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INDEPENDENCE RESULTS ON THE GLOBAL STRUCTURE 
OF THE TURING DEGREES 

BY 

MARCIA J. GROSZEK AND THEODORE A. SLAMAN 

"For nothing worthy proving can be proven, 
Nor yet disproven." 

Tennyson 

ABSTRACT. From CON(ZFC) we obtain: 
1. CON(ZFC + 2" is arbitrarily large + there is a locally finite upper semilattice 

of size W2 which cannot be embedded into the Turing degrees as an upper 
semilattice). 

2. CON(ZFC + 2" is arbitrarily large + there is a maximal independent set of 
Turing degrees of size Xl). 

Introduction. Let 6D denote the set of Turing degrees ordered under the usual 
Turing reducibility, viewed as a partial order K 6D, -) or an upper semilattice 
K 6D, , V) depending on context. A partial order K A, ?) [upper semilattice 
KA, , V)] is embeddable into 6D (denoted A -* 6D) if there is an embedding f: 
A -* 6D so that a ? b if and only iff(a) < f(b) [andf(a) V f(b) = f(a V b)]. 

The structure of 6D was first investigted in the germinal paper of Kleene and Post 
[2] where A -* 6D for any countable partial order A was shown. Sacks [9] proved that 
A -* 6D for any partial order A which is locally finite (any point of A has only finitely 
many predecessors) and of size at most 2w, or locally countable and of size at most 
(01. 

Say X C 6D is an independent set of Turing degrees if, whenever x0, x,. .. ,Xn X 
and x0 < xi V x2 V Vxn, there is an i between l and n so that x0 = xi; X is 
maximal if no proper extension of X is independent. Sacks showed (also in [9]) that 
no countable set of Turing degrees is maximal independent and that there is an 
independent set of Turing degrees of size continuum. Sacks conjectured that in fact 
any maximal independent set of Turing degrees must have size continuum. In [11], S. 
Simpson pointed out that MA(K) implies that every maximal independent set has 
size greater than K, but suggested that the existence of a maximal independent set of 
size less than continuum might be independent of ZFC. Theorem 2 confirms 
Simpson's conjecture. 
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This result casts some light (or shadow, if you will) on the following conjecture, 
also made in [9] and still unsettled: "If A is a partial order which is locally countable 
and of size at most continuum then A -- 6D ". The existence of a small maximal 
independent set means that a simple extension of embeddings method, such as works 
for A of size xl, will not suffice. 

The embedding of upper semilattices into 6D has been studied in the context of this 
question: " Which upper semilattices can be represented as initial segments of 
6D?"-all the finite ones, Sacks first conjectured in [9]. The following (listed 
historically, without regard for redundancy) are now known to be embeddable in 6D 
as initial segments: every countable distributive upper semilattice with least element 
(Lachlan, 1968 [4]), every finite lattice (Lerman, 1971 [6]), every countable upper 
semilattice with least element (Lachlan and Lebeuf, 1976 [5]), WI and many other 
upper semilattices of size w I (Rubin, 1979 [7, 8]). 

Theorem 1 shows that w is in some sense an upper bound; there is a model where 
2W is large yet there is a locally finite upper semilattice of size W2 which is not 
embeddable in 6D. (By Sacks's result in [9], being locally finite, it can be embedded as 
a partial order.) 

Notation. A real x will be viewed as a function from w into 2 (= {0, 1}). {e} 
denotes the eth partial recursive function and {e}x denotes the eth partial recursive 
function in the real x. If Y is a set then Y is its cardinality. 

We will be working with finite sequences of integers, so let Seq be the set of finite 
sequences of 0's and l's (Seq = {s 1 3n < w [s: n -- 2])). Seq is naturally ordered by 
inclusion. If s is a sequence then ln(s) is its length (_ domain(s)). Finally, if s is a 
finite sequence then s^i is defined by 

fs(m) if m < ln(s), 

The notation used to describe the forcing constructions is as standard as possible. 
M is used to denote the ground model. P is the forcing partial order and 9 is the 
generic subset of P. M[6] is the result of extending M generically by d. If x is an 
element of M[ 3], x will denote a term in the forcing language which names x. If x is 
in M, x denotes its canonical name in the forcing language. On the other hand, if x 
is a term in the forcing language, (x)N is its realization in the model N. Unless these 
notations are necessary for clarity or emphasis, we write simply x. 

IFP denotes the forcing relation for the partial order P. When the intended partial 
order is clear IF is used. Our convention is that p ? q means the forcing condition p 
is stronger (says more) than the condition q. 

THEOREM 1. Let M I "ZFC + 2W = @ + K E CARD + cf(K) os". There is a 

cardinal-preserving generic extension M[3] of M so that: M [] I "2' = K & there is 
an upper semilattice U so that: 

(i) U = W2; 
(ii) U is locally finite (any element of U has only fintely many predecessors); 
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The model M[9] is obtained by adding K Cohen reals to M (see Cohen [3]) via a 
finite support product forcing. U is constructed in M so that there are W2 elements in 
U, each of which has a distinct uncountable behavior with respect to join in U. 
Analysis of the forcing shows that there are only w1 possible ways that a Turing 
degree in M[9] can behave with respect to the ground model. 

We have chosen Cohen forcing for its simplicity of definition and to make it easy 
for the reader to verify the standard (and hence unproven) forcing lemmata 
(Lemmas 1 and 2). The heart of the proof, however, is a simple counting argument, 
which depends on the homogeneous character of product forcing. Similar arguments 
apply to other methods of expanding the continuum via product forcing. 

DEFINITION. The Cohen forcing partia-l order. Let K be a cardinal of uncountable 
cofinality. Define PK and < by 

PK= {p:K -Seq {a<KIp(a)# 0}isfinite); 

p - q iff (Va < K) [ p(a) 2q(a)]. 

LEMMA 1 [3]. PK has the countable chain condition (ccc). 

COROLLARY. If M[ ] is a Pg-generic extension of M and M I CH then M[ ] has 
the same cardinals as M and M[ ] I "2' = K". 

LEMMA 2. If X is a set of reals in M[Q] and X = w1 in M[ 3], then there is an 
intermediate model N (M C N C M[9]) so that: 

(i) X E N; 
(ii) N is a generic extension of M by P,; 
(iii) if K > W1, then M[ 3] is a generic extension of N by P,. 

Lemma 2 is proven using an automorphism of P, from the fact that PK has the 
ccc. 

DEFINITION. The upper semilattice. Let X|, < (2 ) be W2-many distinct subsets 
of o1 in M. Let U be the upper semilattice generated by 

generators: {a) U {b, a < xl} U {c3 l B < (2); 

relations: a < ba V c,3 iff a E Xf3. 

PROPOSITION. If M and K are as in the hypothesis of Theorem 1, and 9 is Pg-generic 
over M, then 

M[t3] "(U, < )(D ,V" 

PROOF. Assume there is an embedding f: U -G 6D in M[ 4 By Lemma 2 we may 
first pass to an intermediate extension and assume that f(a) and ( f(ba) a a < W) 
are elements of M. Again invoking Lemma 2, each f(cfi) is in some extension of M 
by P<,,. Since (Lemma 1) when forcing over M, -IF "2'4 ' o1", there is in M a 
collection of terms Kt I y < Y < so that any real in a P -generic extension of M 
realizes one of the t'. In particular, W2 of the f(co) contain reals realizing some fixed 
t in some extension of M by P^,,. But then, for each such /B, there must be a p &E P 
so that for each a < , 

p IF "1(a) <1(ba) V deg(tyo) iff a E X". 

The X, are all distinct, yet P, l - o1, a contradiction. This proves Theorem 1. 



582 M. J. GROSZEK AND T. A. SLAMAN 

THEOREM 2. Let M W "ZFC + 2' = W1 + K C CARD + Cf(K) 2 wi". There is a 
cardinal-preserving generic extension of M, M[63] IF "2w= K & there is a maximal 
independent set of Turing degrees of size wl". 

In outline, the proof is as follows. First add wi mutually generic Sacks reals (see 
Sacks [10]) to M via a countable support product forcing. Their Turing degrees form 
a (maximal) independent set X. Furthermore (Lemma 6) any degree in M is below 
uncountably many degrees in X. 

Then add to this intermediate model K mutually generic Sacks reals. The resulting 
model satisfies 2@ = K and has the same cardinals as M. Also (Lemma 7) any new 
real computes any of the intermediate generic reals when joined with some ground 
model real. This shows that X remains maximal in the final model. 

The operative fact here is that the branching conditions and fusion sequences of 
Sacks forcing allow complicated reals to be coded into a condition, whence they can 
be recursively recovered by the generic. Thus a Sacks real introduces via join many 
new relations of relative computability between ground model reals. Lemmata 6 and 
7 are manifestations of this phenomenon. 

With the exception of these two, the assertions made during the course of the 
definitions and proof are standard facts about Sacks forcing, product forcing, and 
iterated forcing. The truth of the two Fusion Lemmata and the Minimality Lemma 
is easily checked. 

Most of the complexity occurs in the definition of a "P-fusion sequence for x 
To minimize this, some modifications have been made in the basic definitions: The 
definition of a "fusion sequence for P " is slightly weaker than (but essentially 
equivalent to) the usual definition. The explicit definition of the partial order P is 
not that of a two-step iteration of product forcings; however, in this case, the two 
can easily be seen to be equivalent. 

DEFINITIONS. Sacks forcing. T is a perfect tree if T is a nonempty subset of Seq, T 

is downward closed, and every element of T has incomparable extensions in T. A 

node t splits in T if t^O C T and t' 1 C T. Stem(T) is the least node which splits in T. 

The nth splitting level of T is denoted Ln(T) and defined by 

Ln(T) =t t splits in T& s C t I s splits in T n. 

T, is T above s and defined by 

Ts t C T I t C s or s C t}. 

The Sacks forcing partial order P is the set of perfect trees. P is ordered by reverse 

inclusion (p < q if p C q). 
A generic set Q c P is identified with a P-generic real G =n {T T C d . 
Say S Am Tiff S < T and Lm(S) = Lm(T). <Tn I n < ) is a fusion sequence for P 

iff for all n, Tn D Tn1+ and 

(3f: c- w)(Vm)(Vn 2 f(m))[Tn+l Am Tn]. 

LEMMA 3 (FuSION). If KTn I n < c) is a fusion sequence for P then its fusion 
T = nn<, Tn is an element of P. 
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DEFINITION. If T IF "x: w -* 2 & x t M " we can define a P-fusion sequence for x 
below T, (Tn I n < >, so that To = T; 

(Vn)[Tn+l ?n Tn & (VS E L,(Tn))(3k < W)(3i < 2) 

[(Tn+ I)s^oIlF x( k) = i & ( Tn+ l)s-I I F x( k) =# i] ]. 

(Tn I n < w) is defined by induction. Given Tn let Ln(T,n) ={SO,... SN}. Since 
To IF x 2 M, for each sj there is a kj so that (Tn)sj^o does not decide x(kj). Let 

TJ' < (Tn)sjo, SO that TJ' IF x(kj) = ij. Let TJ" (Tn)so SO that TJ" IF x(kj) #& ij. 
Define Tn+7 = UO-f<-N(Tj U TJ"). 

LEMMA 4 (MINIMALITY [10]). If T IF "x: co -> 2 & x a M" and (Tn I n < w) is a 
P-fusion sequence for x below T, then its fusion T, ? T and 

T, IF "G =U {s - T, I (Vk < w)(Vi < 2) [((Tw)sIF x(k) = i) > x(k) - i] 

The P-fusion sequence together with the associated facts about the forcing relation 
on x form a reduction procedure which can be used to compute the generic from x. 

COROLLARY. If G is P-generic over M then 

M[G] I (Vx: co -* 2) [x a M > (3z e (w2)M) [G <T (X, z)]]. 

DEFINITIONS. The forcing partial order P. P is a two-step iterated forcing, of which 
the first step is a countable support size I product of Sacks forcing (see Baum- 
gartner and Laver [1]), and the second a countable support size K product of Sacks 
forcing. Let R be defined by 

R = {r r dom(r) c1 & (Va < 1)[r(a) e P] & {a r(a) =# Seq} is countable}. 

R is ordered by r r- if and only if for all a < w, r(a) C r(a). A generic 9 C R 
defines a sequence G of mutually Sacks generic reals. (For a < WI, G(a) = 

nF{p(a) IPp e}) 
Define P by 

P = p I dom(p)= K &pr G R 

&pr OI IFR "(Va ? K - 41)[P(a) E P] 

& {a C K - OPr p1 'lWRp(a) = Seq} iscountable}. 

P is ordered by 

p ?-fiffpr w ?pt'r WI &pr co IF C"(Va E K - wo)[p(a) CA-(a)]". 

If 9 is a generic subset of P then 9 defines a generic sequence of reals G by: 
G(a) = n {p(a) |P pE 9) if a < WIl; 
Gr wI is R-generic over M so let Ml = M[G1 1]; 

G(a) nf {(p(a))M p I P e Q} for a E K - w1. 

Let M2 be M[G]. 
The support of a condition p is 

supp(p) = {a a Ia < o1 &p(a) =# Seq or a E K-(1 &pr WI'* R "p(a) - Seq"). 
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DEFINITION. K Pn I n < o ) is a fusion sequence for P if 
(i) (Va < w) [(pn(a) In < w is a fusion sequence for P] (hence p,jr w R 

whenp<,(a)= nn <w pn(a)), and 

(ii) (Va K K- 1) [pj r IF R"< Pn(a) I n < w) is a fusion sequence for P"]. 
The fusion of KPn n C w) is p,, and is defined as 

n Pn(at) if ax < co, 
n<W 

O(Pna)n (if( a M, K - 

n<W 

LEMMA 5. If K Pn I n < w ) is a fusion sequence for P then its fusion p,, is a condition 
in P. 

DEFINITION. If p IF "x: w -- 2 & x 6 M2- M, ", define a P-fusion sequence for x 

below p by 

( p, - p I s e Seq), ( a, C Seq I s E Seq), K an < K I n < ) 

satisfying: 

(I)P,IFxr ln(af) = 5a, and if s C t then a, C at andpt p5, 

(2) (Vn)(Vs 6 n 2)(Vt c n 2) 

(3m < n)[a = a, & s(m) #& t(m)] 
==p5(a) andpt (a) have incomparable stemsj 

& 
(3m < n) [ 

= a am&s(m) #t(m)] 

&L =pj(a) = pt(a)) 
& (Pr WI = ptr W1) =:Sr co IiF 

(3m < n)[a = a,,, & s(m) t(m)] 

"(Vat C K - 
WI) ==( pja) and pt( a) have incomparable stems! 

& - (3m < n)[a = am & s(m) #& t(m)] ==>p(a) = pja) 

Condition (2) says that pn = W ln(s)=n Ps is well defined by 

U ps(a) if a < 1, 
ln(s)= n 

Pn(at) 
= 

u ps(a) if a E K - W1. 

ln(s) =n, 

(3) (Va)[(3s)[a e supp(p5)] =={n I a = an} is unbounded in w]. 

Condition (3) says that K Pn I n < w ) is a fusion sequence for P, with fusion 

P, A\ W Ps. 
n<c ln(s)=n 

Thus, if a is in supp( pj,) n w 1then 

P, IF "G(a)= nps (a) 
psE G 
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If a is in supp(p,) n (K- w) then 

pl, IF "G(a) n (ps(a))MI 

peC G 

(4) If ln(s) = ln(t) = n and (3a < w1)(3m < n)[a = am & s(m) # t(m)], then a5 

and a, are incomparable. 
Condition (4) implies that 

PI IF "(Vs)[psr c E Gr w iff a5s xr ln(a5)]" 

Construction of a fusion sequence for x. Let p IF"x: o -- 2 & x C M2 -MI". 
Assume that condition (3) is satisfied by a suitable diagonalization strategy. Let 
p< >= p, a< >= K ). Inductively, suppose Kps I ln(s) = n) and K5s I ln(s) = n) have 
been constructed, and aC is given. For ln(s) = n let C4s%- c=s, 

p { ps(a), a an, 
p5i(a - 

(ps(a))stem(ps5a);j, 
a a. 

If an E K - CO then Ps-i =ps? and u^i = us9i will suffice as condition (4) only 
requires ps and pt to force different facts about x when ps- r 1 #p r and the 
splitting necessary for condition (2) has been accomplished. 

Otherwise, let {(t1, t>) 1 < 1 k} order all pairs (t, t) so that 

- (3m < n)[anm < W- & t(m) #t(m)] 
but t(n) # t(nn). Inductively (on j) construct < psJ, usJ j ln(s) = n + 1) so that this 
sequence satisfies conditions (1) and (2) as well as condition (4) for pairs (t1, t1> 
when 1 < j. 

The resulting ( psk+ , sk+' I ln(s) n + 1) will be as desired. 
Suitablep? and as have already been described, so suppose K psi, as1 j ln(s) = n + 1) 

given and describeps+i and as+'. 
Once pi+I and aJ+1 have been defined for s tj and s = tj, then define for the 

remaining s, q5I+ I = asi and 

p j+ i(a) if ps(ta) = pi(a) a < an ; 

f' 1ip/ r c I "p/(a) - 

psi(a) otherwise 

This is to say that p/'(a) is extended to agree withpp/-'(a') and/or p '(a) when necessary I sd 
necessary to satisfy condition (2).t 

t 
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It remains only to define pj+ Il p/ +I i, j+I and a+ 1. Since p IF x ( MI, 

Pi IFR (3N)[pj r (K - w1) does not decide x(N) in M,. 

That is, 

(3q ?p/)(3N )[qr (K -W1) =pjr (K -w 1) & (Vq q) 

[q r (K - WI)= q r (K - WI) 

= (Vi) [qj IF x(N) = ii]]. 

Fix q, whose existence is stated above, and define P- ? pi by 

fq(a) if a < w1 and a #a4 a, 

p(a)= pi(a) if a>cor a= a, 

ft extends pJ since we have been inductively satisfying conditions (1) and (2). That is, 
either we already have a difference forced about x by pJ and pJ (contrary to 
assumption), or p/ and pJ are identical below w1 except for a,. Choose p- ?j- and 

j+ eN+?12sothat 

IF IF sr (N + 1) =(Jqj 

Definef < q by 

-( \f= [p(a) if a<wanda#av, 
P (a) 

q(a) if a > , or a = a, 

Since p- is different from q only below w1 and p extends q, it cannot decide x(N). 
This was the feature which defined q and allows condition (4) to be satisfied. Choose 
p <+ 5 and a/t1 so that aJ /(N) # a/' (N) and pJ+ IF "xr N + 1 
Define p j+ P- by 

0pf j+ l(ac) ifact< w andact7#a,n 
f' 

{p(a) ifa Xw ora=aR 

This completes the construction. 

LEMMA 6. If p & P, z: c -* 2 is in M, and a 4 supp(p), then there is a condition 
ft ? p so that f IF "deg(z) < deg(G(a))" (where deg denotes Turing degree). 

COROLLARY. If z: w -- 2 is in M then, in M,, {a < w1 I deg(z) ? deg(G(a))} is 
unbounded in w1. 

PROOF OF LEMMA 6. Define a tree Tz in P by 

Tz {s e Seq I (Vn)[(2n < ln(s) & s(2n) i)=z(n)i]}. 

Then Tz IlF "z(n) i iff G(2n) = i ", hence Tz IF "deg(z) < deg(G)". Definep by 
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LEMMA 7. If p & P, p IF "x: c -*2 is in M2- Ml ", and a < w , then there are 

p ? p and z: w -X 2 in M so that pI F "deg(G(a)) ? deg(x) V deg(z)". 

PROOF. Choose p <? p so that a E supp(p) and K p, I s I Seq) with associated 

Kas I s E Seq) to be a P-fusion sequence for x below p. Let p = p, - 

/A\nE Win(s) = p5 be the fusion of that sequence. Then 

p- 1F "G(a) = {n 5(a) I A, = X r ln(a5)} 

Let z be a real in M which recursively codes {K p5(a), as) s E Seq}. z provides a 

reduction procedure which can be used to compute G(a) from x. 

PROPOSITION. Let M, K be as in the hypothesis of Theorem 2, G = (G(a) I < K) 

be P-generic over M. Then M[G] is a cardinal-preserving extension of M in which 

210 = K, and there is an X which has cardinality o and is a maximal independent set of 

Turing degrees. 

PROOF. Standard results on forcing show that forcing with P preserves cardinali- 

ties and cofinalities, Ml T O = " and M2 IF "2 K". 

The G( a) for a < 1 are mutually generic so their Turing degrees form an 

independent set. Let X be a maximal independent set of Turing degrees in M, 

containing {deg(G(a)) a <w )}. (In fact, by another fusion argument, X- 

{deg(G(a)) a a < o}, but this is not crucial here.) X = w since X C MI. 
X remains maximal in M2, for suppose x is a real in M2- Ml . By Lemma 7, for 

some real z E M, deg(G(O)) < deg(x) V deg(z). By Lemma 6, there is an a < o so 

that a # 0, deg(z) < deg(G(a)). Thus deg(G(O)) < deg(x) V deg(G(a)), showing 

that deg(x) cannot be added to X without destroying independence. 
This proves Theorem 2. 
Further remarks; open questions. As was previously mentioned, Sacks conjectured 

in [9] that: If A is a locally countable partial order of size at most continuum, then 

A -- 6D. His results show that the conjecture follows from CH; the same methods 

extend to show that Martin's Axiom (MA) also implies the conjecture. Proving the 

conjecture from ZFC remains an open problem. Theorem 2 places a limitation on 

possible methods of proof since it implies that an embedding of a size X l suborder of 

A may not extend to an embedding of A. 
Theorem 1 shows that it is not always the case that all locally countable upper 

semilattices of size at most continuum are embeddable in 6D. We conjecture (with 

some confidence) that this is the case under MA. A further question: assuming MA, 

can any such upper semilattice be embedded as an initial segment of 6D? 
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