infinite subsets of w, x,y
arbitrary finite or infinite subseis of w, A,B,C, D, F, G,I arbitrary families of
subsets of w, and finally €, &, # will be used for collections of families of subsets of
. We define |s | =sup{n + 1| n € s}, so in particular [0} = 0. |s] is in fact equal to
the set theoretic rank of s. The set theoretical difference of two sets & and ¥ is
denoied by ¥\ . With these definitions and conventions X\ |s| is the set of those
numbers of X exceeding, in the usual ordering of the natural numbers, all members
of 5. The cardinal of a set & is denoted by & or, where typographically more
convenient, & ~. For an arbitrary & we write [ZT" for the set of n-element subsets
of &: that is

] =uiw|w CZ &% =n}.

Similarly we write [¥]” for {w | w C % and W = w}. We write K for the set of finite
subsets of @ and H for the set of infinite subsets of w, so that K = {s {s C w} and
H={X lX C w}. The power set of w is denoted by P{w), so that P{w)=H UK.
A filter on o is a collection F of subsets of w with the properties that x € F &
yEF->xNyEF and that y2x & xE€F—y€F Hf 0€F, F is improper;
otherwise F is proper. We write Fr for the Fréchet filter {X |- X € K} of al:
cofinite subsets of w. If F is a filter and F D Fr, F is free. If F is a proper filter and
Vx{(x €F or w.x €F) then F is an ultrafilter ; that is equivalent to being a
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maximal proper filter. For A C ®?(w), we write A for {x | w~x € A}. For exampie,
Fr=K. I is an idecl if T is a filter, and I is further described as free, preper,
accorcingly. I is a prime ideal if I is an ultrafilter. For ziven A and X,,..., X, we
write fil(A, X,..., X,) for the filter genzrated by X,,..., X, and the members of
A UFr, and id(A, Xi,...,X,) for the ideal generated by X,,...,X. and the
members of A UK ; so when A is cioszd under intersection,

fil(A, X,,...,X,)={x|3yIz(yEA &zEFr&x2yNzNX,N---NX.)},
and when A is closed under union,

(A, Xy .., X)={x |y (yEA &zEK &xCyUz UX,U---NX, )}

fil(A, X)) and id(A, X) are thus always free, though they may be improper,

We shall assume 2ll the axioms of Zermelo-Fraenkel set theory, ZF. We shall be
particularly interested in avoiding the use of the full axiom of choice, AC. Three
weak forms of AC will be used occasicnally; they are

DC, or Tarski’s axiom of dependent choices, which is the statement that given a
relation & on a nonempty set Z such that for ali v € ¥ there is a w € ¥ with v#w,
there is a function f:w —& such that for all { € w, f(I)Rf( + 1);

DCR, or “dependent choices for relations on the reals”, which is DC restricted to
the special case that & = P(w); and

ACR, or “choice for relations ¢ 1 the reals”, which is the statement that given a

relation S2 on P (w) such that for all x there is a y with x@Ry, there is a function
E : ?(w)— P{w) such that for all x, xRE (x).
Of those three, DCR will be used most frequently; it is the weakest of the three,
being a consequence in ZF both of DC and of ACR. Attention will be drawn when
appropriate to the use or avoidance of these axioms in proofs. Some proofs will use
the continuum hypothesis, CH, which is the assertion that (?(w))” = Ny, the first
uncountable well-ordered cardinal. Some remarks will be made about the possibil-
ity of proving certain statements by using Martin’s axiom, MA, which is the axiom
A defined on page 150 of [15]. MA is weaker than CH being consistent with
A+ the negation of CH, and as [i5] makes clear, appropriate formulations of
certain consequences of CH+ AC are derivable from MA + AC. However these
remarks are marginal, and familiarity with MA is not required for most of the
paper. Familiazity is required, though, with the elementary theory of forcing and
Boolean valued models, as expounded for example in [14}, for following part of the
paper, though in most cases forcing is only used to reduce a theorem to a special
case of itself, and can with effort be avoided. The less elementary parts of forcing
used are reviewed in Section 3.

We now define the notion of a happy family.

0.0. Definition. X is said to diagonalize the family {X, |s € K} if X C X, and for
all s, if sups € X then X\|s]Z X..
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0.1, Definition. A is a happy family if P(w) A is a free ideai and whenever
fil({X, Is € KDC A, there is an X € A which diagonalizes {X,}

We give three itlusirations of that dedinition; in the first @ (w)~ A is small, in the
second, of medium size, and in the third, large.

0.2, Example. H, the family of all infinite subsets of w, is happy. In this case
P(w)<A is as small as can be, namely the Fréchet ideal Fr which equals K.

To see that H is happy, let {X, | s € K} generate a proper filter C H, and select
no € X,. Choose n, > n, with

n & ﬁ{XQ “\Ii-: ny+ 1}
and inductively ni., > n, with
N, € n{x; ’ is , s+ 1}-

As NUX, |[s|=<m} is always infinite, those choices are all possible. Let X =
{m fk <w}. Then X C X,; given 5 with sups = n € X, we have

XJs|={mjl=k+1} and |s|=mn +1,

and as ! =k + 1 implies n, € X,, X-|s|C X, as required. O
The next class of examples of happy families requires some preamble.

0.3. Definition. Two subsets x and y of w are called almost disjoint :f x Ny is
finite,

0.4. Definition. B is a MAD family if B is an infinite maximal collection of
pairwise almost disjoint infinite subsets of w.

B is required in that definition to be infinite to exclude the trivial case when
B ={X,,..., X} and o (XU --UX,) is finite.

The axiom of choice implies that MAD families exist. No MAD famiiy can be
countable forif B = {X, l i <w}, where the X; are pairwise almost disjoin®, there is
an X with X N X; finite for each i € w: pick

n € Xk\~l‘J{X; I] < k}

and set X = {m | k < w}. Similarly Martin’s axiom with AC implies that each MAD
family is of power 2%, whereas Hechler has shown that it is consistent with
ZFE+ AC+ 2% > R, that there be a MAD family of power 8;. The consistency with
ZF + DC of the statement that there is no MAD {amily is established in Section 3,
the consistency of the existence of a Mahlo cardinal being assumed.

0.5. An agreeable example of a family of power 2" of pairwise almost disjoint
subsets of @ is this: enumerate the nodes of the binary tree thus:
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1/0\2
AN
A

7 8 9 10 11 12 13 14

>

and for f : @ — 2let X; = {i | 3nf I n is node number i}. Put A = {X/|fro—>2) A
is not maximal, as A U{{2" | n < w}} is a larger such family. Corollary 4.7 gives a
deeper reavon for A not being maximal.

The iollowing proposition yields the second class of examples of happy families.
With an eye to its futire quotation we pause before stating it to repeat a definiticn
from [16].

0.6. Definition, A free ideal I is tall if for all X thereisa Y €1 with Y C X.

In a sense which is left to the reader’s imagination, the free ideals that are not tall
are almast as small as the smallest free ideal K.

0.7. Proposition (DCR). Let B be a MAD family, and put I =id(B). Then I is
proper and tall but not prime, and P (w)<I is a happy family.

Proof. w € I as, B being infinite, @ is not the union of finitely many elements of B,
even up to finite difference. Given X there is a Z € B with X N Z infinite, by the
maximality of B; then XNZ €I and X NZ C X. So I is proper and tall.

Put A = P(w)~I. Then

A ={X|{Y|Y €B & X NY is infinite} is infinite}.

Given {X.}.cx with fil({X.}) C A, let X°, constructed as in 0.2, diagonalize {X.}, and
let Y€ B have infinite intersection with X°. Set X! = X,<Y°. Each X! is infinite,
and fil({X;})C A, as Y°€ I. Let X' diagonalize {X!}, and let Y'€E B have infinite
intersection with X'. Y'# Y as X'C XoC o~ Y°. Note that X' diagonalizes {X,}.
Now let X=X, (Y°UY'):--. A sequence X', Y' may thus be found such that
each Y'EE, Y'#AY for i#j, X'NY' is infinite and X' diagonalizes {X,}.
Construct a strictly increasing sequence {n. }, . such that n, € X, and for

k=2Qi+1),neY nX nUX, [Is{<n.,+1}

Such a sequence may be found because all sufficiently large members of X! are in
MN{X. [Is!<n.,+1} and Y’ N X! is infinite. Put Z = {n, |k < w}. Then for cach
j»Z NY' is infinite and so Z € A ; clearly Z diagonalizes {X,},c«-
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Thus A is happy. To see that I is not prime let {Y, | i < w} be distinct elements of
B, and construct Z so that both Z and - Z have infinite intersection with each Y.
To do that find a strictly increasing sequence {n. |k < @} such that for each k, if
k =2"(@2n + 1), both ny and nx., are in Y, and put Z = {n,. | k < ©}. Neither Z
nor w~.Z isin I

That DCR is a sufficiently strong form of choice for this proof is left, as it will be
on other occasions, to the reader to verify. [

We now go to the other extreme and consider the case when A is a happy family
and P(w)< A is a prime ideal. In that case A will be a free ultrafilter of a certain
sort discussed in Booth’s paper [3]. To relate the present notions to those in Sooth’s
paper the following is useful:

0.8. Proposition. The following are equivalent conditions on a family A provided
that P (w A is a free ideal:

(i) A is happy,

(i) given Y. € A for i <w with Y..,C Y, for each i <w, there is a funciion
f:w — @ such that the range or image W(f) of f is a member of A and for all
nf(n+1)€ Yy

Preof. Assume A is happy and let {Y.}i<, be as in (ii). Define for s €K
X, = N{y|i+vi<|s|h

soin fact|s|=1— X, = Y, Then {X, ]s € K} generates a filter, contained in A
as P(w )< A is an ideal. Let X diagonalize the family {X,},ex and let f enumerate X
is ascending order. Let n < w, and set s = X N(f(n)+1). Then |s|=f(n)+ 1 and
sups € X, As f(n+1)€ X|s| and X|s|C X, C Yy, we have f(n + 1) &€ Yy,
But n was rbitrary.

Conversely suppose A has property (i) and let {X.|s € K} be a family of
members of A that generates a filter contained in A. Put

Y, = (X, ||s]<i+1}

Each Y; isin A, and Y..; C Y. By (ii) there is an f and an X € A with X = W(f)
and for all n f(n +1)€ Y. Let maxs = f(n)€ X say; let k € Xjs|. Then
k = f(m) for some m >n, so k € Yy [s|=f(n)+1, as Yy C X5 s0 k € X..
Hence X diagonalizes {X,}, as required. [J

0.9. Definition. A Ramsey ultrafilter is an ultrafilter that is also a happy family.

The reason for that name is this. Ramsey showed that if 7 : [w}*— 2 then for
some X, is constant on [X]. Such an X is called homogeneous for = ; in the
notation of Erdds and Rado, Ramsey's theorem is w — (w)i. Now the following is
an immediate consequence of Proposition 0.8 above and Theorem 4.9 on page 20 of
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[3], where other equivalent definitions are given: a further list is given in Theorem
9.31 below.

0.10. Propesition. The following are equivalent conditions on a free ultrafilter F

(i) F is happy,
(ii) for any 7 :[w]*—2 there is an X € F with w constant on [X].

Ramsey ultrafilters are much easier to work with than happy families as the
intersection of arbitrarily chosen elements of a filter is infinite whereas that might
not be the case for a happy family. One difficulty is that they need not exist: Kunen
has shown that if the universe is the result of adding N, random reals io L or if there
is a real valued measurzble cardinal, there is no Ramsey ultrafilter. However it will
be shown in Section 4 using DCR that given any happy family A a Boolean
extension of the universe may be made which adds no new subsets of w but whick
adds a Ramsey ultrafilter as a subset of A. The general combinatorial theorems in
this paper about happy families will accordingly be obtained by reduction using
Boolean-valued models to the special case that the happy families are Ramsey
ultrafilters, though this use of Boolean-valued models may be avoided by more
laborious arguments. In the presence of the continuum hypothesis an explicii
relationship may be proved:

0.11. Proposition (CH}. Let A be happy. Then there is a Ramsey ulirafilier F C A.

Taking A = H shows that CH— Ramsey ultrafilters exists. The latter result may
be deduced from Martin’s axiom, but can the above proposition? In Section 9 MA
is used to derive a weaker conclusion from a weaker hypothesis on A.

Proof of the Proposition. Enumerate all sequences {X, | s € K} such that
fifX.}CA as (X sEK} <N

Construct a sequence Ff ({ <NW,) of countably generated filters such that F* C

F*'C A; for each { either 3s with X{€ F** or {X§CF*® and 3Y € F**' (Y

diagonalizes {X%}); and such that VZ Cw 3 (Z €F* or w~Z €F*). Then

U(F* ]2; < N} is the desired Ramsey ultrafilter. The orly difficult part of the

construction is handled thus: given F* C A and {X¢|s € K}, if 3s fI(F%, o~ X)C
A, let F**' = fil{F%, o~ X?Y) for that s; otherwise

VsVY EFSYXINY € A),

and so fI(F5,{X!|s €K}) is contained in A, and is countably generated by
{Y. (i < w} say. Let

Z, = Xin N{Y. ||s]<i}.

Then i{Z,} C A; as A is happy, 3W € A which diagonalises {Z.}. Put F**'=
fil(Fr, W). Then F*CF*'. O
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The notion of a 3 subset of @ {w) will be assumed known: for a discussion see
{27] and for some examples, see [16]. Silver in {28] has proved the following
generalization of Ramsey’s theorem, which by Shoenfield’s absoluteness theorem
may be proved without the axiom of choice.

0.12. Theorem (Silver). Let D be a X! subset of P (w). Then there is an X such that
YVY(YCX—»(YED«XeED)

The contents of this paper are now summarised: in Section 1 a proof is given,
using DCR but with no appeal to forcing, of the following

0.13. Theorem (DCR). Let D be a X\ subset of P(w) and let F be a Ramsey
ulirafilter. Then there is an X € F such that

VY(YCX—(YED X eD)).

In Section 2, a notion of forcing associated with a Ramsey ultrafilter is studied,
the principal result being a criterion for a subset of @ to be generic which is
strikingly similar to that in [17}, and used to obtain another proof of 0.13 by forcing.
In Section 3, certain facts about iterated forcing are reviewed. and Solovay’s model
in which all sets of reals are Lebesgue measurable is briefly described. In the next
section the reduction of theorems about happy families to theorems about Ramsey
ultrafilters is discussed and applied to generalise the theorems of Sections 1 and 2.
In Section 3, a proof is given that in Solovay’s model the partition relation @ ~ (w)”
holds, that is, that 0.12 holds for every D, %] or not; and thar under a further
hypothesis there is no MAD family. An axiom scheme of Jensen is mentioned
briefly. Section 6 is devoted to the study of functions E : @(w)—> P(«w), and a
theorem about Borel functions, which generalises Theorem 0.12 and which wili
hold of all functions if DCR and the truth of w — (w)” are assumed, is proved.
Roughly the theorem says that any Borel function E : P{w)— P (w) is, restricted
to some set of the form {Y l Y C X}, primitive recursive in a real. In Section 7 this
theorem is used to show that the strong form of the axiom of determinacy implies
that if A is happy then P(w )\ A is not tall, and hence by Proposition 0.7 there are
no MAD families. Another proof of the main result of [18] is given. Section 8
contains a further application of the theorem of Section 6 to the generic reals
studied in Section 2 cnd the proof of my remark quoted in [8]. Finally in Section 9
the notion of a moderately happy family is introduced and used to perform certain
constructions, announced in [16], of ultrafilters on @ with unusual properties. The
paper closes with attributions and acknowledgements.
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1. Proof of Theorem 0,13

The proof given here of Theorem 0.13 is modelled on the classical proof that all
3.1 sets of real numbers are Lebesgue measurable. The author was inspired to seek
such a proof by a proof by a conversation with Moschovakis at the Cambridge
Summer School in Logic in 1971.

The principal ingredients of the classical argument are a o-algebra € of subsets
of P(w) and a o-ideal $ in € such that the factor algebra € /¥ saiisfies the
countable chain condition, which is to say that there is no uncountable family
(o, | £ <N} of elements of € with no &, €S but with sf, N, € for ail
{ < £ <N,. The classical proof, as given for example in [1}, shows that for such a €
and ¥, if € contains every open set, and thus every Borel set, then every analytic set
is equal to a member of € modulo a member of $.

Examination of the first version of the arguments of Galvin and Prikry in their
paper [7] that preceded Silver’s paper [28] suggests candidates for € and #. With a
view to extending Theorem 0.13 we give the definition in more generality than is
necessary for its proof.

Let A be a family of subsets of @ such that ?(w). A is a free ideal. A partial
ordering P, is associated with A as follows:

1.0. Definition. A condition is a pair (s,S) where SE A and |s{< 1 §.

The set of conditions is denoted by P4 and is partially ordered by satting
(5,)=<(t, Tyt Cs &S UG )CT.

Hence if {5,S)=(t, T), then s =t N}]s|. When in Section 2 we come to consider
P. =4(Pa, <) as a notion of forcing, the interpretation of the condition {s, $) on
the generic subset X of w will be that s C X Cs US. This sort of forcing in the
context of measurable cardinals was first considered by Prikry [24]. For the nonce it
is convenient to use the vocabulary of Cohen’s method and say for (s, §) &€ P. and
B C ?(w) that

1.1. Definition: (s, S) forces B iff ¥X (s CX CsUS — X € B),
1.2. Definition.. (s, 5) decides B iff {5, S) forces B or {s,§) forces P (w ) B.

Because this is forcing in the real world rather than in some Boolean extension
we modify the usval symbolism by writing (s, $)-x B and {s,S){zB for the two
notions. It is readily checked that if {s,S)< B and (s, T} =<{5, 8), then (i, T)kr ¥,
and that it is impossible that both (s, $)x B and {5, §) Fx #{w )\ B. From now on it
will be convenient to wuse the familiar abbreviations Vw:€AY for
YVwiweEA—-U), Iw:€cAUA for IwwecA&N), VYw:CAY dor
Yw (w CA—) ete,
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1.3. Definition.
Ga=u{B |BCP(0)&V(s,S$):EP, IS CS(S'EA & (5,5 [«B}.

1.4. Definition.
Fa=ulB|B CPlw) &V(s5,S): EPLIS: €S(S'EA &{s,S) P ) B}.

Clearly #4 € €a. In the special case of Example 0.2, €y is the set of completely
Ramsey subsets of P {w) in the sease in which that phrase was first used by Galvin
and Prikrv. It is true in that case, as will be seen when in Section 4, we generalize
the results of this section, that €, is a o-algebra containing all the Borel sets (which
is in effect the theorem of Galvin and Prikry) and indeed all analytic sets (Silver’s
theorem) and that $y is a or-ideal in 6y but €, /Fy does not satisfy the countable
chain conditions, for let {X, ! v € ¥’} be an uncountable farily of pairwise almost
disjoint infinite subsets of w, as constructed for example in 0.5. Put B, = P(X,).
Then each B, € €., no B, € #., and B, N B, € &, for each pair v# v’ in ¥ That
difficulty may be circumvented by the use of Ramsey ultrafilters. For the rest of this
section let F be a Ramsey ultrafilter and € and #¢ be defined asin 1.3 and 1.4

1.5. Proposition (DCR). € contains all open sets.

Here “open” refers to the Cantor topology on 2“; so that B is open iff given any
xEBdn:€oV¥y: Co(yNn=xNn-—y&EB).

The process of diagonalization used in proving Proposition 0.7 is used repeatedly
in proving this and other results. Let B be open. The first step is this: for each
s €K, pick X, €F such that if there is a Y €F such that |s{<{1Y and
(s, Y)|B. then |s|< M X, and (s, X))}« B ; if there is no such Y, then let X, be
&)\!S f

As steps of that type will be frequent, let us abbreviate it by saying “for each
s €K, pick X, € F such that if possible (s, X.)||«B.”

‘Let X € F diagonalize {X,}.e«. Then for all t C X, if

AY (Y EP: &, Y)hRB)

then (t, X<|t!>|lxB; for X< |1]C X1, so (t, X |t D=<(1, X)) and as {1, X.) =B, it
follows that {t, X\[t|)[«B. Moreover, as F is a filter, there cannot be both an
X €F such that {t, X Jt)#: B and a Y €F with {1, Y|t )z P (@) B, for then
{t,(X N Y)\Jt}) would achieve the impossible by forcing both B and #(w)\B.
For t € X, define
&) =0 if (& XJt]))heB
d)(l) =1 if (2,X\1‘§)$R@(W)\B N

$(t)=2 otherwise.
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We assert that
1.6. VeCX(@(t)=2->{n|neXt| & ¢(tU{n})=2}EF).

Forset T, = {n |n € X|t| & ¢(t U{n})=1i}. X|t|is the disjoint union of To, T,
and T, so precisely one is in F.

(T/(CTCHUTH= Y (T|tUmICTCrUm U Tl indh

and the right hand side of the equation is a subset of B, as for n €T,
(t U{n}, Xt U{n}|) k= B. Similarly

BN{T|tCTCtUT}=0;

but ¢(t) = 2 means that for no § € F doe: (t, S) decide B, and so neither Ty nor T,
can be in F: so T-€ F. (1.6) is thus pro-ed.

"Suppose now that ¢(0)=2: for each t €K let Y, = X\|t|if p(1)#2 0or1Z X,
and let

Y.={n|neXt| & oGt uUin})=2}

if tCX and ¢(t)=2. By (1.6) each Y, €F. Let Y € F diagonalize {Y.},ex. We
assert that

1.7. VtvgY d(t)=2.

forlet t C Y be a counterexample to (1.7) with ¢ minimal. ¢ # 0, as we are assuming
that ¢(0) = 2: let n = maxt and put s = t~{n}. Then ¢{s) = 2 by the minimality of
1;nE€Y.s|CY,s0d(s U{n})=2,thatis, ¢(t) = 2, contradicting the choice of ¢.

Tke assertion (1.7) rapidly leads to a contradiction: for as (0, Y') does not decide
B, there is a Z C Y with Z € B. But then as B is open, there is an n such that
putting t' = n N Z, we have (t', o<Jt'|) = B. For such a t’, ¢(t") = 0, contradicting
(1.7) as t' C Y. Thus the hypothesis on which (1.7) rests, namely that ¢(0)=2, is
false and so ¢(0)=0 or 1. That is to say, we have proved that if B is open, then
3X:€ F(0, X)||rB. An easy modification of the foregoing argument shows that if B
is open then for any s€ K3X: € F(|s|< N X and (5, X)||=B); and thus
B € %y, as required. [J

1.3. Proposition (DCR). If for each i € w, B, € €5 then U{B; |i <w}€ ;.
Proof. Fix (s, S)€ Pr. Foreacht € K andi =t|t|pick S{€ F such thatift C S, then
SiC S<t| and (s UL, SH|xB; and if +Z S, then Si=S<|t]|. Put

S, =MN\sili <]}

Then for all t,S. €F and 8, CS-\|t|. Let TEF diagonalize {S. |t € K}. Then
TCS.
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Suppose i and X aresuchthat sC X Cs U T and X € B, Let n & T be greater
than i,andlett = X N(n+1). Then|t|=n+1;s0i <|t|and thus (s U1, S} Fx B,
as

tCT, sUtCXCsUtUXJH{Cs Ut UTt|Cs Ut US,
and we know that (s U, S}« Bi: but then (s UT, T<|t ) Bi: and so

(sUL Ttz U B.

e

Thus we have shown that for all X C T, if s UX € U,..B: then for some n,

<SUf,T\il‘>“"R U B;

where t = n N X: but that shows that

B=u{X|XCT->suxeUB}
is an open subset of P (w) and so by Proposition 1.5 there is a T'C T such that
<S, T’)“RB. But then (S, T’) HR Ui<wBi~ g

The next proposition collects four trivialities.

1.9. Proposition. If B € €; then P(w)}BE€%r; Fr C % if BEFrand D CB
then D € 355 if B € € and the symmetric difference B AD of B and D is in $: then
D is in 4..

1.10. Proposition (DCR). If B, € $- for each i <o then U,..B, € ;.
Proof. By Propositions 1.8 and 1.9, U, B, € %. Let (s, §) be given. Pick S, as in
the proof of Proposition 1.8, but this time requiring that for

t<S,i<lt], s ULSHP(w)B.

Let T diagonalize {S.},ex. Then

(s, T P () U B,
forif i and X are such that s < X < s UT and X € B;, then as before a t may be
found of the form X N (n + 1) such that (s U, S.)kx Bi, contradicting B, € $e. ]

1.11. Proposition. There is no uncountable set {B, |v € ¥'} such that each B, €

ErFr and for v# v', B, N B, € $¢.

Prooi. Let {B, ] v € ¥} be a counterexample. For v € ¥ let §, be the first, in some
natural enumeration of K, element of K such that for some $ €F, (s, S}z B.:
such an s, exists as B, is not in $x. As K is countable and ¥ is not, the map v » s,
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is not 1~1: hence there are v and v'in ¥ with v# v’ and s, = 5... Let S, TE F be
such that (s., S)¥r B, and (s., T)}+& B,. Then (5., § N T)¥x B, N B,., contradicting
the hypothesis that for v# v', B, N B..€ $r. [

It is emphasised that the axiom of choice was not used in that argument. Putting
Propositions 1.5, 8, 9, 10 and i1 together we obtain:

1.12. Theorem (DCR). Let F be a Ramsey ultrafilter and €r, $¢ be defined as in 1.3
and 1.4. Then %r is a o-algebra, ¥: is a o-ideal in €=, and the quotient algebra
@r/Jx satisfies the countable chain condition. Further €y contains all open sets, and
hence all Borel sets.

We now follow the classical procf, as expounded in [1] p. 53, in using Lusin sieves
to show that

1.13, Corollary (DCR). ¥ is closed under the operation () and hence contains all
31 sets.

The second clanse of 1.13 is the required Theorem 0.13. The following
abbreviation will become increasingly useful in later sections.

1.14. Definition. [s,S]=u{X |s CX Cs US}.

1.15. Proposition (DCR). If A € €; there is a Borel set B € € vith B C A and
A-B € F¢.

Proof. For each s € K pick S. € F, such that (s, S;)||c A. Set
B = U{[s.5.][(s,S) ke A}.

Then B C A, as saying (s, T) e D is equivalent to saying {s, T]C D. B is a Borel
set, being the union of countably many closed sets. Finally, given (t, T) either

$LS NTHFP(w)A or (S NT)reB,
s0 ALBe Jp. O

In the following discussion. which establishes Corollary 1.13, the axiom of choice
is not used save in a trivial reduction and in assuming that w,, the least uncountable
ordinal is not the supremum of a countable sequence of countable ordinals; but
DCR will suffice for both.

Let Q be a countable linearly ordered set and & a subset of © X #(w). For each
x Cw, let R, ={1 {1, x) € ¥}. We define the inner set determined by the sieve &,
E(¥), to be the set of those x Cw such that R, is ill-ordered {that is, is not
well-ordered) by the ordering inherited from that of Q, and the outer set determined
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by the sieve ¥, E{(S), to be {x |R, is well-ordered}. For 4 € Q we define
¥, ={x |{q. x) € &¥}. For x Cw we define p(x) to be the crdinal of the maximum
well-ordered initial segment of R.. p(x) will be countable as Q is. For each
countable ordinal { we define

E () ={x|xcE(%) and p(x)={}
and

E(#)={x|x€E() and p(x)={}
Then E(¥) is the disjoint union of the E (%), and E (%) of the E,(¥). We are
going to prove the following

1.16. Proposition. Let ¥ be a sieve such that each ¥, € €¢. Then E(¥) and E(¥)
are both in €.

Proof. As 4, is closed under complements, it is enough to prove that E(¥) is
in (gr-.

We first make the trivial reduction. For cach q pick a Borel set we shall
somewhat prematurely call & such that ¥, C &, and ¥, ¥ € Fr. Such Borel sets
exist by Proposition 1.15. DCR suffices for their choice as Q is countable and Borel
sets can be coded by reals. Now set &= U{{g,x)| x € ). Then &' is a sieve
which is a subset of &, so E(F)C E(¥). As

E(PWE(#)C Ui% o] q € O},

which is in Fr, it is enough to prove that E{¥') € %;.

Given a sieve 7 we define the derived sieve 7~ to be the result of removing from
g all pairs (g, x) where q is the first point (in the linear ordering of Q) of R,. Such a
q will exist for given x if and only if p(x)>0. Note that E(7 )= E(9).

Define the sequence ¥* for { € w,; of siaves by

Po=F F= (P P = O{F <Al

for limit ordinals A. Note that for each ¢ € Q, and { < § < w,, 52 ¥, Further
each &% is a Borel set, by the lemma on page 50 of [1]. As €r/%¢ satisfies the
countable chain condition, there is a { < w, such that for

<t <wy, FIFPE T,

Let {, be the least such. By the regularity of w,, there is an 1 < @, which is greater
than each . Put

A=UFrorlqeQ} A€$  E(F)=E@).
x €E(F")with >0thenx € A:1s0 E(¥")= Ef(F")U A, where A, C A, and
50 Ay € F. Eo(F") is a Borel set by the same lemma in {1]. O

1t is a trivial matter using the Kleene-Brouwer ordering to obtain %} sets and
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more generally applications of the opevation () to systems of sets in % as inner
sets determined by sieves & with each %, € €r and Q an appropriate countable
set. Thus the proof of Corollary 1.13 and Theorem 0.13 is complete.

2. Pe generic reals

We now study the partial ordering P, where F is a Ramsey ultrafilter, as a
notion of forcing. Recall that a subset A of Pr is dense closed if for all p € Pr thare
isaq €. withe <p andforallp €A andallg € Pr,ifq <p theng € A; and that
if M is a iransitive model of (say) ZF+ DCR, F € M is a Ramsey ultrafilter in M
and P} ihe corresponding partial ordering in M, then a subset x of w is Pe generic
over M if for every dense closed subset A € M of P} there is a condition (s, S)E A
with sCx Cs US. i

The principal result of this section is

2.0. Theorem. Let M be a transitive niodel of ZF+ DCR, which may be ¢ither a set
or a class, let F € M be in M a Ramsey ultrafilter, and let x C w. Then x is Pr generic
over M if and only if x is infinite but for each X € F, x~ X is finite.

The reader will notice the similarity of this theorem and its proof to the author’s
characterization [17] of sequences generic with respect to the conditions used by
Prikry for changing the cofinality of a measurable cardinal to . Indeed, the two
theorems were proved together. '

Before taking the first step, which we couch as a theorem of ZF + DCR, towards
proving Theorem 2.0, we make two definitions.

2.1, Definition. We wiite sint to mean that s is an initial segment of ¢, that is, that
s =t N]s]; similarly we write

sin X =45 =X N|s].

2.2. Definitizn, Let F be a Ramsey ultrafilter, A a dense closed subset of Py, and
s € K. We say X captures (s,4) if

X€EF |s|<sNX and YY:CX3:inY (U, XJt])ed).

2.3. Propositien (DCR). Let F be a Ramsey ultrafilter and A a dense closed subset of
Pe. Then for all s there is an X which captures (5,4 ).

Proof. Put Z =w-Js|. For t €K choose Y, &€F such at (sUt Y EA if
possible; otherwise set Y, = Z<|t|. Let Y € F diagonalize {Y,}.ex; then for all
tCY,ifthereisa Y'€ F such that (s Ut, Y€ A, it must be that s Ut, Yt} E
A. Let B be the set
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{PlyCo&(yCY—3t:iny (sUL Y. t])E 4).

Then B is open in the Cantor topology, so by Proposition 1.5 there is an X' € F
such that X' gk B. Put X = X'NY. As A is dense,

B CXIAX"CXX'EF &S UIXN=<{s,X)&{sUt' XeEA),
hence
U, YJt'hed, vUX"EB

and ' U X"C X C X'; soin fact X'+ B rather than X'r P (w )~ B. We assert that
X captures (5,4): for X € F and given X"C X there is a t in X" such that
sULYJrhed, so s Ui X Jt|)EA as A is closed. [

Proof of Theorem 2.0. First suppose that x is Pr generic over M. For each n < w,
{(s,S){S € F&S =n}is dense closed and in M, and so X = n: thus x is infinite. If
though X € F, {{s, S)[S € F&S C X} is cdense closed and in M, and so for some
such (5,8), s Cx Cs US, whence x- X T s which is finite.

Now suppose that x is infinite and that foreach X € F, x X is finite. Let A € M
be dense closed. Working in M pick for each s € K an X € F that captures (5,4).
Let X € K diagonalise {X.}.e.. x~X is finite, so let n € x be such that x . X C
xMNn;pat s=xNn+1). sups €X, so x Js|CXs|CX; so in M, X|s]
captures (s, A). Hence the following statement is true in M:

2.4. VY:CXJs{3i:in ¥ (sU, XsUthea.

But let
F={tCXs|&ULX|sULt])EA}
and give & the partial ordering ¢t <t’<>t’ in t and t'# 1 Then the relation
(& <)€ M; and (2.4) is equivalent to saying that (¥ <) is well-founded: hence by
an argument due to Mostowski the above statement is true in the real world, so 3t
inx<Js|such that s UL X sUt])EA:but s Ut € X<|sUt}. Thus x is indeed
P: generic over M. [

2.5, Corollary. If X is Pr generic over M ard Y C X then Y is also Pe generic over M.

Using the notion of capturing defined in 2.2 we can establish convenient criteria
for membership of €r and %, :

2.6. Proposition (DCR). Let F be a Ramsey ultrafilter and let €x be defined as in
1.3. Then A € 6 if and only if the set {p |p € Pr and p |« A} is dense closed.

Proof. If A € 4. then by the definitions of € and {«, the set {p|p € P and
pllrA} is dense closed.

Suppose now that A is such that A =4{p |p € Pr&p [«A} is dense closed, and
let s € K. By Proposition 2.3 there is an X in F which captures {5, 4). Let
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B={Y|YCosland3t:in Y (s UL, Xt A}
and let

C={Y|YCws|&It:in ¥ (s U, X |t N P(@NA}.
Then both B and C are open. There wie therefore X, C X and X;C X, with
X. € F,{s,X:)||e B and (s, X,)||x C; that by Proposition 1.5. As [X]* C B U C and
B N C =9, for D equal to either B or C but not both, (s, X>)Fx D. It is readily
checked that if D = B then (s, X:}Fe A and if D = C, {5, Xo} kg P(w)- A. Hence A
is in €r, as required. [

2.7. Proposition (DCR). Let F be a Ramsey ultrafilter and let $¢ be defined as in
1.4. Then A € ¢ if and valy if the set {p | p € Pe & p Fx P (@)~ A} is dense closed.

Proof. The “only if” part is immedizte from the definitions. Conversely, if
{p fp € Pe & p Fr P(w)~A}is dense closed, A € €r by Proposition 2.6, and for no
p EPecan plr A, so that A€ F. [J

Here is an appropriate place for recording a simple property of $4:

2.8. Proposition. If A is a happy family, then given B € ¥, and (s, 8) € Fa, there is
an X € A such that X CS§ and (0.5 UX) e P(w)-B.

Proof. Let the subsets of s be enumerated as fo,..., t..; where n = 2%, Choose
Xoyeo )3 Xpn €A such that S2Xo2Xi 22X,y and for each i<n,
(t,-,X})“‘R @(&3)\8. Put X = X -1. Then

[0,s UX]C s, X]|i <n}C P(w)B,
so (0,s UXHFP(w)B. [J

The following is a counterpart to the lemma of Prikry quoted in [17] as
Lemma 2.6.

2.9. Proposition (DCR). Let F be a Ramsey ulirafilter, let ¥ be any sentence of the
language of forcing and let {s,S) € Pe. Then there is an §' C § such that S’ € F and
egither (s,SHFA or (3, SHF—N.

Proof. Here of course “I” is the usual notion of forcing and not Iz. However the

proof parallels that of Proposition 2.6, so it will only be sketched. Let
A={p|p+¥Uorpk—A} \

4 is dense closed, and so 3T: C S with TEF and T capturing (s,4). Let

B={X !ng\{sl and for some 1 in X, (s Ut, T<Jt]) ¢+ ¥},
and
C={X fng\lsl and for some tin X, (s Ut, T-[t]}F— ¥}
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Both B and C are open, and so for some $'C T either (s, S s B, when (5, S+ ¥
(for otherwise some (s U1, THE " Wwhere tUT'C S, andsos UtUT EBor
(5,8 C, when {s,$+—U. I

We now give a second proof of Theorem 0.13, using Proposition 1.5 and its
consequence Proposition 2.9. The only difficulty in this proof is establishing that
DCR is a strong enough form of AC.

Let F be Ramsey and B a X! subset of P (w): say B = {x | R(x,a)} where a Cw
and R is £}, Let M be a countable transitive model of an appropriate fragment of
ZF + DCR with a € M such that FN M isin M and is, in M, a Ramsey ultrafilter.
Such an M may readily be found by a Léwenheim-Skolem argument, using DC. To
see that DCR suffices, observe that we require that (P{e) M, FN M) is an
elementary submodel of (P(w),F) with respect to a sufficiently large class of
formulae, which can be achieved by putting into M sufliciently many reals, for
which DCR is enough. Let X € F N M be such that in M, (0, X)|| R (%, d), where ¥
is the name in the language of forcing for the proposed real Penwn generic over M,
and 4 is the name of a. Such an X exists by applying Proposition 2.9 with s =0
inside M. Now suppose that x is a real Prrny generic over M with x € X. Then

VY:Cx(x€EB<YEB):

for let Y be any infinite subset of x. Then Y is also Perm generic over M, by
Corollary 2.5 which will hold for those M that are transitive models of appropriate
finite fragments of ZF+DCR, and Y C X so using the absoluteness of 2}
statements and general properties of forcing we conclude that the following
statements are equivalent: x € B; R(x,a); (R, aDupp 0. X)FK(%,4);
(R(Y. tl));\qy): R(Y, (1«); Y €B.

It remains therefore to show that there is an x € F which is Prra generic overM.
Let (X, fs € K) enumerate the members of F N M, which is a countably infinite
set; and let x € F diagonalise {X.}. Then for each s € K, x X is finite, so by
Theorem 2.0, which again will hold when M models an appropriate fragment of
ZF+ DCR, x is Penu generic over M, as required.

A modification of the above argument shows that given {(s,8)€& Pr there is a
TCS with TEF and (s, T)xB. Hence B &€ %-. T

Corollary 2.5 has the following converse:

2.10. Theorem. Let M be a transitive model, set or class, of ZF+DCR, and let
F € M be a free ultrafilter in M. Suppose that there is an X C o such that for all
Y CX, Y is Pr generic over M. Then F is a Ramsey ultrafilter in M.

Proof. Let w € M be such thatin M, 7 : [ ]*— 2. We shall see that thereisin F an
S which is homogeneous for m. As [0} =({w])u = :[w]—2. By Ramsey’s
theorem there is a Y € X such that Y is homogeneous for o ; then, that being an
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érithmetical predicate of Y and . “Y is homogeneous for 7" is true in M [Y}, and
henceas Y is Pr genericover M, thereisar. {s,S)E Prsuch thats C Y Cs U8 and
(s,S)I% is homogeneous for #. But then S is homogeneous for 7. [

~ Thus in a sense Corollary 2.5 characterizes Ramsey ultrafilters. A precise
formulation of this characterization, using the apparatus of Boolean valued models,
is given as Theorem 9.31, clause (iii). We now prove another characterization of
Ramsey ultrafilters. which was first stated in [16], from where the following
terminology is taken. ‘

2.11. Definition. Ar: ideal I on o is gaunt if is proper, free and a X set.

2.12. Theorem (DCR). A free ultrafilter F on w is Ramsey if and only if F N I'# 0 for
every tall gaunt ideal 1.

Proof. Suppose F Ramsey and I a tall gaunt ideal. By Theorem 0.13 there is an
XeFsuchthat VY: CX(X €I Y€1) As [ is tall, there is some Y C X with
Y€E€I; and hence X €1 NF.

Conversely let F have the property in question and let # : [« - 2. Let

I =id({X | X is homogeneous for }).
I is X}; further, by Ramsey’s theorem,

VY 3X(X CY & X homogeneous for 7)
so I istall; if I is proper as well, then I is gaunt, and so there is an X in F N L. There
is also such an X if I is improper, namely w. In either case there are sets X Treee s X
each homogeneous for m,and s € K suchthats UX,U--  UX, € F. AsF isairee
ultrafilter, one of the X; is in F: thus F is Ramsey., [J

The possibility of homogeneous sets for partitions 7 :[w]* > w will be con-
sidered in Section 6. We conclude this section with remarks about another way in
which Theorem (.13 might be generalised, using MA.

Silver has shown [28] that if MA and 2™ >R, then not only every X, but also
every X} subset of # (w) is in 6. MA implies that Ramsey ultrafilters exist [3]; is it
true that if FF is Ramsey, A is £}, and A is in €u then A is in %:? The answer is
that the hypotheses given are not enough to decide:

2.13. Theorem. (i) If MA and every 2] set is in 6. then there is a Ramsey ultrafilter
F such that every X} set is in €s.

(i) If MA, 2%>R, and Jx N =N, then there is a X} set A and a Ramsey
ultrafilter G with A g 6.

(iii) If the universe is the result of collapsing a Mahlo cardinal in L in to N, in the
style of Lévy, then for every Ramsey ultrafilter F and every X} set A, A € $x. Sadly,
in this case 2% =N,.
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(iv) If there is a strongly inacessible Rowbattom cardinal, or if 2% =R, 2% =R,
and Chang’s conjecture holds, then for every Ramsey ultrafilter F and every %} set
A A € 6r.

Part (iii) of that theorem will be proved in Section 5; the rest will be proved in
Section 9 using results of Booth [3], Martin and Solovay [15] and Solomor [29]. For
a statement of Chang’s conjecture and a definition of the notion of a Rowbottom
cardinal, see Chapter 7 Section 3 of [4]. We conclude this section by sketching an
alternative proof of Silver’s result.

Let A ={x }R(x,a)} where a C o and R is X5 Let {5, S) be given, and let F
be, in L[a,S], a Ramsey ultrafilter. Let TEF be such that in L[a,S],
. TYFR (%, @). As F <N, < 2" and we are assuming MA, there is an X such that
for all Y € F, XY is finite, by Theorem 4.10 of [3]. Such an X is P: gereric over
L[a,S] by Theorem 2.0; we may also suppose that 5 CX Cs UT. Using the
absoluteness of 31 predicates we see as int the second proof of Theorem 0.13 that
(s, X~Js]) decides A. Hence A € €y. []

3. Review of Solovay’s model

In this section we list some well-known facts about Boolean valued models, and
sketch briefly some ideas from Solovay [30]. For details see {30} and [31].

3.0. We use arithmetical notation for Boolean algebras, so that a Boolean algebra
is a structure B =(®,0,1, +,, =), where 0-b =0, 1+b =1, 0= —1, etc. The
canonical partial ordering of @ is given by setting b <<c <>b - ¢ = b. B is complete
if every non-empty subset £ of @ has an upper bound, Z"°%. If B and C are
complete Boolean algebras, B is a regular subalgebra of C, in symbols B < C,if B is
a subalgebra of C and for each nonempty subset & of B, X"% = I °%. The notion
of a regular embedding is defined in a similar spirit.

3.1. Two elements p and q of a partial order P = (P, <) are incompatible if there is
nor € P withr <p andr < q. P is a suitable partial crdering if the following three
conditions hold:

(a) there is an element of P, call it 1, such that Vp: €P p <1;

(b) Vp:E€Ep3q:€P (v#q & g=<p);

(¢) Vp: EPVYq: €P(p <q or Ir:<p(q and r are incompatible)).
The elements of a suitable partial orering are often called conditions, for historical
TEasons.

3,2, Definition. Let P be a suitable partial ordering. The canonical topology on P is
that with basis {O, |p € P}, where O, =u{q |q <p}.
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The essential feature of this topology is that given p there is a smallest open set
containing p, namely O,. Hence for & Cp, the interior of &, im &, is equal to
{pl0, cZ}; the closure, cl(¥), to {p |0, NX#0}; and intcl® ={p }Vq: <
p3ri<qre}.

3.3. Let (%, 1) be a topological space. Then the algebra of regular open sets of
(%, 7), defined by B ={¥ |¥C& and ¥ =intcl¥}; 0=0; 1=%; ¥+& =
intc(@ UZ);, ¥ F=Y¥NZ;, —~¥ =int(X¥); is a complete Boolean algebra,
and for 4 C R, S =intct U, B =(R,0,1, +,+, —) is called the regular open
algebra of (X, 7).

3.4. Proposition. Let P = (P, <) be a suiteble partial ordering. Then each O, is a
regular open set in the canonicai topology, and the map p » O, embeds P as a dense
subset of the regular open algebra B. Further O, =1,

In the last clause 1" is used in two senses. The B of 3.4 is called the algebra over
P. A particular case is of interest:

3.5. Proposition. Let B be an atomless possibly incomplete Boolean algebra: then
(B0}, <) is a suitable partial ordering ; let C be the algebra over it. Then Cis a
complete Boolean algebra containing as a dense subalgebra an isomorphic copy of B.

The C of 3.5 is called the regular minimal completion of B and is characterized
up to isomorphism by the last sentence of 3.5. If B is complete the embedding is
onto.

3.6. Given a complete Boolean algebra B, we define its associated Boolean valued
universe by the recursion
VE=0; Vi, ={v]v isafunction with domain a subset of V¥ and
range a subset of B};
vE=U{VE,|e<¢} for limit ¢;
v = U{V?|{ an ordinal}.

Note that if B is a subalgebra of C then V® C V€, so in particular if 2 is the
two-element algebra {0,1}, V> C V*® for each B.

3.7. We associate with V*® a language £ with the primitive predicate symbols €
and = (corresponding to € and =), the usual connectives, a special constant V,
and for each v € V* a name which we shall also denote by v. We shall not take
much trouble to distinguish formulae of £® from assertions of the language of set
theory: the context will usually do so for us: when we do, it will usually be through
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the convention that if % is a wif of ZF, ¥ is the corresponding expression in £?, the
wils of which are of course Godelized as sets in ZF.

3.8. Definition. The embedding ": V — V? is defined by recursion on the epsilon
relation thus: £ = {(1,9}{}’ &x}

3.9, A function J-J® from the sentences of £® to B is defined by a schema: First
fvew]® and [v = w]® are defined by double recursion:
[b=wP=H"{@)> v e€wl [v'€D®)}- 1T {ww)
>[wevP|weDw)
eEWP =3%{ww)-[w=0]"|wsD(Ww).
Then define [v € V]* = £{fv = w]® | w € V}. Finally the definition is extended to

ali sentences of ¥® in the obvious way, as in [14].

3.10. Let U be a A, wif in the sense of Lévy [12]. with the free variables v, - - v,.
Then if B<9C and v, v, are in V5,

(v, o) =[0I
Again if ¥ is a A, wif with the free variables v, - - v, then for any v, - v,

Alvyy...,va) [ U(B, ..., 8.)F = 1.

3.11. In V® there are no new members of », and indeed no new ordinals:

[r€a] =3*{v =r/l" |n € w}
and
[vE Oal®* = 3°{fv ={}|¢ € On}.

3.12. Proposition. Let Fs in V* as the function with domain b fb € R} such that
Fe(b)=bforeach b. Then [Fs CBI* =1, forallb € B,[FEFIP = b; and [Feisa
V -complete ultrafilter in B]® = 1.

A generalisation of that wiil be useful.

3.13. Proposition. Let B <<C. There is an Fac in V® such that

sc@)=[tEFs]=3{b|bEB & b=<c}
and )
[Ficis a V complete filter in CJ? = 1.

If 8 = C, then Fic is Fo. Fic is, in V5, the filter in C generated by Fa.

In the relative consistency results of Section 5 we shall make use of a device due to
McAloon: that of coasidering the inner model of sats hereditarily definablc from
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ordinal and real parameters. We define ROD to be the class of those sets v such
that for seme ordinal { and some x Cw, v is definable in V;, admitting x as a
parameter. That this definition encompasses all those sets which naively are
definable from ordinals and reals may be established using the reflection principle
as illustrated in the paper of Myhill and Scott on ordinal definability [21]. We
further define HROD to be the class of those sets v such that every member of the
transitive closure of {v} is in ROD.

3.14. Proposition. HROD is an inner model, and ?(w)CHROD If DCR holds,
then in HROD, D holds.

We shall use repzatedly the following trivial principle:

3.15. Proposition. Let ®(A) be a formula of set theory with one free variable such
that every bound variable of @ is restricted to range over w or over P (w). Suppose tha*
for every A CP{w) with A EROD, ®(A) holds. Then in HROD, VA:(,
P(0)P(A).

" We now sketch a vroof of a technical lenuima, Theorem 3.21, from [30}, reasoning
in ZF+ AC.

3.16. Lemma. Let  be a strongly inaccessible cardinal: that is, x > w, & is regular
and A <k —2" <k.Let A < B, A QC, where A, B, C are complete Boolean algebras
of cardinality < . Then there is a complete Boolean ¢'cebra D of power <« and
regular embeddings 7, v~ such that the diagram below commutes.

B >D

A
v M
A < C

Proof. Let E in V* be such that
[E is the algebra over the product partial ordering
(B MODX(C . ODF =1,
and let D be the Boolean composition of A and E in the sense of Definition 5.2 of

[31], so that V?® is “isomorphic’” to (V*)£. [

Using Lemma 3.16 and J6nsson’s method for constructing homogeneous univer-
sal modeis, we may prove the following, first proved by explicitly exhibiting an
example of the required isomorphism class of aigebras:
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3.17. Theorem (Jensen) {AC). Let x be strongly inaccessible. Therc is a complete
Boolear: algebra B of cardinality x which is characterized up to isomorphism by the
following two properties: -

@) B =U{B; I { <} where each B, is a complete Boolean algebra of cardinality
<k and whenever [ < n <k, B, <B, < B,, and for all limit ordinals A < «, B, is the
regular minimal completion of U{B, | <A};

(ii) for any complete Boolean algebras A, C witt A B, A < C and C of power
< k there is a regular embedding of C into B which is the identity on A.

3.18. Definition. Write ¢ (B, ) if x is strongly inaccessible and B has properties (i)
and (ii) of Theorem 3.17.

3.19. Lemma (AC). If ¢ (B, ), then B has the « chain coadition, and is homogene -
ous in the sense that if ¥ is any wff of the language of set thecry with the jree variables
Diy..., U then for all vy, ..., vy

Bl@®, ..., 8" =0or 1.

3.20. Lemma (AC). Suppose that ¢(B,k), A <B and A is of power <<, Then
ﬂ‘i’ (ﬁ Fap '2)]}‘ =1,
3.21. Theorem (Solovay). Let U(x, a, £) be a wif with the free variables shown let

B(x, a, & k) be the wiff “for all B, if & (B, k), then [A (£, a.£)]° =17; and let G(x ) be
the wff

Va:CwVi €On(x {x Cow & A(x,a, &)} =
={x|x Co & (B, & )wa))

Then the following is provable in ZF+ V = L:
if (A, k), then [EG)] =1.
It is immediate from that and some trivial coding of pairs of ordinais as single

ordinals that

3.22. Theorem (Solovay). If V =L and ¢(B,«), then in V* with truth value 1,
every ROD set of reals is of the form {x !(‘i\(x, @, {)iis.ajt for some ordinal { and
some a C o.

3.23. Proposition (AC). If &(B, k), then [x =R.J° =1, cnd

[for all x C &, « is inaccessible in L{x]J° = 1.

The proof of that rests on two points and on Lemma 3.20: if { <k, then the
canonica! collapsing algebra for making { countable is of power <« and so
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isomorphic to a reguler subaigebra of B; and if [xC &, =1 then there is a { <«
and a y € V% (where B is the union of the ascending regular chains B, (£ < «))
with [x = y[® = 1: let { be large enough so that B; contains each truth value [A € x]
for n € .

We end this review by proving something relevant to Section 7:

3.24. Proposition (AC). If $(B,x) and V = L, then
[ACR is false in HRODJ® = 1.

Proof. In V* let ® be {(x,y}|y is Cohen generic over L[x]}. ® isin fact a IT}set.
It is trivial from 3.23 that Vx 3y (x, y) € R. We assert that there is no ROD function
E : P(0)— P(w) such that for all x, (x, E(x)) € R. For let E be a counterexample:
by 3.22 there is a wif D(a, x, v, {) such that for some a C w and { € On, we have
that for all x,y,y = E(x) if and only if (D(a, X, v, I Drjexs)- Let yo= E(a); as yo is
Cohen generic over L{a], some Cohen condition forces the statement (4, 4, y, £);
but then there arc lots of Cohen generic reals y,# yo, which satisfy the same
cendition, and for which we could have {®(a, a, ¥i, { Dy, contradicting the
unigueness of y,. An application of Proposition 3.15 completes the proof, as R isin
HROD. [

That argument shows incidentally that it is consistent with ZFC that both I1} and

> ! uniformisation fail.

4. The reducticn of happy families to Ramsey ultrafilters

We present in this section a general method for reducing the problem of proving
combinatorial results about happy families to the special case when they are
Ramsey ultrafilters. We give first a discussion leading to a proof of the main
technical result, Proposition 4.2, and then illustrate its use by generalising Theorem
0.13 and by showing that no X} set can be a MAD family.

In this technical discussion we reason in ZF + DCR. Let A be a happy family;
put I = P(wh A, and let B be the regular minimal completion of the quotient
algebra ?(w)/I. B may be regarded as the algebra over the partial order P of the
non-zero clements of P(w)/I ordered by inclusion mod i

4.0. Lemma (DCR). Given a sequence po,p, p:--- of elements of P such that
pi > Pie, there is a q € P such that for all i,q < p.. Hence

1F ) =P (@) =1.

Preof. Using DCR pick X €pi; then X, . X, €1 for each i. Put Y, = ﬁ{X,»l
i=|s|}). Then fi{Y.|s €K} C A;as A is happy there is a Z € A which diagonal-



Happy farzilies 83

ises { Y, ]s € K} forsuch a Z, each Z. X, is finite. Let g be the equivalence class of
Z in P.

T.re second part is guite standard: it is only necestary to remark that DCR is an
adequate form of AC for the usual proof. [

4.1. Lemma (DCR). [DCR]J = L.

Proof. Again standard: let p & [ is a relation on P{w) such that Vx 3y xRyl
Define a relation ¥ on P(o) X Plw): (X, x)0F vy fand ealyif x E L x, € L
and (x;) I ¥:.#4%., where (x,), is the equivalence clasy of x,. Using Lemma 4.0 we
see that for all {v.y;} with v, &1 and (y.), <p, there is an (x,x;) with
(X1, X2;F{yy2}. Using DCR and the encodability of pairs of reals as reals, we obtain
a sequence (x;, y;) descending in the relation & with xo € p. Put p, = (x,), and let

-

g <each p. Then g =p and g ¥+ [(yfri < w) ascends in the relation &2} [

4.2. Theorem (DCR). Let A be a happy family, B defined as above, and Fy as in
Proposition 3.12 so that

[Fs is a V-complete ultrafiiter on BJP = 1.

Let G be that member of V® with domain {% |x Cw} and for x Co, GE)Y={(x).
Then
() IG C A and G is a Ramsey ulrrafilter[* = 1;
(i) [GE V] =1ifand only if for all Y € A there is an X € A with X C Y such
thar id{J, 0~ X) is a proper prime ideal;
(iii) for cach ¥ C P{w). X E€. if and only if [FE 4P =1;
(iv) for each ¥ C P(w), X € F4 if and only if [FE€ S = 1.

Preof. (1) It is readily checked using Preposition 3.12 and the fact that
IG ={x | (x)i€ Fs)I® =1, that [G is an ultrafiiter on w]® = 1. That [G & AP =1,
an-1 hence that [G is nonprincipal]l® = 1, follows from the last part of Lemma 4.0
ard the fact that forx € L (x); =0 andso [ EGPP =0.Letphf: K — G. As K is
ccuntable, Lemma 4.0 shows that there is a ¢ <p and a g:K — A such that
q+f=g. Note that for p'EP, x Cw, p'FLEG op's(x). as [REG]® = (x).
Let YEq. andforeachs € K put Y, = Y Ng(s) as Y\g(s)E ILeach Y, € A, and
as p I+ [the range of f generates a filter C G ), the {Y, |'s € K} generate a filter C A.
As A is happy, there is a Z € A which m(gomhze% the family {Y ]s € K}. Let
r=(ZNY),. Then r € P, and r I [there is something in G which diagonalizes the
range of f]. Thus [G is Ramsey]® = 1.

@) I 1d(I w~X) i3 a proper prime ideal J, say, then (X WhG = J and so
(XuhkGe V. Hence the density condition of (i) implies that [G& VPP = 1.
Conversely if [GE€ VI® =1, thenforall Y € A thereisan X C Y with X € A such
that for some ultrafilter G, (X #G =G'; but then as (X) F Xe G and
ﬁI C GJF =1, we must have G’ = id(I, o~ X), whick is therefore a proper prime
ideal.
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(iii) and (iv) Let & bein 64, let s EK andlet p = x € G. The thereisa q < p and
an X €A such that qkX =x. q+FXEG, so let Z€Eq; then Z X €1, so
ZNXEA AsZ €%, thereisa Y € A with Y £ Z N X such thai (s, Y) decides
& in the sense of Definition 1.2. Let r =(Y);. Then r € P, and r < q. Further
rkYEG, rrY Cx andri{s Y)decides %, essentially by the last part of Lemma
4.0. By the generality of s,p and x, and using Proposition 3.11, [f€ ¢]® = 1.

If further & € $,, then in the above argument, it would always be the case that
(s, Y) forces P ()&, and so [ € $:]* = 1.

Suppose now that # C P(w) is such that [F€ :]* =1, and let s€ K and
X €A with |s|<MNX. Put p=(X),. Then there isa q<p and a Y such that
q IF[?EG and YCX and (s, Y) decides %’]. Hence YCX; YEA as
IYE€ GIP#0 and (5, Y) decides &, by Lemma 4.0 and Proposition 3.10. Thas
X € €a. ;

Finally if 43 FcIP =1 then we could always have in the above that q -((s, Y)
forces P(w) &), and so actually (s, Y) forces P (w)¥; and so & € $.. [J

We now use Theorem 4.2 in proving

4.3. Theorem (DCR). Let A be a happy family and C a £} subset of P (w). Then
IX:EAVY: CX(XE€CeaYe), and indeed C € 4.

Proof. Let B, G beasin Théorem 4.2. C willbe a X} set in V*, defined by the same
formula as in V. Taeorem 1.13 holds in V® with B-value 1, by Theorem 4.2(i) and
Lemma 4.1, so [CE€ €s]° = 1; by Theorem 4.2(iii), CE€%.. O

In fact Theorem 4.2 can be used to prove the following

4.4. Theorem (DCR). Let A be a happy family. Then €, is closed under countable
unions, complements and the operation ().

The proof will also use Theorem 1.13 and the absoluteness of the definition ¢f an
inner set by a sieve. A direct preof of 4.4 can be given along the lines of Sectioh 1,
but one always ha: to pick the X s successively, to satisfy the condition that tiey
generate a filter (. A whereas when Ramsey ultrafilters are used they may be
picked simultaneously, which is a helpful simplification.

4.5. Remark. As M is a happy family, Theorem 4.2 has as a special case the
following: :

If DCR hoids, then there is a Boolean extension of the universe containing no
new subsets of w but containing a new Ramsey ultrafilter.

Theorem 4.3 has a consequence for MAD famiiies:
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4.6. Proposition. If A is X| and a happy family, then AXVY:CX YEA;
consequently P{w ) A is not tall.

Proof. Take C = A in Theorem 4.3. [J

4.7, Corollary. No X} set is a MAD family.
Proof. By 4.6 and 0.7. (J

In obtaining a general metatheorem from Theorem 4.2 some care must be
exercised: let ¢(A) be a wif with all variables restricted to reals expressing the
predicate “A is a Ransey ultrafilter’”. Then -2+ (A is a Ramsey ultrafilter—>@{A))
but if ZF is consistent, (A is a happy family —® (A ))is not provable. The following
is not perhaps the most general possible theorem but will be useful in Sections 6 and
7. The notion of an A -smooth function is defined in 6.0.

4.8. Metatheorem. Let @ (X, E) be a wff with precisely two free variables, all bound
variables of which are restricted to range over the members or subsets of .

If Fzrence A is a Ramsey ultrafilter & E an A -smooth function - 3X . €A
@(X, E), then Fzpoocn A is a happy family & E an A -smooth function - 3X: € A
DX, E).

Proof. With the hypotheses in mind we reason in ZF+ DCR. Let A be a happy
family and E an A-smooth function. With B, G as before, we have by 4.0 and
4.2(jii) that

[G is a Ramsey ultrafilter & DCR & E is a G-smooth function[® = 1.

So by hypothesis, [3X: € G ®(X, E)JF = 1. So for some X € A, [¢(X, E)"#0,
and so [& (X, E)I® = 1 by 3.10, 4.0 and the restricted nature of ®. By 3.10 #(X,E)
as required. [J

Finally we use the discussion of this section to generalise the results of Section 2.
In stating the next theorem it is convenie: t to blur the slight distinction between Fy
and G as defined in Theorem 4.2.

4.9, Theorem. Let M be a transitive model of ZF -+ DCR, and A a happy family
in M.

(i) Suppose that x is P4 generic over M, and set G = {X | X € M & x- X is finite}.
Then G is a Ramsey ultrafilter in M{G] and is generic over M with respect to the
partial ordering P defined above ; further x is Ps generic over M[G].

(ii) Conversely let G be P generic over M, and x P generic over M{G1; then x is P,
generic over M.
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Proof. (i) It is trivial from the definition of P generic that if x is P, generic over M
and Y € M A then x NY is finite; consequently G C A. Let A € M be dense
closed in P; put A’={(s,S)I(S), €A} where [ = (P(w)N M)A, Then A’ is
deuse closed in Pa- and A'€ M, so there is an {5,S)E 4’ with x €[5, S]; hence
S € G. Thus G is M generic over P. By Lemma 4.0, 2(0) "M[G]C M,so x is P
generic over M[G] by Theorem 2.0.

(ii) By the P genericity of G,P(w)NM[G]C M, and G C A. Hence, again
using Theorem 2.0,

G={X|X€EM & x-X is finite}.
Let A € M be a dense closed subset of Py and set

A'={(5,8)](s,S)E A and § € G}
and
A"={(S) |3s(s,S)E A}

A’€M[G] and A" is closed in P it is dense in P; as A" is dense closed in
P,A”€ M and G is P generic over M. As x is P generic over M[G], x €{s. S]for
some (5,S)EA'CA. Thus x meets 4; and as A was arbitraty, x is P, generic
over M. [J

4.10. Corellary. Le! M and A be as in Theorem 4.9, and let x be P, generic over M.
Then

(i) N is uncountable in M[x}],
(ii) every infinite subset of x is Pa generic over M.

Proof. (i) N}' is preserved in the passage from M to M[G], which adds no new
subsets of w; and the extension from M[G] to M[x] is by the algebra over Pg,
which satisfies the countable chain condition.

(i) is immediate from Theorem 4.9 and Corollary 2.5. (]

4 criterion for P, genericity on the iines of Theorem 2.0 may be formulated: in
the case of the happy family H it is this:

4.11, Proposition. Let M be a transitive model of ZF + AC. A subset x of w is Py
generic over M if and only if x is infinite but for every MAD family A in M, there is an
X € A with x- X finite.

The proof is left to the reader, as is the proof of

4.12. Proposition. 2.6, 2.7 and 2.9 hold in the more gererai case that F is a happy
family and not necessarily a Ramsey ultrafilter.
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5. Some relative consistency resulis

5.0. Theorem. If N, is inaccessible in L{X] for each X then every set of reals of the
form {x }m(x, a, {Nepat}t, where a Cw and [ is an ordinal, is in %,

Procf. The hypothesis is equivalent to saying that for alt X, 8™ < 8,. Given (s, §)
let F be in L{a,S] a Ramsey ultrafiler with S in F. Let TEF besuch that TC 8
and

(s, TYF R, d, iy

in the sense of Pr. Let x be Pr genericover L{a, S]with S Cx Cs U T;suchanx
exists by Theorem 2.0 as F is countable in the real world. Then for Y €{s,x.]s]],
Y is also Pr generic over L{a, §] and satisfies the condition (s, T'): hence x is in the
set concerned if and only if Y is. 3

5.1. Metatheoremw. If ZF+ AC+ “there is a strongly inaccessible cardinal” is
consistent, so are ZF + AC+ “‘every ROD set of reals is in €y and ZF+ DC+
@ (w)”.

Proof. By 3.22 and 3.23 the hypothesis shows that the theory ZF+ AC+“R, is
inaccessible in every L[X]’+“every ROD set of reals is of the form
{x | R(x, @, )iy is consistent. Applying Theorem 5.0 in that theory gives the
first part; for the second, it is enough to consider the inner model HROD in that
theory. which by 3.14 and 3.15 will be a model of w —(w)* and of DC. O

Before stating the next metatheorem we remind the reader of a definition from
cardinal arithmetic.

5.2. Definitior. « is a Mahlo cardinal if k > » and every closed unbounded subset
of k contains a regular cardinal.

5.3, Metetheorem. If ZF + AC+ “there is a Mahlo cardinal” is consistent, s0 is
ZF+ DC + “‘there are no MAD families™.

It is probable that the hypothesis is unnecessarily strong: indeed the author
conjectures that it is a theorem of ZF + DCR + w —> (w)" that there are no MAD
families. Some further remarks on that will be found in Section 7.

It will be convenient in proving 5.3 to consider the following hypothesis, which,
contaiiing as it does a bound class variable, is not a formula of Zermelo-Fraenkel
set theory: in the context in which it is used, that of Theorem 5.8, that difficulty
disap;-ears and will accordingly now be blandly ignored.
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5.4. Hypothesis. Given any a C w and any A C P (@), there is an inper model N
of ZF+ AC with a € N, A NN € N, and (2*")x countable and such that (P (w)N
N, A N N) is an elementary submode! of (P(w), A) with respect to -formulae of
second-order arithmetic with a distinguished unary predicate denoting msmbership
of A.

5.5. Lemma. Let A be a happy family and let B be a set of reals of the form
{x I (R(x, @, £eixa)} where { is an ordinal, a C w, and R is an arbitrary formula of set
theory. If Hypothesis 5.4 holds, then B € €.

Proof. Let (s,S) be given with S € A, and let N be an inner model such that
ANNEN,a €N, SEN and (2*)y is countable. Then A NN isin N a happy
family, and there is a G C A N N which is generic over N in the sense of Section 4
such that G is in N[G] a Ramsey ultrafilter. By Proposition 2.9 applied in N[G],
there is a T C S such that T € N[G], and in N[G],

(s, TYF (R(x, 4, O iwar-

G is countable, as A N N is, and forms a filter C A, so there is, as A is happy, an
X € A such that X €[s, T] and for each $'€ G, X..§' is finite. By Theorem 2.0,
such an X is Ps generic over N[G}, and by a by now familiar argument (s, X)
decides B. Thus B € €.. [

5.6. Theorern. If Hypothesis 5.4 holds, and A is a happy family of the form
{x | (R(x, @, O)icar) then P(w) A is not tall.

Proof. Take B =A in Lemma 5.5: then there is an X € A such that VY
cCX(yeA) U

5.7. Corollary. If hypothesis 5.4 holds, there are no MAD families of the form
{x ’m(x’ a, g))l—[x.a]}'

Proof. By 5.6 and 0.7. (I

8.8. Theorem. Suppose that V = L, that « is a Mehlo cardinal, and that ¢ (B, k),
where ¢ is as in Definition 3.18. Then in V® Hypothesis 5.4 holds with truth value 1.

The difficulty about formulating 5.4 vanishes in this case, as the inner model N
will always be of the form V*, where ¢ (4, A) for some inaccessible A <k, and
A < B. From 5.8, 5.7 and 3.22 it follows that, with the hypotheses of 5.8,

fno ROD subset of #(&) is a MAD family]® =1,

and Metatheorem 5.3 follows at once by Proposition 3.15. We have shown too that
with the hypotheses of 5.8,
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TIf B is a ROD subset of & and A is a happy family,

then BE €.]° =1,
and
[in HROD, if A is a happy family then P{P(w))=%.[° = 1.

Theorem 5.6 shows that what is happening in HROD is that there are only rather
trivial happy families. Of course assuming that V = L in 5.8 is for tidiness rather
than necessity.

Proof of Theorem 5.8. As GCH holds in L, we need not distinguish between strong
and weak inaccessibility. As x is Mahlo, « is itself inaccessible, and the set
{A|A <k and A is inaccessible] is starionary in that it meets each closed
unbounded subset of «.

Suppose that & (3, k) and that as in 3.17(i) B is the union of the ascending regular
chain {B; | £ < «}. V/e shall content ourselves with proving 5.9: standard techniques
will then complete the proof of 5.8.

59 Let A € VE g€ V® be such that
JACP@NF =1 and aCodf=1:

then there is an inaccessible A < x such that ¢ (B,, A) and if N is the inner model of
V? defined by

xENP =3 =y’ |y eV}
so that N “is” V%, then
[aEN®=1, JANNEN]P =1,
§(2*")x is countable]® =1,
[(@(w) N, A NN) is an elementary submodel of (P (w), A)
in the desired sense]® = 1.

To prove 5.9, we first let {o < k be such that each [A€ a]’ is in B;,. Then there is
a v, € V™o such that f[a = vo]® = 1: namely vo={{[A€ al’, A)| n € 0}.

Now let ¢ < k and let Z({) be a set of elements of V™ such that for all v € Z (%)
frcaelP=1 for all vE V™ if [uCa]*=1 then for some v'&X(),
o = oI = 1; and for each pair v, v’ of distinct elements of Z({),[v = v'I" # 1. The
cardinality of such an & is necessarily < {f l f 1 @ — B}" which, by the inaccessibil-
ity of « is less than «. Call such an Z({) a set of representatives of the reals of V™.
For each v € V™ there will be a v’ in £({) such that fo =v'PP =[x CHJ".

Let 9(vy, ..., 0n, w) be a Wit of the language of second order arithmetic with a
unary predicate denoting A, and let vy,..., v, bein £ (). Forvy,..., 0. €X({) let
Y TIPS - %) be the least ordinal v, ¢ < n < k such that there isa w’in V* with
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[3w:C & Avs,..., 00w = (v, ..., 0, w) & w COJ

Such an 7 exists by Scott’s maximum principle. For v,,...,o.w € X({) let
w(v,, .., Ua, w, %) be the least ordinal n with § < n <k such that the truth value
19 (vs, ..., v, w)I® is in 8,.

As k is a Mahlo cardinal, there is a strongly macceaslble cardinal A, {o<A <k
such that for all £ <A, all wi’s W(vs,..., 0, w), and all vy, ..., v, w € (L), the
ordinals x (v1, ..., 0., ) and Y (vy, ..., v, w, ) are both less than A morcover in
view of the way the property ¢ (A, 0) is deﬁned in terms of closure properties, A can
be chosen so that ¢(B,,A). Then A has the properties stated in 5.9: as <A,
[u€ NJ® =1; as A is a closure point of ¢,

JAANENPE =1;
[(2°*)~ is countable]® =1,

@y =P =1,

and A" < «; and the required elementary submodel property follows from the fact
that A is a closure point of the function & and hence Tarski's criterion, (Proposition
3.1.2 of [4]) applies. We leave the reader to supply the details. [

as

It is of interest to note that Hypothesis 5.4 is as strong as the existence of a Mahlo
cardinal:

5.10. Proposition. If Hypothesis 5.4 holds, then 8, is a Mahlo cardinal in L.

Proof. Let A be a closed unbounded subset of N;, with A € L. L=t A be a subset of
P (w) such that sach member x of A codes an ordinal, denoted by p(x), and
furthermore A = {p(x)|x € A}. Let N be as in 5.4 such that A NN € N, etc., and
let A be (N;)n. A is unbounded, so

Vx:Cw (x codes an ordinal)— Ay: € Ap(x)<p(y).

That is expressible in the language of second order arithmetic with a unary
predicate for A, so as {F(w) N N, A N N) is an elementary submodel of (P (w), A),
we have that for ail x € N, if x codes an ordiral, then there isa y € A NN with
p(x)<p{y). Asy EA NN —p(y) <A, we havethat A N A is unbounded in A. As
A isclosed, A € A. A iste,ularin N, and so is regular in L. which is a subclass of N,
Thus in L every closed unoounded subset of the real N; contains a regular cardinal,
and so N; is Mahlo in L. [

We end this section with two remarks. The first is that Theorem 2.13(iii) is an
immediate consequence of Lemma 5.5, Theorem 5.8 and Shoenfield’s theorem on
the absoluteness of ¥; predicates. The second is that the proofs of 5.9 and 5.10
contain the germ of the proof of the following unpublished theorem of Jensen,
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which is quoted with his permission. 1t may be left to the reader to supply a detailed
proof.

5.11. Metatheorem (Jensen). These two systems of set theory are equiconsistent : the
first system is ZF 4+ AC+ the Mahlo schema that every closed unbounded class of
ordinals contains a regular cardinal; the second is ZF + AC + the following schema

Let B be the class Boolean algebra that makes every ordinal countable, which may
be specified by saying that & (B, On). Then the set HC of hereditarily countable sets is
an elementary submodel of V®.

6. The theorem on functions
In this section we shall study functions with thi- property:

6.0. Definition. Let A be a happy family. E is an A-smooth function if
E :®(w)~> P(w) and for each n {Y {n € E(Y)} = €.

The foundation of our discussion is

6.1. Theorem {DCR). Let A be a happy family, and E an A -smooth functior. Then
there is an X € A and a family {1, f s C X} of finite subsets of w indexed by the finite
subsets of X such that first, t, Cls]| for each s CX; second, if sUs'C X and
s=8"N]s|, then t, = 1. N|s|: and third, for any Y C X,

E(Y)=U{.|sin Y}
in other words, if k €Y C X, then E(Y)N(k +1)=tvrun.

6.2. Example. Let E be a Borel function and A any bappy family: then E is
A-~smooth by Theorem 4.3, and so the conclusion of Theorem 6.1 holds of E and
A. That should be contrasted with the classical theorem of Baire proved in
Kuratowski’s book [11] Chapter 11, Section 32, that every Borel function on a
metric space is continuous on a comeagre set. Theorem 5 of [11] Chapter III,
Section 39 states further that if f is continuous on the Borel sei E, there is a 1] set
C CE such that f] C is -1 and f'C = f"E: compare also the theorem of Gandy
and Sacks cited in Kechris [9}, page 381. Theorem 6.1 cannot be improved, though,
to say that given an A -smooth function E, there is an X € A such that E [ [0, X} is
either constant or 1-1: define E by E({n }i < w})= {ny fx‘ < w}.

6.3. Example. If o — (w)” then every function E : #(w}-+P(w) is H-smooth.

Proof of Theorem 6.1. By the Metatheorem 4.8 it suffices to prove Theorem 6.1 for
the special case when A is a Ramsey ultrafilter, which we shall now call F. Let us
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call that case Theorem 6.1'. The argument given can be adapted to prove 6.1
without recourse to Boolean extensions.

So let F be a Ramsey ultrafilter and 2 an F-smooth function. For each s,t €K
pick X:E€ F such that X;C w-|t] and for all n <{t]| and all Y C X3,

nEE(UY)en€EE(GUX).
That is possible as {Y I n € E(Y)} € 6x. Let X* € F diagonalise {X }t € K}, and
let X € F diagonalise {X* fs € K}. Define for all s,
=E( UX\s|)N]s|.

Evidently t, C|s|. We have toshow that if Y C X,k € Y ands = Y N(k + 1), then
E(Y)N|s|=t. Let Y,k,s be as above. Note that |s|=k +1: let n <k. YJs|C
X{s|CX]s|: so

nEEGSUY\s])eneEGEUX)

and

n€E(UX) en€EGSUX\s])); sU(Yds)=Y.
$O

n €E(Y) en&E(s UXs)).
$0

E(Y)N|s{=E(s UX.Is|)N|s| =1, as required.
Hsins'CX, put Y =s"U(X\|s"]). Thep
L0ls|=E(Y)Nn|s’|n]s]=t. O

We continue the assumptions on E and F, and suppose that X, {t, f 5 C X}areas
in Theorem 6.1'. We define a function x (s, k) for s C X, k € X|s| by

6.4. X(S, k)=d;t,u(k)\fg.

Note that x (s, k) is equal to £,uun[5 |, and it may be empty. We use the function x
to examine E. Define for s C X, n, k € XJs/, n <k,

w(nk)=0 i n&yx(sk)
=1 if ngx(sk)
Then =, : [X<|s|F—2. Let Y, C X, Y, € F, be homogeneous for =, andlet Y € F
diagonalize {Y, |s CX}. YC X and Y has the following property:
6.5. GivensC Y, [s|sn<n’ {nn}CY,WC Y (n+1),and W CY(n'+1),
we have
nEEFUW)en' € E(UW).

Forletk =infW,and k’=inf W'. Then n <k, n' < k’, {n, n", k, klCY-|s|CY.
and s UW CX, so we have this chain of equivalences:
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neE(sUW)ene€yx(sk)eon(nk)=0
om{n k)=0eon'€E(sUW).

The above leads to the following, which by 4.8 immediately generalises:

6.6. Proposition {(DCR). Let F be a Ramsey ultrafilter and E an F-smooth function.
Then there is a Z € F such that

VW CZ(Z#EW>E(W)#Z).

Proof. Let Y be as in the above discussion, and let {n; |i <w} enumerate Y
monotonically. Let Z be that one of {ny | i < @} {nz.|i <@} which lies in F. Then
HWCZ WsZletn € Z.W.Puts = WNn; Wis|CZun.,,, andsoby 6.5

n; EE(W)(“*"z‘nE E(“V);
asmeEZ andn, €Z, EW)£Z. O

The arguments behind that proposition will be developed in Section 8. We now
examine further the function y (s, k). As before let F be a Ramsey ultrafilter. £ an
F-smooth function and X €F, {1, is C X} such that

VY :CXVk:€ YE(Y)O(k +1)=tynuen

Now x (s, k) for s C X, k € X]s], is a finite set ~f integers, which may be empty.
Let us introduce the function A(n, s, k) as follows: if n € @, s C X, k € X|s| and
x{s, k) has exactly p members then A(n,s, k) is undefined if n = p, whereas for
n < p, A(n,s, k) is defined by the requirements

6.7. AO, s, k)< A(l, s, k)< - <A(p—-1L.5%)
and
x(s.k)={a(ns k) n<p}

Thus A(n,s,k) is the (n + 1)-st element of x{s,k) if it exists, and is undefined
otherwise. It is notationally convenient to say “A(n,s, k)=#" rather than
“A(n, s, k) is undefined” in the sequel.

For s C X, n € w we define a partition #:[X\|s|]’—6 by saying for k,l €
X\,S ‘ k<l

0 ifA(ns,k)y===Xx(ny1)
=1 ifA(n, . k)=*#FA(ns1)

2 A s k)Ex=A(ns1)

3 ifxFEA(n s k)<A{ns 1)#
=4 ifx#Ansk)=A(ns1)#*

5 if*#A(ns5k)>A{ns1)#*
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I.et X7 € F be homogeneous for 7§, so that X7 C X|s|, and let 7.(n) be the
coramon value of #} on [X7}. As X7 is infinite, only three values are possible for
7.(1):0,3 and 4. Furthermore if ,(n) =0, then 7. (n + 1)=0, and if r.{n + 1) =4,
then 7, (n) = 4. Let us call s free if there is an n such that 7, (n) is not 4; otherwise if
for all n 7,(n)=4, call s captive.

Now if ¢ is free either there is a largest n = n, such that . (n) = 4, when we define
L(t)Y=A(n,t,k)+ 1 where k € X« the value of { (f} is independent of the choice of
k; or there is no n with 7,(n) = 4, when we let n, be undefined, and set {(t)=|1].
Again if 1 is free either there is a least m = m, for which = (m,)} is 3, when we define
n{t, k)= A(n,t, k) for k € X and then n(t, k) is, for fixed ¢, a strictly increasing
function of k ; or there is no such n. when m, and 7 (¢, k) are undefined. If n, and m,
are both defined, n, + 1 =m, Define

f(ty=suplm,|t]} if m, is defined
=|t] if m, i5 undefired.
Let X" € F diagonalise {X?}. Put

X=X |n<f(s)
for s C X and let Y € F diagonalise the family {X""fs & X} Then Y has the
following property:
68. If sCY,n<f(s). k<land{k,I}C Y\|s|, then w (k)= = (); and if further
m, is defined, then n{s, k)< (s, 1); that is because

Yifs[C XN s[€ X"\[slC XT,

We are now in 2 position to prove the following

6.9. Theorem. If F iz 2 Ramsey ultrafilter, & an F-smooth function, V" obtained as in
6.8 and there isan s C Y such that s is free end {1 { sint C Yandtisfree}isdensein
{t |sint C Y}, then there are subsets Y°, Y' of Y such that E(Y)Y N E(Y ") is finite.

Proof. We shall consiruct Y° and Y', as the union of sets 7, ¢/{i,j <w). Set
ti=1ti=s Let 1} be a proper extensicn of 1] that is free, with ]t > {(s).

IS4 (31 100, k) 19

—_— i Vo

s N
(s, k) r L@t

Choose k > £(t1), k € Y such that n (s, k) if defined is greater than {{1?), and let
ti be free and extend s U{k}. Choose k' = [{t}) such that n(t}, k") if defined is
greater than ¢{t1) and let 9 extend 1} U {k '} and be free. Repeat this process picking
k" k" successively until all 3,7} have been chosen, and put
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VO U{;‘:!g < w},
Yl U{‘j!‘ ;] <o}

We assert that E(Y®)N E(Y ) C {(s): the essential point in proving that being that
no element of E(Y®) lies between (say) {(t9) and 7 {t%. %X’} whereas the only
elements of E(Y") less than 5 {1}, k") other than those less than {({s) lie strictly
between n(s,k)—1 and {(t}). (I

That proof shows in fact that (YOUE(Y)DN(Y'UE(Y") is finite.

6.10. The case not covered by Theorem 6.9 for an F-smooth function E is when
thereis a Y € F and an 5, where we miay assume |s| < MY, such that forallt C Y
s Ut is captive. Define for t C Y the partition o, :[Y [t |P—2 by

onm)=0 fxyGuUunIN+D=xsUtmIN{+1D
=1 otherwise; where [ <n<m and {,n,m}C Y-t

Let Y, € F be homogeneous for o, and let Z € F diagonalise {y, lt(; Y} We
describe the sestriction of E to [5 Z]. Enumerate Z in ascending order as
{n,|i < w}. Note that for t C Z [Z.]t[] is a set on which o, takes only the va'ue 0,
the value | being impossible as for each | € Z.[t| there are only finitely many
possiblities for (s Un)N{+ 1) Fort CTZ, n, = N(Z-1), i =k we define
g(m)=0,q (. )=xULn.)N(m+1),
h(n)=x(UtLnm), h(n.)=x(sUtn, )~ +1)

S, =Wgm)]i=k}.

MNote that k =i <j implies that g (n) in g.{n;) by the definition of o, and the value
a. takes on [Zt|]. El[s,Z] is now defined by the sets 5,(t CZ) and the
functions h, { C Z): epg. # WC Z, niy € W, then setting ¢ = W Nny.; we have

ECUuWIN{|lsUtsl=sn. )= Nn)Uh(n.)

Here of course |t| may be very much less than n,.

6.11. That appears to be as attractive a description of a general E for which 6.9 fails
as is possible to get. There are counterexamples showing that one cannot hope for a
Y such that every t C Y is captive, in much the same way that given an A -smooth
partition E : P{w)— w of P(w) into countably many parts there is (by 6.1} an
{s. Y]with Y € A on which E is constant but there need be no [0, Y} on which E is
constant: let E{X) be the third member of X.

$.12. Finally we consider the conjecture that if C &€ €4 and E is A -smooth, then
{X |E(X)E C}E€ %, If C is T} then the conjecture is true, as given (s,S) € Pa,
there is by Theorem 6.1 a TC S, T € A such that E [[s, T} is continucus, and
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hence {X | E(X)&C & X €[s, T]} is a X! set, so there willbe ¢ T'Ct, T'€ A,
such that (s, T') decides {X!E(X)E ChL If A is H and w—{w)” then the
conjecture is true as then €y = P(P(w)). If though A is H and o 5 (@), the
conjecture is false: let

E{x)y={n } nE€x}u{2n +1]n € x}.
Then the range of E is

{x|¥n@nex<Q2n+)Ex),
which is in $y, and so every subset of it is. Further E is 1-1, so if D & €., there will
be & C € $u such that {X | E(X)€ C}= D.

7. Deductions from w — (w)” and the strong axiom of determinacy

In this section we apply the arguments developed in Section € to derive some
consequences of the partition relation @ — (w)” using some form of the axiom of
choize, and of an axiom of Mycielski [20].

A filter F on w is rare if F 2 Fr and given a partition of & into nonempty finite
sets 5 (i € w) there is an X € IF with (X N s)” = 1 for each i. Rare filters can be
constructed using the continuum hypo hesis. In {18] an elementary proof is given of
the following

7.0. Theorem. If w — (w)" then therc -re no tgare filters.
No form of choice is used in that proof, which also shows the following:
7.1. Theorem. No X filter is rare.

We present here an argument which embodies the ideas in our first proof of 7.1,
to obtain a weaker form of 7.0. The interest lies in its being an application of the
discussion of Section 6.

7.2. Theorem. If ACR. and w - (w)*, then tiere is no rare filter.

Proof. Suppose that G is a rare filter on w, ard let I = G, Call X thin if X €1,
0gXandVan(nEX->n+1&X). If ¥ CX and X is thin so is Y. If X is thin.
then there is a Z € G such that Z N X = 0, there is exactly one member of Z less
than inf X and between any two adjacent members of X there is exactly one
member of Z. We say for short that such a Z interleaves X. To see that sucha Z
exists, let X = {n; | i C w} in ascending order, and consider the partition given by

so={k |0k <ng,” sa={k|n<k<nm.k

obtain a choice set Z' € G for that partition of w ; then as 0 X € G. Z' N{0-X) E
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G ; the desired Z is some appropriate superset of Z' N {w-X). By ACR there is a
function E such that for X thin E(X)€ G, E(X)N X = 0and E (X) interleaves X ;
and for X not th'n E(X)= X. Let now X, be thin. Remembering 6.3, obtain as in
6.1an X C Xoana. iree {t. | s C X} and note now that by definition of interleaving,
fors C X, k € X< is|, x(s, k) has precisely one element and so A(n, s, k } is defined
if and only if n = 0, where y and A are as in 6.4 and 6.7. Conseguently 7, (n) will be
0 for n >0, and so every s is free. It follows from Theotem 6.9, which holds of
course for all H-smooth functions as well, by 4.8 that there are Y°, Y'C X such
that E{Y")N E(Y") is finite, which cannot be if G is a free filter.

The following is an amusing consequence of 6.6

7.3. Theorem (DCR). Let E be an H-smooth function of P (@) onto P {w) such that
VXE(X)2 X. Then 3XVY : CXE(Y)=Y.

Proof. Proposition 6.6 implies via 4.8 that
VXIYCXYWCYEMW)#AY or W=Y),

as E isonto, E(s)=s foralls,and 3Z : C Y E(Z) = Y; accordingly forsucha Y,
E(Y)=Y. As {Y|Y = E(Y)} is not a counterexample to & —(0)*, 3XVY C X
E(Y)=Y O

In connection with that, the following problem of Cech may be mentioned: Is
there a function E : ?(w)—> P(w) such that E isonto, VxE(x) D x, VxVyE{x Uy)
=E{(x)UE(y)and 3YE(Y)# Y?

In a recent paper [25] Prikry showed that

7.4. Theorem (Prikry). If ADR and DC hold, then @ — (w)*.

ADR is Mycielski's strong axiom of determinacy, defined in [20], which asserts
the determinacy of all games where two players define a sequence (r, ] n Cw)of
real numbers by picking them alternately. In fact as Mycielski shows in {20] ADR
implies ACR, which implies DCR; and we shall see that DCR is a form of the
axiom of choice adequate for Prikry’s argument. The next two theorems should be
compared with 5.5, 5.6, 5.7, and the remarks following the statement of 5.8.

7.5. Theorem. If ADR then there are no MAD families, moreover if A is a happy
family, then P(w)~A is rot a tall ideal.

We Lave failed to prove that @ — ()" + DCR implies that there are no MAD
families; perhaps a proof can be found using the notion of a feeble filter defined at
the end o” [18].
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The theorem follows immediately from the next theorem in the same way that 5.5
led sucessively to 5.6 and 5.7.

7.6. Theorem. If ADR and A is a happy family, then every subset of P () is in €.

The proof is modelled on that of Prikry [25], where the case A = H is proved
using DC. We go into some detail to show that DC is not necessary.

Let P C #(w). Define a game G (P) as follows: players I and II pick alternately
conditions (s;, i) € Pa (i > w) with (si11, $i1) < (s, §) and 5:,; # 5. The first player
to fail to observe those requirements loses. If (s, $:)| i < w)is a sequence satisfying
those rules or, as we shall say, of legitimate moves, then it conveiges to a set
X =U{s|i<w} T wins if X €P and II wins if X € P.

By ADR, one of the players has a winning strategy. Suppose first that player II
has a winning strategy, specified by the function E. Let p, g, ... denote elements of
P,, and let uy, u, - -+ denote finite sequences of legitimate moves (Po, Puy - . -+ Prns1)
starting with a move by player I, and in which pz ., is dictated by player iI's strategy
E: say

Pysr = E(po, .. .,pzk).
If o= (po--'pasr), vrite g = pa,.,. Call such u’s partial plays.

Prikry proceeds by moving to a Boolean extension in which the continuum is
well-ordered and then guoiing a result of Oxtoby [22]. In fact Oxtoby uses AC to
obtain maximal sets of a certain kind. We shall proceed more directly by adding
these maximal sets (rather than a well ordering) generically.

For each partial play p we seek a sat X, of pairs (g, E{u,q)) such that

(i) q is a legitimaie move by player I after u;

(i) E(r"q) is player II's response to that move according to his strategy;

(iii) for each couple (g, E (&, q1)), (42, E{w, q2)) in X,., q; and g- are incompatible;

(iv) for any p compatible with g, there is a (¢, E(n"g)) € X, such that p is
compatible with E(u "q).

(iv) is a maximality condition; to achieve it it is evidently sufficient to have

(iv') for any p <4 there is a (g, "¢)) € X,. such that p is compatible with
E(u"q) ,

To obtain such sets X,. (which may not exist in the standard universe) we make a
Boolean extension of the universe as follows. A condition is to be a nair (¥, &)
where X is a countable set of partial plays u, & is a function with domain X and for
each p € X, ¥ () is a countable set of pairs (g, E (u "q)) satisfying conditions (i)
(iiy and (ii)). The partial ordering of conditions is given by (X, Z)< (X", Z") if
H'CTH and foreach u € ', '(n) C £ (). Each condition can be coded by a real
number; so DCR is enough to conclude that given a descending sequence
(X, %) = (Ko, 1) - - of conditions, (¥, %) is a condition below them all where
% =U{ |i <w} and for p €%,

Z(p)= U@ Wi <wpen),
and thus by the obvious analogue of Lemma 4.0 no new reals are added in the
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associated Boolean extension. Given a partial play g, a condition (0, %) and a
p € Py compatible with g, if p is compatible with some E(u.q) where
(g, E(n,q) € X,, then let (', &) = (¥, %); if not, let g <p be a legitimate move
for player 1 after ¢, and let (X', ") be an extension of (¥, ¥) such that w € ¥, and
(@, E(u.q)E X (1) such (X', %) exists as E{u "g)=<p, and so is incompatible
with each r, if any, such that for some ¢’ (g', v} € & (i ). Thus by standard density
argumernts there is in the Boolean extension a function that assigns to each p a set
X, satisfving (1)-(iv). We now work in this extended universe, where E will still be
a winning strategy for player I1. This notation will be convenient: write [z j for that
[s, §) for which (s, 8) = gi. Define for each p,

B. ={(4.4. E(x.9))| (4. E(e.q)) € X..}.
Now set
Q.= B, {0 here being the empty partial play);

Qua=UB, [eeo.h

R, =Ufli]|n € Q.
Then R..,C R.. Following Oxtoby we show that

MR, f n<wtg P(w)P

For let Y be in ﬂ{R,‘ ]n < w}. Then for cach n there is a u in Q. such that
Y €[ ]: we see by induction on n using condition {(iv) that this u is unique: put
= . accordingly. Then the sequence (i, | n < w) specifies a sequence (p; | i < w)
of plays (where w, = (ps- - p2.-:)) of the game in which II has been using his
strategy and which converges to Y. Accordingly Y is in #{w)< P. We show now
that (in the exiended universe) () {R, | n < @} isin Fa and so P(w)~ Pisin Ja ; it
will then foliow by an easy absoluteness argument that in the original universe
P(w) P is in S,

As #, is a o-filter, it is enough to show that each R, is in &.. To do that 1t is
encugh, by Proposition 2.7 applied in the extended universe, to show that given
p dq <p such that g s R.. So let p be given. 3pe- - p. with w, € Q; and p
conpatible with each p; (by condition (iv)); further p... extends u. n the obvious
sem->. Let g <p, g €. Then g Fx R..

Back to the original universe. We have now said enough to show that if 11 wins,
P(w)P isin $4, and so P € €,. Put player I winning is equivalent te I} winning a
derived game. Straightforward arguments now show that ¥p 34 <p g P; by
Froposition 2.6, P € €.

8. Further properiies and an applicaticii of Pr generic reais

In this section we discuss further properties of the notion of forcing Pr
introduced in Section 2. Throughout we assume DCR and suppose that F is a
Ramcey ultrafilter.
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Let E be an F-smooth function. The proof of Proposition 6.6 relativises to give
the following: for any (s, S)E Pr thereisa Z C S, Z € F such that forall W C Z, if
W# Z, then F(s UW)# Z; applying that for each finite subset s of t we have

8.0. For any {t, S)E P there isa ZC S, Z €F, such that for al W Z1UZ, if
ZZ W then E(W)# Z.

8.1. Proposition. Let (E|i < w) be a sequence of F-snooth functions. Then

{X |3i Y C X(X.Y infinite and X = E,(Y)} € F¢.

Proof. The set in question is U{P: [i < w} where
P, ={X|3Y CX(X\Y infinite and X = E,(Y)}.

As $r is a o-ideal it is enough to show that each P, € $¢. But that is clear
from 8.6. [J

8.2. Theorem. Let F be a Ramsey ultrafilter in L and let X be Py generic over L. Then
for no Z C X with X Z infinite is X € L[Z].

8.3, Corollary. Under ithe hypotheses of the theorem, if Z,,Z.C X and Z, 2.,
ZyZ, are both infinite, Z, & L[Z,} and Z, & L|Z,]. Hence ‘here are in L[X] 2%
incomparable degrees of constructibility.

Proof of Theorem 8.2, The statement that 3Z C X(X.Z infirite and X € L{Z])is
a 3} predicate of X and so if true is rue in L[X], and is hence forved by some
(s, 8) € Pr with X €[5, §]. The partial ordering Pr satisfies the countable antichain
condition and so preserves cardinals. Hence there is an ordinal { <, and
{s',8"y=<(s,§) such that in L,

(', S"3Z:CXX
is the {™ real constructible from Z. Let Y € L code ¢. Then “X is the {™ real
constructible from Z* is a A} predicate of X, Y and Z. Corsider the function E
defined by E(W) = the {™ real constructible fremy W, For each n, {W f n € E(W))

is ¥i(Y), and £ is an F-smooth function (in L ). Sc by 8.1 thereisa T € S’ such that
TeEF and

8.4. VW Cs'UT—3Y C WWLY infinite and W = F(Y).

8.4 is a II; predicate of T and so is true :n all extensions of L; hence
(s', Ty —3Y .C X XY infinite and X is the £ constructible from Y. Stancard
density arguments now lead to a contradiction. [

Proof of Corollary 8.3. If Z,€ L{Z:], then Z,UZ.€ L[Z.]. contradicting the
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theorem and the fact that Z. 2, is infinite. Given X, let C be a family of 2%
pairwise almost disjoint infinite subsets of X. Then any two elements of C are
mutually nonconstructible. [

The above theorem and corollary also hold for P.-generic reals where A is
happy in L.

We now prove the theorem of the author stated in Jockusch and Soare [8]. X is
called hyperarithmetically encodable, or h.e. for short, f WY 3Z :C Y, X is hypin
Z.Let X beh.e., then{Y } X ishypin Y}isi1}in X, and so is in $,;, as every set has
a subset in it, rather than the reverse. Now let Z be Py generic over the universe.
The X is hyp in Z, as given any condition (s, S)3IT CSVYVT'CT; X ishypin T'; so
(s, T)IF X ishyp in Z, by Shoenfield’s absoluteness lemma. Thus the set of standard
h.e. sets is countable in the extended universe, but by 4.10 the extension preserves
#,. Hence

8.5. Theorem. There are only countably many h.e. sets.

Solovay has improved that to “Every h.e. set is A 2. The author’s proposed proc
of that broke down for lack of an answer to the fotowing problem.

8.6. Is there a criterion similar to that of Theorem 2.0 for a pair (X, Y of reals to
be Pe X Pr generic over L?
We close this section by recording thiz following

8.7. Proposition. Let M be a transitive m >del of ZF -- DCR and suppose that = is in
M a Ramsey ulirafilter. Let

= K U{X | X is Pr generic over M}.
Then [ is a proper ideal.
Proof. If x and y are in I, then by Theorem 2.0, ferall A € F, (x<A) and (y~A)
are finite and so therefore is (x Uy )4, hence by 2.0 x Uy is cither finite or Pr

generic over M. If x €I and y C x, y € I, being either finite or Pr generic by 25.
Hence I is an ideal, and is proper as o is not Pr generic. O

9. Moderately happy families

There is interest among analysts in certain ultrafilters, known as p-points, which
are defined by a property rather more general than that of being Ramsey. There is a
corresponding generalisation of the notion of a happy family which we study ir. this
final section.

9.0. Definition. A is a moderately happy family, or MHF for short, if P(0). A isa
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free proper ideal and whenever A1{X; |i <w}C A, there is an X € A such that for
all i, X~ X is finite.

Note that in Definition 9.0 we may witheat loss of g-nerality restrict attention to
those families {X:} C A, where X.., T X, for all i

9.1. Definition. I is an MH ideal if @ {w)I it 2 moilerately happy family.

That definition will be useful as we shall in fact work more in terms of MH ideals
than of their complementary moderately happy families. An ideal first used by
Kunen furnishes our first example.

9.2. Example. Let {a,} be a sequence of positive real numbers decreasing to 0 but
with Ja; = oo, Put

Ty ={x | S |i € x} < o0}
Then I, is MH and tall.

Proof. I, is an ideal. Let X, € I, Xi.. C Xi. for i < w. Pick

Roye. M€ Xo  with S, |i <io} > 1,

Rgety oo M € Xy with S{a, |io<i <i}>1,
and so on. Put X ={n, |i <w}. Then X'q, f i € X} s infinite s0 X & I, but X X;
is finite for each i. I is tall as the {a;} converge to 0.
9.3. Example. Let 7 be a partition of w into infinitely many finite pieces mo, 71, . ..
such that for all k € » there is a 7, with at least k elements. Put

I={x |3k Vi€ w(x Nm) <k}
Then I, is MH and tall.

Proof. Given A& I, with A; D Ay, pick n. € Ay, ny, 1 € A, such that for some i
{ny, n} C iy na, ng, 05 € AL N 7y, for some iy, and so on. Then {n Ii € w}isupto
finite differences contained in each A; but is not a member of I%. That I is tall is
readily verified. O

2.4. Remarks. Let

R =4 ({I%| w a partition as in 9.3}.

Then an ultrafilter F is rare if and only if forall [ € R, FNI# 0. I F is rare then
F N I, is non-empty for every sequence {a.} of the type described in Example 9.2,
but if 2" = N,, there is an ultrafilter which mects each I, but is nevertheless not
rare.
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6.5, Definition. A p-peint is an ultrafilter that is also an MHF.
0.6. Definition. If f:w > and A C P(w), f,A =u{x |f"x € A).

%.7. Proposition. If A is an ideal, a prime ideal, a filter or an ultrafilter, then so
accerdingly is f, A. If F and G are ultrafilters, and for some f and g, F = f, G and
G = {F then for some permutation h of w, F = h G

9.8. Definition. The Rudin-Keisler ordering of ultrafilters is given by
FpGoudffio—>0 &F=f,G).

Proposition 9.7 shows that =gux is strictly only a pre-partial ordering,
{G | F <ex G and G =g« F} being precisely the set of ultrafilters of the form h , F
for some permutation h of ». For more on this ordering see [2], [10] and [26]. The
following proposition lists some known properties.

9.9. Proposition. (1) if F is a principal ultrafilter for all ulirafiliers G, F < G.
(ii) If F is Ramsey and G =g F, then G is principal or F <xx G.
(i) If F is a p-point and G <g« F, then G is a p-point or principal.
(iv) If 2% = Ny, then above each ulirafilter G is a rare ultrafilter, so that rarity need
not be rransmitted downwards.
(v) If F is not Ramsey, then there is a free ultrafilter G strictly below F in the
Rudin-Keisler ordering.
(vi} A free ultrafilter is Ramsey if and only if it is a p-point and rare.
(vii) If 2™ = 8&,, then strictly above each p-point is another one.

The clauses (ii) and (v) together show that the Ramsey ultrafilters may be
characterised as those that are minimal among free ultrafilters in the Redin-Keisler
ordering. Clause (vii) which is due to Mrs. Ruadin and has been considerably
extended by Blass [2] shows taken with (ii) that the continuum hypothesis implies
that there are p-points which are not Ramsey. The same ccaclusion may be
obtained by ccupling Example 9.2 or 9.3, and the first remarx of 9.4 with the
following general principle:

9.10. Proposition (CH). Let I be an MH ideal. Then there is a p-point F D I.

That may be proved by imitating the proof of Proposition 0.11. We shall however
be longer-winded.

9.11. Lemma. Let I be an MH icdeal, and o X & 1. Then id(1, X) is MH.

Proof. Let X, €id(IX) with X, 2 Xi... Then Xin X& I for each { and Xi- X D
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XisiX:;sothereisa Y C - X with Y& I and Y (X< X) finite for each i. Then
Y £id(I, X) and Y- X, is finite for each i. [J

9.12. Lemma (DCR). If {I, |i < w} is an ascending sequence of MH ideals, so that
I C L.y, then UL ’ i < w}isan MH ideal, which is not prime if none of the I, is.

Proof. We may by removing repetitions assume that the sequence is properly
ascending. Set J = U{l |i <w}:J is trivially an ideal. Let X, D X.., with no
X, 2J. For j Ew, pick Yi &I such that for each i, Y;< X, is finite. Put Z =
U{Y, N X; |j € w}. Then for each i, Z~ X, is contained in U{Y;<X. |j < i}, which
is finite. Asforeachj, Y; N X, € (for Y; £ I; and Y~ X, isfinite)and Z 2 Y; N X,
Z &I and so Z € J. Hence J is an MH ideal.

Suppose finally that no ; is prime, as will be the case for all but trivial sequences.
Pick X; € I..~[.: let Y& J with Y- X, finite for each i. Then Y& J; so J is not
prime, as YEJUJ. O

9.13. Leramy. Let o be a non-empty collection of proper free idcals such that

(i) for each I € of and each X &1, id(I. X)€ o and

{ii) whenever A <2 and (I |v <A)isa sequence of members of of such that
v<v'<A—=I I, then U{I;.§v<z\}€:’ﬁ.

Let B be a second collection of ideals such that,

(iii) B <2™ and

(iv) foreachIed and T E€B, JZ L
Then if there is a well-ordering of the continuum there is an ultrafilter F such tha: for
all 1€ B, J N F#0. Moreover F may be chosen to include I for any preassigned
led.

Proof. Enumerate with repetitions if necessary the members of @ as (J. | v < 2%),
and the infinite subsets of w as (X, l v < 2%). Define an ascending sequence
(I, | v < 2%) of members of s/ as follows. Let I, be any member of &/. Suppose that
for all v’ <w, I, has been defined, [, € f and v' < v"<v—[.C L-. If v is a limit
set I = U{L{v'<v}. Then I, € o by (ii) and v' < v—>L.C 1.

Now suppose that v is a successor ordinal, say » = { + 1. By (iv) there is an
X €J, I : then X € I, so by (i) the ideal I} =4id(L;, @~ X) is in & Now set
L =1Lif X, € I, and [, = id(I, o~ X;) otherwise. In either case I, € &, by (i), and
I, CL,soforv'<{ L-CIL. Let

1= v <2,

and set F = [. Then F is the desired ultrafilter. F is proper, as each I, is; and for
each ¢,

Fnxohani#o.
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We remark finally that it is not assumed that the members of @ are free or
proper. []

The last three lemmata provide a general method for constructing p-poirt:
which we illustrate by proving Propesition 9.10.

9.14. Definition. For f 1w — o, ot

I =g{x |3k Y :>k(x Nf"n} is finite)).
9.15. Definition. Let P =y {I;|f: 0w — o).

9.16. Definition. (i) For eack f: w — @, Iy is a possibly improper free tall 2! ideal,
which is generated by the sets f~"{n}, forn < w, and those X which meet each { ""{n}
in a finite set.

(ii) A free ultrafilter F is a p-point if and only if for each 1€ P, INF#0.

Proof. That I is a free ideal is immediate from its definition, which shows too that I
is X7 in f, and hence &}. Given X, either f"X is finite, when for some n, f ' {n}is an
infinite subset of X, or f"X is infinite, when there is some infinite Y ¢ X on which f
is finite-to-one. Thus [ is tall. The last clause of (i) is easily checked, and (i) follows
from it. O

Proof of 9.10. Let I, be an MH ideal and suppose that 2™ = &,. In Lemma 9.13. let
o ={I [ I,C I and I an MH ideal}.

Then conditions (i) and (i1} of 9.13 hold by 9.11, 9.12 and CH. Let B = P. Condition
(i) is clearly satisfied; as for condition (iv) let I €& and I; C I for i <w, set
X = o~f"i. Then

t<j<w—-»X DX,

fm= U "nt]n <i},

which isin I;; and so each X, € [, C . As T ic MH, there is a Y not in I such that
for each i, Y. X is finite; but the restriction of f to such a Y is finite-to-one, and so
Y €[ C I, a contradiction. Thus if | = and J € 3B, JZ I, as required.

So conditions (i)~(iv) are satisficd, and CH implies of course that there is a well
ordering of the continuum. We may therefore conclude by 9.13 that there is an
ultrafilter F D I, such that for all J € 2, F N J# 0. Such an F is free, as K C I, and
so by 9.16 is a g-point. I

Remark. It might seem that the argument above would work were the definition of
MH ideal to be weakened to

9.17. Given X; 2 X.., with each X, € I, there is an X € I such that Vi (X. X, is
finite).
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Regrettably the union of a countable ascending chain of ideals with Property 9.17
need not share Property 9.17: let « be the disjoint union of infinite sets
Z {i <w). Put

o={x | Vi (x N Z is finite)},
11 = ld(lg, ZQ), ey Ik-e-l = id([k, Zk)' .

Then U{J |j < o} fails to have Property 9.17; for consider the sequence X, =
o \J{Z, |j <i}. But each I, has Property 9.17.

The notion of a moderately happy family was originally investigated by the
author with a view to proving

9.18, Theorem (Pitt [23]; Solomon [29]) (CH). There is a p -point F such that for no f
is f.F Ramsey,
which by 9.4, 9.9(iii), 9.9(vi) and 9.16(ii) is equivalert to proving that

9.19, if CH, then there is a free ultrafilter F such that forall I € @, F N I1#0, but
all f:o—> o with f,F free there is a JER with JCf,F.

Unfortunately the auther’s proposed proof contains a gap, to which the reader will
now be led in the hope that he may see how to bridge it.

9.20. Lemma. Let o X be infimte. Then therc is a tall X1 MH ideal 1
containing X.

Proof. Partition w into finite pieces such that X meets each piece in precisely one
point and such that the size of the pieces is unbounded. Let 7 be the partition and
take Itobe I,. O

Until the discussion of 9.19 is complete, let o, be the set of tall £} MH ideals,
and assume CH. Then sv is non-empty by 9.20 and satisfies conditions (i) and (i)
of Lemma 9.13, by CH, 9.11, 9.12, the classical fact ti*at the union of countably
many X} sets is 31, and the fact that if I is %}, then sois id(L, X)={x |Iy (y €I &
xCyUX)h

9.21, Lemma (CH). Let I < ofy. Then there is an I'Edy and a J ER with
vrcr.

9.22. Remark. The reader may be interested in a counterexample to the more
natural assertion than that of Lemma 9.21, that if I € & and id(I, I7) is proper,
where I, € @, then id(l, I}) is MH: take I to be the I, of Remark 9.17, and n such
that no Z; contains more than one element of any one piece of o, Z,U Z, is the
union of the two-element pieces of 7, Z, U Z1 U Z, the unioa of the three-element
pieces of m, and so on. Then each Z; € I, so id(1,I7) fails tc be MH.
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Proof of 9.21. Letsf = oy N{I'| 1 CI'}, and let B = R U @. Conditions (i) (ii) and
(iii, of Lemma 9.13 are satisfied. The argument given in the proof of Proposition
910showsthatif I'Ef andJ € P then JZI'. Y thereisan I'Ef andaJER
with J C I, then there is nothing left to prove, so if 9.21 is false for I, then of and B
satisfy condition (iv) of Lemma 9.13. There is thus a free ultrafilter F such that
ICF and for all J€®B, FNJ#0. But then F is both rare (as RCR)and a
p-point (as @ C & ); that is to say, F 15 a Ramsey ultrafilter. But the relationship
IcFis impossible by Theorem 2.12, as I is tall, free and X5, [0

9.23. Lemma. If I is MH and for all n,f"{n} € L then f,Iis MH.

Proof. f,I is a free ideal by 3.7. Let
X 2 X, X Ef* I

Set Y: = f"X,. Then Y€ [,and Y, D Yi.,. There is thusa ¥ § [ with Y Y, finite
foreach i. Let ¥ = f'Y. Then f ™" X D Y, s0 X &€ f, [ Foreach i, X X, = f(Y.Y.),
which is finite: thus f, I is MH. O

9.24. Definition. If I is an ideal and f: 0 — o,
I =4id{f "x [x €1},

9.25, Froposition. Let f be onto w. Then if Lis proper, sois f~ I if Lis X}, sois f'I;
if I'is MH, so is f'I; if I is free and tall, so is f'L

Proof. The first two parts may be safely left to the reader. Suppose then that [ is
MH, X D Xi,y, for i <w, and no X, €f7'I. Let Y, = f"X,. Then X; Cf™"Y,, s0
Y. €1 As i is MH, there is a Y & I, such that for all i, Y. Y, is finite. An X may
now be constructed such that f"X = Y, and for each i, X X, is finite. Such an X
cannot be in f7'I. Hence ™I is MH.

Finally suppose i is free and tall. Evideatly f ' is free. Let X be given. If f"X is
finite, then X € f'I; otherwise thers ir ¢ Z € I with Z C f"X. Then X NfVZ is
infinite and in f7'I Thus f~'I is taii, ]

The gap in the proof of 9.19 lies in the proposed proof of the following statement,
which I shall now call

9.26. Conjecture. Let I € oy and st pruse that foralln € o, f"{n} € 1. Then there
isaJeER andan I'E oy with I J [0 and JCf, T

Proposed proof. We may suppose that f, I is tall, since otherwise we may use 9.25
and 9.20. By 9.23, f.I is MH, so with this supposition, f, I € #fu. Let

A={f I'|I1CIE du},

and B = R U P. If the assertion of the lemma is false, the proof of 9.21 may be
repeated to obtain a free ultrafilter FD (f_,.,I )™ such that for al JER U P,
F N J#0. But such an F is Ramsey, contradicting Theorem 2.12 as before.



108 A.R.D. Mathias

Note that in fac: sf does not quite satisfy condition (i) of 9.13; we have though
the weaker property (i'): for I'€ o and X €I, there is an I"€ o, such that
I"Did(I', X). Examination of the proof of Lemma 9.13 shows that {i") suffices. [

The error lies in the first sentence: i f, 7 ie not tall, we may by 9.20 find an
I € oy with f, I CI,, and by 9.25, f7'I, wili also be in st ; I, € f . f 'L, but we do
not know that I C f7'f, I, and hence we cannot conclude that I C f'I,, which is
what we need to reduce 9.26 to the case that f, I is tall. In fact “I C f'f, 1" may
well be faise: by the result in [18], if I is X} there is a finite-to-one function f such
that f, I is the ideal K of all finite sets, and so f™'f [ is in this case K, and so in
‘general not equal to I. If 9.26 is true, the following argument will establish 9.19:

Proposed proof of Theorem 9.19. Assuming CH, let us enumerate all infinite
subsets of @ as (X, f ¥ < N;); the members of # as (J, i ¥ < N,;), and all functions
from o to o as {{, f v < N;). We construct a series {I, | » <N,) of members of
sy : Iy can be chosen as an arbitrary member of &y ; L., 2a member of «y such
that either X, or w\X, is in I .,; such that J. N L., # 0; and such that either An
fo'"{n}€ L., or f1,., contains some J € R; I, at limit A is the union of the I, for
v < A. Then if I is the un.on of all the I, [ is the desired ultrafilter. At the successor
steps of the construction we use 9.11, 9.26 and the observation in the proof of 9.10
that if JE and I'E by, JZI'. O

The story has one happy outcome: Mlie M. Daguenet has found an elegant
topological proof of Theorem 9.18 which is modelled on the above argument, but
which proceeds by induction, not on the class of %} ideals but on the class of those
which are, in 2”, the union of countably many compact sets.

A construction similar to that proposed above, but simpler and correct, gives the
following:

9.27. Theorem (CH). There is a free ultrafilter F such that for no Fis f , F rare or a
p-point.

Proof. We construct as before an ascending sequence 'I, ! v <N, of £} ideals: this
time we arrange that either Inf;"{n}€ L., or f*1,., contains a JER and a

'€ P. Firstly, it is shown in {16} that if I is £} and free, then for some J'€ @,
id(I,J) is proper. Secondly it follows from Theorem 7.1 that if § is 3., then for
some J € R, id(I, J) is proper. Thus if f;"{n} € I, for each n, we may take ., to be
fdsL, L) for some JER and '€ P, [

One difference between happy and moderately happy famiiies is that if I is ¥}
and tall, ?(w)~I cannot by Proposition 4.6 be happy but may by Example 9.3 be
moderately happy. A second but conjectural difference is this: the author is unable
to prove that the intersection of a countable descending sequence of happy families
is happy, in contrast to Lemma 9.12, which indeed admits the following improve-
ment:
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9.28. Proposition {AC). If Martin’s axiom holds, A <2% and (L. |v <A) is a
strictly ascending sequence of MH ideals, then U{I [v <A} is MH.

Proof. Set I = U{L |v <A} I is clearly a free proper ideal. Let X, 2 X, X, € I
For each v select Y. & I, such that for all i, Y.~ X, is finite. We construct a Z such
that Z. X, is finite for each i, and Y. Z is finite for each v, which ensures that Z is
in no I,, and thus not in I, as required.

Consider the fellowing notion of forcing. A condition is a pair (X, Y), where
XAX, isfinite for some i, Y isin the ideal J generated by {Y. i r<hiihand Y CX.
We define the partial ordering of the set of conditions by setting (X, V= (X', Y if
andonly if Y22V and X C X' As the conditions (X, Y, and (X, Y,) have the
common refinement (X, Y, U Y:), and there are only countably many possibilities
for X, the partial ordering satisfies the countable chain condition. For v <A let
A, ={X,¥)| Y, Y is finite}; for i < w let A]={(X,Y)| XX is finite}; and for
n<wletAdi={X,Y) n€ Yorn& X} Theneach 4,, 4| and A is a dense closed
set of conditions. By Martin's axiom there is a set ¥ of pairwisc compatible
conditions that meets each of those dense closed sets. Let

Z =Wy ]for some X, {X.Y)& 4}

Then for each | <w and each v < A, X~ Z is finite and Z. Y, is fintte. [

It follows from that and from 9.13 that 9.10 can be proved from AC + MA rather
than CH.

We now complete the proof of Theorem 2.13. Part (i) is easily proved by
combining the method of proof of Proposition 0.11 for the case A = H with the
well-known facts that there are 2% X! sets and that if MA holds, A <2™and F is a
free filter generated by A elements than F is contained in some countably
generated free filter. Readers of Booth [3] will be able to formulate the notion of a
super-happy family and a generalisation of 0.11 provable from MA.

To prove Part (i) we quote two results; the first is Theorem 4.55 (2) in [29]:

9,29, Theorem (Solomon). Suppose that MA helds and that 2% >N,, and let
(X, } v < 8,) be a sequence such that

v < v <N = (X~ X, is finite and X, X, infinite).

Then there is a Ramsey ultrafilter G containing each X, and each set X such that for
all v <Ry, (0 X)X, is finite.

The second is Theorem 3.2 of {15]:

9.30. Theorem (Solovay). Suppose that MA holds, that 2% > R, and that for some
X,N-Xi= N, Then every subset of P(w) of power R, is IIi.

Now let B ={X, ! v < N}, as in 9.29, and let
C ={x|VZ :€ Bx-Z is finite}.
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Let G be the Rawsey ultrafilter of Theorem 9.29, which contains all of B and no
member of C. We assert that C is not in €s: for let X € G. Then X € C; but put
Y. = X N X,. Then by MA + — CH, there is a Z such that for all », Z. Y. is finite:
forsuch a Z,Z N X is infinite and is in C. But if 1n addition the hypotheses of 9.30
hold, then B is I}, and so C is IIi. Then A = @(w)C is a 2! set not in %e.

Part (iii) was proved in Section 5. For part (iv), let F be a Ramsey ultrafilter, A 2
set T3 in X and « a strongly inaccessible Rowbottom cardinal. Consider the
structure (V, F, € | Vi.{X}), where € is the epsilon relation: that is of type (x, 2").
Let N be an elementary submode} of type (k, No) and M be the transitive collapse
of N. Then X€M, and FNM is in M a Ramsey ultrafilter: however F N M is
countable. and so as in Section 5 we see that F contains reals Penw genericover M
and thus each set Z; in X will be €-. The argument from Chang’s conjecture
+2% =8, +2"=N; is similar, and proceeds by considering the structure
(H,,F, €| H;,{X}), where F is a Ramsey ultrafilier, and H. is the set of sets
hereditarily of power less than N,. [J

Finally we list a number of characterisations of Ramsey ultrafilters, the equiva-
lence of which follows from 0.10, 0.13, 2.0, 2.10, 2.12, 9.4, 9.9(vi), and 9.16.

9.31. Theorem (DCR}Y. The following are equivalent properties for a five
ultrafilter F:

(i) F is a happy farily,

(i) for each 7 :{w} — 2 there is an X € F with = constant on [ X},

{iii) VX VY : C X (if X is P generic over V so is Y)[P = 1, where B is the algebra
over P,

(iv) every Xi subset of P(w) is in g,

(v} FNI#0 for each tall X1 free ideal 1.

A word about the history of the work in this paper is now in order. The author’s
interest in the problem of refuting the relation w — («)* without the axiom of
choice was aroused by Friedman during Scott’s seminar on partition theorems
conducted at Stanford in 1967. The arguments used in tire present paper are in part
a development of ideas learned by the author from Cohen, in whose paper [5] the
seeds of Theorem 8.2 may be found, and from Jensen. Metatheorem 5.1 and a form
of Theorem 8.2 were proved in the author’s dissertation submitted for a Research
Fellowship at Peterhouse in 1968. The proof of Theorem 0.13 given in Section 2 was
found in 1969, and that given in Section 1 in 1671. Topological proofs of Silver’s
theorem 0.12 have been found by Ellentuck {6] and Taylor and of Theorem 0.13 by
Leuveau [13] and Milliken {19] who has proved a form of Theorem 4.4 as well.
Theorem 9.27 was proved first by Pitt [23].

As this is the first time the material in the author’s dissertation has been
published, he takes the opportunity of recording his gratitude to those who have
encouraged and taught him, by word or by example; anc in particular to the Master
and Fellows of Peterhouse, for admitting him to their Society; to Friedman, Kunen
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and Silver for many conversations in 1967 and 1968; and to Ronald Jensen, who
supervised his dissertation and to whom he dedicates this work,
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