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A natural generalization of Cohen’s set of forcing conditions (the two-
valued functions with domain a finite subset of w) is the set of two-
valued functions with domain an element of an ideal J on w. The prob-
lem treated in this paper is to determine when such forcing yields a ge-
neric real of minimal degree of constructibility.

A simple decomposition argument shows that the non-maximality of
J imelies the non-minimality of the generic real which is obtained. In
§3 and 4 we look at the case J is maximal and we show that the mini-
mality of the generic real depends on a combinatorial property of J.

In fact the minimality result uses the notion of T-ideal and the non-
minimality result that of selective ultrafilter (a notion studied in Booth
[11). These notions are generalized to the case of non-maximal ideals
and shown to be equivalent in § 1. A short study of them is also made
in §2 and in the appendix.

The notion of ™ideal, without any hypothesis of maximality, is used
in § 5 where we generalize Silver’s set of forcing conditions (described
in Mathias [3] p. 4). In fact Silver’s forcing is related to the above in
the following way: first force to get a maximal ideal, which is shown to
be a T-ideal, and then force with this ideal in the above manner.

¥ would like to thark J.L. Krivine for simplifying many proofs in
this work.

* Received in final form March 1, 1971,
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§1. Combinatorics and ideals

Throughout this paper an ideal on «w will mean an ideal containing
the ideal of finite subsets and a filter will mean a filter containing the
filter of cofinite subsets. We use for them the lettersJ and F.

J and F are said to be dual if F is the set of complements of the sub-
sets which lie in J.

We write Seq(w) for the set of finite sequences of integers, s* 1 for
the concatenation of two sequences s and ¢, th(s) for the iength of s, and
(n) for the sequence of length one defined by the integer n.

We put on Seq(w) the extension ordering: s is greater than ¢ if Th(s)
is greater than 1h(z) and the restriction of s to Ih(¢) is 7.

Definition 1.1. i) 4 is a iree if 4 is a subset of Seq(w) and any prede-
cessor of an element of 4 is in A. (So the empty sequence is in any tree.)
ii) If s is in the tree A the ramification of 4 at s is the set of integers

n such that sx(n) isin A.
iii) A furiction H from w into w is a branch of the tree A4 if for every
k the sequeace (H(0), ..., (k) isin A.

Definition 1.2. i) A is a J~tree if no ramification of A isin J.
ii) A is a ctrong J-tree if no finite intersection of ramifications of 4 is
inJ.
iii) A is a J-branch of the tree A4 if it is a branch with range not in J.
iv) J is a T -ideal if every J-tree has a J-branch.
v) J is a weak 7-ideal if every strong J-tree has a J-branch.

Any T-ideal is a weak T-ideal. In case J is maximal the two notions
coincide since then any J-tree is a strong J-tree.

Proposition 1.3. The ideal of finite subsets of a T-ideal.

Proposition 1.4. If J is a T-ideal (resp. a weak T-ideal) and if J' ic count-
ably generated over J then J' is also a T-ideal (resp. a weak T-ideal).

Proof. Let (x,), » in w, be a basis of J' over J: i.e. a subset of w is in J’
if and only if it is included in the union of an x,, and an element of J.
We can suppose that the x,, are increasing.
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Let A’ be a J'-tree; define A as follows: a sequence (ng, ..., #;) is in
A if and only if it is an A’ and ,for each j, n; is not in x;. Clearly 4 is a
tree. A ramification of A4 is the difference of a ramification of 4’ with
an x,,, 30 it is not in J and A is a J-tree. Let H be a J-branch of 4; since
its range has at most n points in x,, it is aJ'-branch. Since 4 is included
in A', H is aJ'-branch of A'. This shows that J' is a T-ideal.

Corollary 1.5. Every countably generated ideal is a T-ideal.

Definition 1.6. A partition of w is a J-partition if no finite union of
elements of the partition is in the dual F of J.

Definition 1.7. J is selective if for every J-partition there exists a subset
of w which is not in J and meets each element of the partition at one
point at most. Such a subset is called a selector for the given partition.

Definition 1.8. J is p-point if for every Jpartition there exists a subset
of w which is not in J and which meets each element of the partition
at a finite number of points.

Proposition 1.9. J is p-point if and only if for every decreasing sequence
(x,,), nin w, of subsets ¢f w which are not in J there exists a subset x,
not in J, such that x—x, is jinite for each n.

Proof. It suffices to consider the partition defined by y¢ = w — x and
Va1 =X, — X, Which is a J-partition.

Proposition 1.10. If J is a weak T-ideal then J is a selective ideal.

Proof. Let (x,,), n in w, be a J-partition. Define a tree 4: s is in A4 if and
only if s meets each x,, at one point at most. A is a strong J-tree, taking
aJ-branch of 4 we get a selector for the partition which is not in J.

Definition 1.11. F is inductive if for every decreasing sequence (x,,),
in w, of subsets of w which are not in J, there exists a strictly increas-
ing function / from w into w, with range not in J, such that H(n+1) is
in xg () for each n.
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Proposition 1.12. If J is a selective ideal then J is inductive.

Proof. The following is a slight modification of a proof due to Kunen
which gives the proposition in the case J is a maximal ideal (see Booth
tih.

Let (x,), n in w, be a decreasing sequence of subsets not in J.

As J is selective it is p-point and so (Prop. 1.9) there is an x, not in J,
such that x — x,, is finite for each n. Define a function g from w into w:
g(n) is the greatest element of x — x,,. Thus if m is greater than g(n) and
ifmisinx thenmisinx,.

Let g0(0) be 0 and gP*1 (0) be g(gP (0)).

If @ and b are such that for an integerp a < gP(0) < gP*1(0)< b

then b is in x and contains x is in x,,.
hen b is P 0)’ ,asx, conta gp(o),bISIH 2

Consider the partition of w defined by w—x and the intersections of
x with the intervals 1g27(0), g27*2(0)]. It is a J-partition, take a selector
not in J and let @, be the point of it which is in 1g27(0), g2¢*2(0)].

Put on the set of ap,p in w, the following equivalence relation: a, i
equivalent to a,, if the interval [a,, a,,, ] is included in the interval
1g2p*1(0), g27*3(0)]. Clearly the equivalence classes have at most two
elements,

These equivalence classes d>fine with the complement of the set
{ap : p in w} aJ-partition. Take a selector not in J and let H(n) be its
n-th point which is in an equivalence class.

As between H(n+1) and H(n) there is an interval 1g?(0), gP*1(0)],
H(n+1) is in xp;(,,. Hence H is the desired function.

Proposition 1.13. If J is inductive and if (x,), s in Seq(w), is a family of
subsets of w such that no finite intersection of them is in J, there is ¢
strictly increasing function H from w into w with range not in 7 such
that H(n) is in x,, for each n.

Proof. By the finite intersection property we can suppose that if s and ¢
are sequences such that lh(s) is less than Ih(¢) and sup(s) is less than
sup(¢) (where sup denotes the greatest element of a sequence) then x;
is included in x,.

Let s, be the sequence of length n+1 with constant value n and let
y, be X, - Using the hypothesis that J is inductive, take a strictly in-
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creasing function H from w into w, with range not in J, such that
H(n+1)is in yy, for each n. Note that we can suppose that H(0) is
inx,.

As (H(0), ..., H(n)) has length n+1 and its sup is H(n), while sz,

has length H(n)+1 and its sup is H(n), £ (), ..., ey cONtAINS Xg ) and
so H(n+1) is in x q), ..., Heny)- Hence H(n) is in xy,,, for each n.

Proposition 1.14. If J is an inductive ideal then J is a weak T-ideal.

Proof. Let A be a strong J-tree.

Let s be a finite sequence of integers, if s is in 4 we let x; be the ra-
mification of 4 at s and if s is not in 4 we let x; be w.

We can apply 1.13 to the family (x,), s in Seq(w): take a function H
with range not in J such that H(n+1) is in x4, for each n. We show
inductively that H is a branch of 4. If HMk is in A then H (k) is in the
ramification of A at Hl'k and so Hl'k+1 is in A.

As the range of H is not inJ, H is a J-branch of A.

Corollary 1.15. If J is an ideal then the foilowing are equivalent:
i) J is a weak T-ideal

ii) J is selective

iii) J is inductive

Recall the usual definition of a selective ultrafilter: an ultrafilter F is
selective if for every partition of w by elemer:ts of the dual J of /7 there
is a selector in F.

Clearly the ultrafilter F is selective just in case its dual is.

Corollary 1.16. An ultrafilter F is selective if and only if it its dual is a
T-ideal.
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§ 2. Getting maximal T-ideals

Consider on 2« the equivalence relation of equality except on a set
inJ. Let 2« /J be the quotient set. We put on it the ordering induced by
the reverse inclusion ordering on 2« so that it becomes a boolean alge-
bra whose zeru-element is the dual of J.

We say that 2« /' satisfies the condition of decreasing sequences
(written c.d.s.) if every decreasing sequence of non-zero elements has a
non-zero lower bounc. Such 1 lower bound is called a minorant.

Definition 2.1. J satisfies the c.d.s. if 2« /J satisfies the c.d.s. We also
say that J is c.d.s.

Clearly J is c.d.s. if for every increasing sequence (x,,), n in w, of
subsets not in the dual F of J there is an x, not in F, such that x, —x
is in J for each n. Passing to the complement we get:

Proposition 2.2. J is c.d.s. if for every decreasing sequence (x,), n in w,
of subsets not in J there is an x, not in J, such that x —x,, is in J for
each n.

Using Froposition 1.9 we get:

Proposition 2.3. If J is p-point then J is c.d.s. Hence any weak T-ideal
iscd.s.

Remark: any maximal ideal is c.d.s.

Proposition 2.4. J is c.d.s. if and only if every ideal countahly generated
over J is included in an ideal one-generated over J.

Let M be a transitive model of ZF.

If J is an ideal in M we let ¢ be the canonical surjection from 2« onto
2w [J,

If G is 2« /J-generic over M (we make no difference, when writing,
between the boolean algebra 2« [J and the set of forcing conditions ob-
tained by deleting the zero-element) we let J* = ¢~1(G). Clearly
MIG) =M[J*].
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If x and y are disjoint subsets of w, lying in M, with union w, then
exactly one of them is in J exactly one of c(x) and c¢(y) isin G a3
they are complements in the boolean algebra 2« /J,

If J is c.d.s. then 2« [J satisfies the c.d.s. and so every countable set
in M{G] which is included in M is in M. Hence M and M{J*] have the
same subsets of w. Thus J* is in M[{J*] a maximal ideal on w (extend-
ing the ideal J). Also note that a countable subset of G always has a mi-
norant in G.

Theorem 2.5. If J is a weak T-ideal then J* is a maximal T-ideal in
MIJ*] which extends the ideal J.

Proof. If J is a weak T-ideal then J is c.d.s. (Prop. 2.3)and soJ* is a
maximal ideal contain:ng J.

Let A be a J*-tree in M[J*]; as a countable set inciuded in M, A is in
M. If s isin A let x, be the ramification of 4 ats. 4 being a J-tree, for
every s in A, c(w—x,) is in G. The countable family ¢ {w—Xx,),sin 4,
of elements of G is bounded below an element p = ¢(x) which is in G.
The ideal J(p) generated by J and x is proper and its dual contains each
x;,5in 4. Let g = c(y) be a minorant of p in 2« /J, and let J(q) be the
ideal generated by J and y. J(q) is one generated over J so (Prop. 1.4)
it is a wenk T-ideal. A has its ramifications in the dual of J(p), hence in
the dual of J(g) and so it is a stror.g Jig)-tree. Let H be a J(g)-branch
of A with range z. As z is not in J(g) there is a non-zero minorant r of
q and c(w-z). This condition # (weakly) forces “4 has a J* branch,”
for if G' is gencric and contains r then w—z isin (J')* and so H is a
(J')y*-branch of 4.

Thus we have shown that the set of conditions which force “4 has a
J* branch” is dense below p. As p is in G this set meets G and so the
sentence is true in M[G].

Theorem 2.5 gives a way to get maximal T-ideals extending a weak
T-ideal. In the following we show that we can directly within M get
maximal extensions of a weak T-icleal which are 7T-ideals.

Lemma 2.6. If J is a weak T-ideal and if there is a maxinal ideal one-
generated over J, this maximc! extension is a T-ideal.
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Theorem 2.7. Assummg the continuum hypothesis ( wrztten (‘H) ifJis
a weak T-ideal with no maximal one-extension then there are 2™ 1 maxi-
mal T-ideals extending J.

Proof. Note that J is c.d.s. and so every ideal countably generated over
J is included in a one-extension of J and hence is not maximal.

Using CH we can put well-orderings of type 8&; on the power set of
w and on the set of trees. 'ixing such orderings we can speak of “the
first subset of w such that ...”” and of “‘the first tree such that ...”.

Let f be a function from R, into 2, we are going to associate to fa
maximal T-ideal J *(f) extending J. J *(f) will be the union of an increas-
ing sequence of 8, proper ideals, each being countably generated over J.

We define the sequence by induction. J, (f) is J. If « is limit then
J,(f) is the union of the J,;(f), 8 less than a. Suppose J,,(f) is defined.
Let A (/) be the first tree with all ramifications in the dual of J (/)
which has not been considered earlier in the construction of the se-
quence. AsJ (f) is countably generated over J it is a weak T-ideal, so
A being a strongJ (f)-tree has aJ_(f)-branch. Let x( f) be the first sub-
set of w which is the range of aJ, ( f-branch of 4 ( f) The ideal E,(N
generated by J,(f) and w—x_( f) is not maximal since it is countably
generated over J, let y ,(f) be the first subset of w which is neither in
E_(f) nor its dual. Let z,(f) be y,(f) if f(0) = 0 and w — x,(f) if not.
We define J ,; (f) to be the ideal generated by E(f) and z,(f).

Show J*(f) is maximal. If it is not ley ¥ be the first subset of w which
is neither in J*(f) not in its dual. For every « in ¥, y is neither in E_(f)
nor its dual, so y_(f) is before y in the well-ordering of type ¥, on the
power set of w, but the y (/) are all different and uncountably many
while the rank of y is countable, hence a contradiction.

Show J*(f) is a T-ideal. It it is not let A be the first J*(f)-tree with
no J *(f)-branch. A has its ramifications in the dual of J*(f), as they are
countably many there is an « less than 8, such that they are inJ (/).
This implies that the A;, @« < < Ny, are before A in the well-ordering
of type Ry on the set of trees, but the 4 are all different and uncount-
ably many while A is of countable rank, hence a contradiction.

If f and g are different functions from 8, into 2, let a be the first or-
dinal at which they differ. It is clear that z_(f) is the complement of
z,(g),soJ *(f) is different of J*(g).

Hence the 21 maximal T-ideals exterding J.
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Remark: the hypothesis in 2.7 that no one-extension of J is maximal
cannot be dropped (using the fact that the sum of two T-ideals is a 7-
ideal, it suffices to consider the sum of two maximal T-ideals).

As a countably generated ideal is not maximal we have the following
theorem (see Booth [1]):

Corollary 2.8. Assuming CH, there are 2™ maximal selective ideals ex-
tending a couniably generated ideal.
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§3. Non-minimality results
Let M be a transitive model of ZF.,

Definition 3.1. A real g is minimal over M if g is not in M and every real
finM{g] is in M or.reconstructs g (i.e. g is in M[ f]).

If J is an ideal on w belonging to M, let C(J) be the set of two-valued
functions defined on an element of J, We put on C(J) the reverse inclusion
ordering (thus p < g means p extends g), to obtain a collection of con-
ditions.

If G is C(J)-generic over M, G defines a real g: g(n) = 0 if and only if
{(n, 0)} isin G. As G is the set of restrictions of g to elements of J it is
clear that M[G] = M| g].

Definition 3.2. A real associatec to a C'(J)-generic over M is called a
J-Cohen real over M.

Note that since J contains the finite subsets of w a J-Cohen real over
M is notin M.

Proposition 3.3. If J is not maximal in M then a J-Cohen real over M is
not minimal over M.

Proof. Let x be non-measured by J, define C(J)(x) to be the set of ele-
ments of C(J) whose domains are included in x. Then the C(J)-forcing
is the forcing over the product of C(J)(x) by C(/}w—x) and M{g] =
M[gtx1igtw—x]. So by the previous remark and the fact that x and
w—Xx are both necessarily infinite, it follows that C(J)(x) and
C(J)(w~x) are of the same type as C(J). Hence M is properly included
in M[g"x} which is itself properly included in M{g].

Before stating a result in the case J is maximal, we recall a general re-
sult on forcing (Krivine [2]).
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Definition 3.4. iIf C and D are ordered sets, an increasing funcuon T
from C into D is said to be normal if its range is dense in D and for
every p in C the image of C/p (the minorants of p in C) by T is dense
below T'(p) in D.

Proposition 3.5. If G is C-generic over M and T is a normal function
from Cinto D, then the set sup(T(G)) of elements of D greater than an
element of T(G) is D-generic over M and G is T-1(sup(T (G )))-generic
over Msup(T(G))].

On the two-valued functions on a set x we can define the equ'valence
relation of equality modulo a finite set. We denote the set of equivalence
classes by 2* /fin.

AC' is the axiom asserting the existence of a set of representatives for
2w [fin.

Theorem 3.6. If M satisfies AC' and if J is a maximal ideal on w whose
dual is not selective then a J-Cohen real over M is not minimal over M.

Proof. First note that given a set of representatives for 2« /fin we get
one canonically for 2% /fin if x is an infinite subset of w. If x is finite
then 2* /fin has one element and we can take the zero-function as a re-
presentative.

In M let (x,,), n in w, be a partition of w in elements of J such that if
x meets each x,, in at most one point then x isin J.

By AC' and the preceding remark we can get a family (h; ) of repre-
sentatives for the elements of the union of the 2*7 /fin, 7 in w.

With this family we define a two-valued function L on the uaion of
the 2°7, n in w, as follows: L () = 0 if and only if, 4 being in 2*7 and
h; , being its representative, k differs from A; , on a finite odd number
of points.

Let K be the maximal ideal defined as follows: a subset u of w is in
K if the union of the x,,, n in u, is in J. Define a function 7 from C(/)
into C(K): n is in the domain of T(p) if the domain of p contains x,,
and then 7'(p)(n) = L (ptx, ) where p! x means the restriction of p to x.
T is clearly surjective and increasing. Let us show it is a normal func-
tion. If, in C(K), d is an extension of T'(p), p in C(J), then for each n in
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the domain of d either # is in the domain of T(p) and so p is defined on
the whole of x,, and hence for every extension g of p we have L(¢l'x,)=
L(ptx,)=d(n), or n is not in the domair of T'(p) and sc p is not defin-
ed on the whole of x,, and there is an extension p, of p to x, such that
L(p, 'x,) =d(n). Take q to be the union of p and the p,,, n in the do-
main of d and not in the domain of 7(p); q is an extansion of p, g is in
C(J) by the definition of K, and 7(q) extends d. Thus T is normal.

Now let g be J-Cohen over M, associated to the C'(/)-generic G. Ap-
plying 3.5 we see that T(G) is C(K)-generic over M; its associated real
is f: f(n) = 0if and only if L(glx, ) = G. Thus fis a real ir M[g] not in
M. Moreover G is E-generic over M[f] where E = T-1(T(G)) is the set
of p in C(J) such that if the domain of p contains x,, then L(plx,) =
f(n).

Let X be the set of p in E that are incompatible with an element of
G. Let us show that X is dense in E. Given p in E, by the hypothesis on
the partition (x,,), 7 in w, there is an » such that in x,, 1t '=ast two
points are not in the domain of p, say a and b. Let g be the extension
of p to the point a such that g(a) is different from g(a). This ¢ is always
in E since g is aot defined at b and so T'(g) = T(p).

X being dense in £, G can not be in M[f] for then X would be in
MIUf] (=M{T(G)]) and so would meet G which is impossible. Hence f
does not reconstruct g and this shows the non-minimality of g over M.
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§4. Minimality results

Let DC’ be the axiom of dependent choices restricted to sets of car-
dinality less than that of the continuum. :
The purpose of this section is to prove the following theorem:

Theorem 4.1. If M satisfies DC' and if J is a maximal T-ideal in M, then
a J-Cohen real over M is minimal over M (sze def. 3.1 and 3.2).

The proof is a direct one. We take a./-Cohen g associated to G, C{J)-
generic over M, and a real fin M[g] and we show that either fisin M or
f reconstructs g.

Let 7 be a denotation for f in the forcing language. We make no dis-
tinction between an element x of M and its notation as an element of
Migl.

All the definitions that follow make use of f and the forcing relation,
so they take place in M.

Definition 4.2. Two elements p and q of C(J) are said to be f~compatible
if for no integer »n, p forces f (n) = a and g forces f{n) = b where a and b
are distinct elements of 2.

Remark 4.3. Let p’ be a mimorant of p and ¢’ one of q, if p and q are
f -incompatiblz (i.e. not f -compatibie) then so are p' and q’.

If n is an integer not in the domain of a condition p and if a is in 2,
we write (p, (n, a)) for the extension of p defined where p is and at n,
where its value is a.

Similarly if s is a finite sequence, with length k&, of distinct integers
not in the domain of p and if i is a two-valued sequence with the same
length k, we write {(p, (s, i)) for the extension of p defined where p is
and at the integers occuring in s, with vaiue i(n) at s(n).

Definition 4.4. An integer n is f -indifferznt to a condition p (written
n1p) if n is not in the domain of p and for every extension g of p, ei-
ther n is in the domain of q or (g, (n, 0)) and (q, (#, 1)) are f~compatible.
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Roughly speaking, » is indifferent to p if below p 1 is of no use to
know the interpretation of f.

Remark 4.5. If n is not in the domain of ¢ and g extendsp andn/lp
thenn / q.

Let p be a condition, two disjoint cases are possible:
either i) Ag<p)(Vr<qg)V¥n not(nlr)
or ii) Vg<p)(3Ar<gqg)3n(nlr)

The following lemmas deal with the two cases. Their proofs wili be
given later.

Lemma 4.6. If M satisfies DC', if J is a T-ideal and p satisfies i) then
there is an extension q of p and a strictly increasing function H from w
into w, with range the complement of the domain of q such that for
every integer k and every two-valued sequence i with length k the two
conditions (q, (HVk, i), (H(k), 0)) and (q, (Hk, i), (H(k), 1)) are f-in-
conpatible.

Lemma 4.7. If M satisfies DC', if J is a T-ideal and p satisfies ii) then
there is an extension q of p which decides f (n) for each integer n.

Proposition 4.8. If g is as in Lemma 4.6 and q is in G then f reconstructs
g ie gisinMLf].

Proof. Define a real g’ in M[ f]: on the domain of ¢ g’ is just ¢, and on
the range of H we define g’ by the following induction.

Suppose g’ is defined on H'k (i.e. on the integers occuring in the
sequence Hk), then (q, (H'k, g' T Hk)), (H(k), 0)) and
(g, (H Kk, g' M (HYK)), (H(k), 1)) speak differently about f(r) for an in-
teger n. Take the first such n and choose g'(H (k) such that
(q, (Hk, g't(HIK)), (H(K), g'(H (F)))) forces f(n) = f(n).

As ¢ is in G and as the interpretation of fin M[G] is just f, se see in-
ductively that {(H(k), g'(H(k)))} isin G. Hence g’ =g and so g is in
MIf1.
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Proposition 4.9. [f g isasin Lemma 4.7 and q isin G then f is in M.

The proof of Theorem 4.1 is now easy. Let D be the set of conditions
g as in Lemmas 4.6 and 4.7. These lemmas just show that D is dense in
C({J). As D is in M it meets G; applying the two preceding propositions
we deduce that fis in M or that f reconstructs g.

We now turn to the proofs of Lemmas 4.6 and 4.7.

Proposition 4.1C. Let s be a sequence of distinct integers all different
from the integer n and let p be a condition which has neither n nor the
integers in s in its domain. If n is indifferent to no extension q of p then
there exists an extension q of p which has reither n nor the integers ins
in its domain and such that for every two-valued sequence i with the
same length as s the two conditions (g, (s, i), (n, 0)) and (g, (s, i), (n, 1))
are f-incompatible.

Prcof. Let iy, ..., i, be the different two-valued sequences with the same
length as s.

We define an increasing sequence g, ..., g, of extensions of p, which
have neither # nor the integers of s in their domain, by the following in-
duction.

By the hypothesis on n and p, n is not indifferent to the extension
(p, (s, iy)) of p, hence there is an extension g, of p such that
(g, (5, ig), (n, 0)) and (qy. (5, iy), (n, 1)) are f-incompatible. If g,_, is
defined, then n is not indifferent to the extension (q,_y, (s, f,)) of p, so
there is an extension g, of g, _; such that(q,, (s,i,), (n, 0)) and
4y, (s, i), (n, 1)} are f -incompatible.

Using remark 4 3 we see that g, is such that for every two-valued se-
quence i with the same length as s the two conditions (g,, (s, i), (n, 0))
and (q;, (s, i), (n, 1 )) are f -incompatible. Hence q, is the desired q.

Proof of Lemma 4.6. Let p, be an extension of » such that no exten
sion of p, has an ‘ndifferent point (such a Do exists by the hypothesis
on p). .

We define by induction a J-tree 4 and a decreasing function Q from
A into C(J) such shat the integers of any sequence s in A are all distinct
and not in the domamn of Q(s).
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The empty sequence is in A and its image by Q is p,. Let s bein 4,
we put sx(n) in A if » is different of the integers in s and not in the do-
main of Q(s). As Q(5) is an extension of p,, it has no extension with an
indifferent point. Applying 4.10 (with s, n and Q(s)) we see that there
exists an extension g of Q(s) such that for any two-valued sequence 7,
with the same length as s, the two conditions (g, (s, i), (n, 0)) and
(g, (s, 1), (n, 1)) are f-incompatible. We take such a g as Q(s+(n)).

One can see that the construction of 4 can be done assuming only
DC'.

It is clear that A is a J-tree. Use the hypothesis that J is a T-ideal to
take a J-branch ,7 of A.

The sequence Q(H k), k in w, is decreasing and for each & the inte-
gers in H! k are not in the domain of Q(H! k). Hence if we let ¢’ be the
union of the Q(Hk), k in w, g’ is a two-valued function whose domain
is disjoint from the range of H. As H is a J-branch its range is notin J
and ¢’ is an element of C(J).

Let ¢ be an extension of ¢' with domain just the complement of the
range of H. Using Remark 4.3 and the fact that g extends Q(H! k) for
every k, it is clear that for any two-valued sequence i, with length &, the
two conditions (g, (H!k, i), (H(k), 0)) and (g, (Htk, i), (H(k), 1)) are
f-incompatible. Hence g and H are the desired ones.

Proposition 4.11. Let s be a sequence of k distinct integers which are
indifferent to a condition p: then for every extension q of p and two-
valued sequences i and i’ with length k the two conditions (q, (s, i)) and
{q, (s, i")) are f-compatible.

Proof. We proceed by induction on k. The case k = 0 is clear. Suppose
the property true for k, we show it is true for k+1.

Suppose that, for an integer n, (g, (s, i)) and (g, (s, i")) decide f (n);
we shall show that tbey make the same decision. Let r be an extension
of ¢ which has not the integers of s in its domain and such that
(r, (stk, iV k), (s(k), i'(k))) decides f (n). As s(k) is indifferent to p and
r extends p, s(k) is indifferent to r, and so (r, (s, i)) and
(r, Mk, it k), (s(k), i'(k))) are f -compatible. The two decide f (n), so
they make the same decision. Now if we put r and (s(k), i'(k)) together,
we can apply the induction hypothesis on & to see that (r, (s,i')) and
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(r, (stk, it k), (s (k), i'(k))) are f-compatible. The two decide f (n), so
they make the same decision. Hence (r, (s, i)) and (7, (s, i")) decide fm
in the same way, and so do (q, (s, )} and (g, (s, i")). This shows the in-
duction step.

Proposition 4.12. Let s be a sequence of distinct integers indi/ferent to
a condition p, and let q be an extension of p such that the iniegers of s
are in the domain of q. If q' is the condition obtained from g by delet-
ing the integers of s from the domain, then

a) If q decides f(m) then q' also decides f (m).

b) If the integer n is indifferent to q then n is also indifferent to q'.

Proof. a) As g' extends p, the integers of s are indifferent to ¢ .

Applying Prop. 4.11, we see that every extension of ¢’ is f-compat-
ible with g, so every extension of ¢’ which decides F(m) makes this de-
cision as g does. Hence ¢’ does decide f(m), and this in the same direc-
tion as q.

b) To prove that n is indifferent to ¢', we show that for every exten-
sion r of ¢' which has neither # nor the integers of s in its domain and
for every two-valued sequence i witt. the same length as s, if
(r, (s, 1), (n, 0)) and (7, (s, i), (n, 1)) both decide f (m), m any integer,
they do it in the same direction. Let »" be an extension of (r, (s, gls))
which decides f (m). As (r, (s, g''s)) excends g, n is indi‘ferent to r'; ap-
plying a) we can suppose that n is nouv in the domain of r’. Applying
Prop. 4.11, we see that r' is f -compatible with both (7, (s, ), (n, 0)) and
(r, (s, i), (11, 1), so that these two conditions decide f () in the same
direction.

Proposition 4.13. Let p be such that it is dense below p to have an in-
differeni point (condition ii)). If & is a sequence of distinct integers in-
different to p then, for every integer m, the set of n which are indiffe-
rent to an extension r of p, r deciding f (m) and the integers of s not in
the domain of r, is not in J.

Proof. Let g be an extension of p deciding f (m), using Prop. 4.12 we
can suppose that the integers of s are not in the domain of g. We prove
that the set X of the integers n which are indifferent to an extensionr
of g, the integers of s not in the domain of r, is not in J.
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Suppose not. Note that the integers of s are in X. Let r be an exten-
sion of ¢ whose domain contains X, such an r exists since X is in J.
Prop. 4.12 and the fact that the integers of s are in the domain of r im-
plies that no extension of r has an indifferent point, contradicting the
hypothesis of density below p.

Proof of Lemma 4.7. We define inductively a J-tree A and a decreasing
function Q from A into C(J) such that if s is in A with length & the in-
tegers of s are indifferent to Q(s) and Q(s) decides f up to k.

The empty sequence is in A anc its image by Q is the given condition
p. If s is in A with length k, we put s=(n) in 4 if n is indifferent to an
extension r of Q(s) which decides 7 (k) and which has not the integers
of 5 in its domain, and we let Q(s*(n)) be such an r.

One cani show that the construction of A can be done assuming only
DC'.

Prop. 4.13 shows that A4 is a J-tree. Use the hypothesis that J is a 7-
ideal to take a J-branch H of A.

Let g be the union of the Q(H k), k in w. As the integers oif HI'k are
indifferent to Q(H1k), they are not in its domain, so the range of H is
disjoint from the domain of q. Thus ¢ is in C(J), it extends p and for
each k it dacides f (k).

Hence the proof of Theorem 4.1 is now complete.

Remark 4.14. Theorem 4.1 can be strengthened. Let J be a maximal T-
ideal in M and g a J-Cohen over M. If fis in M[g] a function from w
into M then either f is in M or f reconstructs g.

Proof. Take X in M containing the range of f. Replace in definition 4.2
the condition “a, b in 2 by “a, b in X”’. The proof works in the same
way.

Remark 4.15. The m. nimality result implies the nonexistence of Cohen
reals (J-Cohen reals, where Jj is the ideal of finite subsets of w), hence
the non-denumerability of the continuum of M in M| g]. In particular if
M satisfies the continuum hypothesis then M and M[g] have the same
cardinals. In this last case we can replace in the preceding remark the
condition “f is a function from ¢» into M’ by “f is a countable set in-
cludled in M’ (provided that M satisfies the axiom of choice).
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To prove this Iast statement let «# be a bijection in M between an or-
dinal and a set which contains f, clearly M[f] = M[u~1(f)];if « is the
order type of u~1(f) we can form a bijection v from « onto f such that
M(f] =M{v]. I:. M[g] a is countable as is f; if 4 and M{g] have the
same cardinals « is also countable in M and there is a bijection 7 from w
onto f such that [ f] =M[t]. Now it suffices to apply 4.14.

Getting Theorems 4.1, 3.6, and 1.15 together gives:

Theorem 4.16. If M is a model of ZFC then a J-Cohen real over M is
minimal over M if and only if J is a maximal T-ideal.
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§5. Generalized Silver’s forcing

In this section, it is understood that M is a model of ZF + DC!
Recall that if J is c.d.s. (Def. 2.1) then a set which is 2« [J-generic
over M is the image by ¢ (the canonical surjection from 2« onto 2« /J)
of a maximal ideal J* extending J. Moreover a countable set in M[J*]

which is included in M is in M.

In M[J*] we can define C(J*). Let g be a J*-Cohen real over M[J*].
Clearly a subset x of w is in J* if and only ig gl x is in M[J*]; butglx
is in M[J*] if and only if it is in M, so J* is M-definable from g and
hence M[J*][g] =M[g]. We say that g is obtained by double forcing
from J over M. §

If F is the dual of J, we let S(J) be the set of two-valued functions
defined on a subset of w which is not in F, and we put on it the reverse
inclusion ordering.

If G is S (J)-generic over M, G defines a real g: g(n) = 0 if and only if
{(n, 0)} is in G. As G is the set of restrictions of g which are in M, it is
clear that M[G) =Ml g].

Definition 5.1. A real associated to an S (J)-generic over M is called a
J-Silver real over M.

Remark 5.2. If J is the ideal of finite subsets of w, S(J) is Silver’s set of
forcing conditions which is described in Mathias [3]. If J is maximal
then C(J) = S(J) and the notions of J-Cohen and J-Silver reals coincide.

Theorem 5.3. If J is c.d.s. the double forcing from J coincides with the
J-Silver forcing, i.e. a J-Silver real over M can be obtained by double
forcing from J over M and conversely.

Proof. We define a function from S(J) into 2« /J: T(p) = c(domain(p)).
T is clearly a normal function (def. 4.3).

Let g be a J-Silver real over M associated to the S(/)-generic G. Ap-
plying 3.5 we deduce that T(G) is 2« /J-generic over M; let J* be the
maximal ideal associated to 7(G), then M[T(G)] = M{J*]. Moreover
G is T-1(T(G))-generic over M[J*], but T-1(T(G) is just C(J*). Hence
g is obtained by double forcing from J over M.
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Conversely let g be a real obtained by double forcing: g is associated
to G which is C(J*)-generic over M[J*]. To show that g is a J-Silver real
we have to show that G is S(J)-generic over M; i.e that G meets each
dense subset D of S(J) which lies in M. As G is C(J*)-generic over
MIJ*], it suffices to show that the intersection of D with C(J*) is dense
in C(J*). Let p be an element of C(J*). If D/p is the set of minorants of
p in D, D/p is dense below p in S(J); so T(D/p) is dense below T'(p) in
2w [J. As T(p) is in ¢ (J*), T(D/p) meets c(J*); hence there is ag in D/p
whose domain is in J*. This shows that the intersection of D with C(J*)
is dense in C(J*). Thus g is a J-Silver real over M.

Remark. Suppose that J is a c.d.s. ideal in M and that, in the double
forcing, J* is a maximal T-ideal ir. M[J*]. Then by Theorem 4.1, the
real g obtained is minimal over M[J*1. In the following theorem we
verify that g is in fact minimal over M.

Theorem 5.4. Suppose that M satisfies DC' and that J is a c.d.s. ideal in
M. If in the double forcing the extension J* of J is a maximal T-ideal
then the real g which is obtained is minimal over M.

Proof. Let f be a real in M[g] which is not in M. Then f is not in M[J*].
Reasoning in M[J*], Theorem 4.6 and the proof of 4.1 show the exis-
tence of a condition p in G (the C(J*) -generic giving g) and an increas-
ing injective function H from w into w, with range the complement of
the domain of p, such that for every integer k£ and every two-valued se-
quence { with length k there are distinct @, b in 2 and an integer m such
that (p, (H'k, i), (H(k), 0)) forces f (m) = a, and (p, (H'k, i), (H(k), 1))
forces f (m) = b. We will consider a, b, m as functions of i.

Note that p, H, a, b, m are all elements of M since J is c.d.s.

The denotaticn f of f in the forcing language in M[J*] associated to
C(J*) can be itself denoted in the forcing language in M associated to
2w [J. Hence there is a sentence about M which means tnat c(x) forces
(forcing on 2« /J) the sentence which denotes “p forces (forcing on
C(UJ*)inM[J*])fF(m)=a”.

The relation between p and H is a countable conjunction of relations
true in M[J*] so forced by elements of c(J*).
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As J is c.d.s. there is an element of ¢(J/*), say X, which forces simulta-
neously all these relations. So, for every two-valued sequence i with
length k, X forces “(p, (HVk, i), (H(k), 0)) forces f (m(i)) = a(i)” and
X forces “(p, (H'k, i), (H(k), 1)) forces f (m(i)) = b(i)”.

We define a real g’ in M[f]: on the domain of p g’ isjust p, an? on
tae range of H g’ is defined by the following induction.

Suppose g’ is defined on Hl k, then (p, (H' k, g' M (Hk)), (H(k), 0))
and (p, (H 'k, g'M(HVk)), (H(k), 1)) are forced by X to decide different-
ly f (m(g’'M(H k))). Choose g'(H(k)) such that (p, (Ht k, g' M (H!'k)),
(H(k), g'(H(k)))) is forced by X to force f (m(g'MNHk))) =
fim(g't (HkK))).

As X is in e¢(J*). what is forced by X is true in M[J*]. Reasonning in
M{[J*] and using the fact that p is in G we see inductively that
{(H), g'(H(k)))} is in G. Hence g = g’ and g is in M[ f].

Corollary 5.5. If J is a weak T-ideal then a J-Silver real over M is minimal
over M.

Proof. A weak T-ideal is c.d.s. (Prop. 2.3). Using Theorems 5.3 ana 2.5,
which says that J* is a T-ideal, we conclude with Theorem 5.4.

Remark 5.6. The proof of 5.5 is very indirect. In case J is a T-ideal the
proof of Theorem 4.1 works to show the minimality of a J-Silver real
since in no place the hypothesis of maximality is needed.
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§6. Preservation and destruction of w,

In this section we show that the forcing with C(J), J a meiximal ideal
on w, collapses wy , just in case J is not p-point.

Theorem 6.1. If the ground model M satisfies the continuum hypothesis
(CH) and J is not p-point then the forcing with C(J) collapses w .

Proof. As M satisfies CH there is a subset 4 of w; such that
29 nM=29nL, [4]

The following lemma is easy:

Lemma. If X is a coinfinite subset of «w and if a maps X into 2 then for
each a€ wy there is a map b from w—X into 2 such that the union of a
and bisin Ly,  [A] ~Lz[A], for a 3 greater than c.

Now let g be a J-Cohen real over M.

Let (X)), n in w, be a partition of w by elements of J such that if X
meets each X, on a finite set then X is in J.

Define a function f from w into w,; as follows:

f(n) = the least « such that gt X, is in L,[A4].

Let p be a condition, there is an n such that X, N dom(p) is ccinfinite
in X,, (if not w-dom(p) would be in J, contradicting the definition of
C(J)). By the lemma, given any f§ in w,, there is an extension ¢ of p
such that gt X isin L, ,; [4] — L_[A] for a y greater than 8. Hence g
forces that there is an #» on which f is greater than 8.

A density argnment shows that f is then cofinal to w, hence the theo-
rem.

In order to prove the converse of the preceding theorem we need a
combinatorial property of p-point ideals.

If A is any set, Seq(4) is the set of finite sequences of elements of 4.
We put on Seq(A4) the extension ordering, s+¢, lh(s) and (@) ¢enote the
concat:nation of s and ¢, the length of s and the length-one sequence
defined by a. S, (w) is the set of finite subsets of w.
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Definition 6.2. i) A is a p-tree if A is a non-empty subset of Seq(S, (w))
and any predecessor of an element of 4 isin A.

ii) If s is in the p-tree 4 the ramification of 4 at s is the set of ele-
mentsa of §, (w) such that sx(a) is in 4.

iii) A function H from w into S, (w) is called a p-branch of A4 if for
every k the sequence (H(0), ..., H(k)) isin A.

Definition 6.3. i) A subset of S, (w) is called J-big if there is an X not
in J such that S, (X) is contained in it.

ii) A is a strong J-p-tree if any finite intersection of ramifications of
A is J-big.

iii} H is a J-p-branch of A if it is a branch such that the union of its
range is not in J.

iv) H is a weak p-T-ideal if every strong J-p-tree has a J-p-branch.

Proposition 6.4. J is p-point if and only if J is a weak p-T-ideal,

The proof of this proposition is analogous to that of 1.15, we have to
use the notion of p-iaductive ideal:

Definition. J is p-inductive if for every decreasing sequence (X,,), 7 in w,
of subsets of w not in J, there is a function H from w into S, (w) such
that i) if m is less than » then the greatest element of H(m) is less than
that of H(n) and the cardinal of H(m) is less than that of H(n).

ii) the union of the range of H is notin J

iii) for each n, H(n+1) is included in X Sup(H (m)*

The analogs of 1.12 and 1.13 and 1.14 hold, proving Prop. 6.4.

Theorem 6.5. If J is a p-point maximal ideal then the forcing with C(J)
does not collapse w .

Proof. Let g be a J-Cohen real over M and f a function from w into wy
lying in M[g]. Let f be a denotation of f in the forcing language.

Let p be any condition, we construct by induction a p-tree 4 and a
decreasing function Q from 4 into C(J) such that Q(@) = p and for
every s in 4 the domain of Q(s) is disjoint of the union of R (s) where
R () is the ramification of A ats.
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If aisin S, (w) and is disjoint of the domain of p, we put (a) in 4.
Ifsisin A, s = (ag, ..., a,); and Q((ag, .., @,_;)) is defined, we let
Uy, ..., U, be the different functions from the union of g, ..., @, into 2.
Let qq, ..., g, be a decreasing sequence of conditions extending
Q{(ay, ..., a,_p)) such that the domain of ¢; is disjoint of the union of
ag, ..., a, and (q;, u;) decides f(n—1). We let @(s) be g, and
S, (w—(@y V..U a, Udom(Q(s)))) be the ramification of 4 ats.

We also define a(s) to be the suprenum of the decisions of the g;’s.
Clearly A is a J-p-tree. Let H be a J-p-branch of 4. Let q be the union
of the Q(H!'n), n in w, then q is a condition which extends p and forces
fis bounded by a where « is the supremum of tke a(s), s in 4. A density
argument shows that f is bounded below w,, henre w; is preserved.

Remark. The above proof shows that if an ordinal has cofinality greaier
than w in M then it still has cofinality greater than «w in M{g]. Hence, if
CH holds in M, cardinalities and cofinalities are preserved.

Getting 4.1€ and 6.5 together gives

Theorem 6.6. Suppose M satisfies CH and J is ¢ maximal ideal then

i) J is not p-point, C(J) collapse cardinals

i) J is p-point but not selective, we get a non-minimal real but we do
not collapse cardinals.

iii) J is selective, we get a minimal real and cardinals are preserved.

Remark. CH implies the existence of p-point ideals which are not selec-
tive.
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Appendix

The two properties of weak T-ideal and 7-ideal are the same for coun-
tably generated or maximal ideals. However they do not coincide:

Proposition 1. There is a weak T-ideal which is not a T-ideal.

Proof. Let x_, s in Seq(w), be a family of disjoint subsets of w.

We define a tree A by the following induction: if s is in 4, we put
s¥(m) in A if and only if m is in x,.

Let J be the ideal generated by the branches of A and the finite sub-
sets of w. So an element of J is included, modulo a finite subset, in a
finite union of branches of A4.

As a branch of A takes at most one point in an x, we see that an
element of J meets an x, at a finite number of points. Hence each infi-
nite subset of an x; is not in J, showing that J is proper and that 4 is a
J-tree.

As every branch of 4 is in J, J is not a 7-ideal.

We now show that it is a selective ideal.

Suppose not, let (x,, ), n in w, be a J-partition whose selectors are all
inJ,

Note that if a set is in J then there is an infinite sclector which is dis-
joint from it and there is an infinite subset of it which is included in a
branch of 4.

Using these remarks it is easy to get a family (H,,), »n in w, of distinct
branches of 4, each meeting infinitely many x,,.

Fix k, consider the sequences H,, I k; if infinitely many of them are
different than it is easy to get an infinite selector which takes one point
to each of these branches, such a selector is not in J, a contradiction;
hence the 4, 'k, n in w, form a finite set.

We define by induction a strictly increasing sequence of firite se-
quences s,, with length &, , n in w, and a function f on w such that
Hgy, extends s, ; but nots, and infinitely many of the H, extend s,,.

Suppose all are defined up to n. The Hp which extends s, are infini-
tely many and all different, so there is a k greater than lh(s,, ) such that
infinitely many of them, but not all, have the same restriction to k.
Choose s,,; to be such a common extension and f(n+1) such that
Hgp 41y is in the “but not all”.
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As each H, meets infinitely many x,, , m in w, it is easy to construct
an infinite selector which takes one point exactly in each range of Hppys
this point being Hy,,,(k) for a k greater than k,, ; such a selector can not
be in J, a contradiction. '

Definition 2. An ideal J is Ramsey if for every subset x not in J/ and
every partition f of the pairs of elements of x in two sets there exists an
homogeneous subset of x which is not in J.

Proposition 3. If'J is a weak T-ideal ten J is Ramsey.

Proof. We first assume that J is a 7T-ideal. The proof is just a generaliza-
tion of the well-known Ramsey’s theorem.

Let x and f be as in Def. 2.

We define a J-tree A inductively: @ isin 4 and the ramification of A
at @isx. If s is in A with length k+1, the ramification x; of 4 atsf'%
is not in J; choose a subset x of x,; such that x is not in J and the
pairs {s(k), m}, m in x, have the same image by f. Put s«(m) in 4 if
and only if m is in x, so that x is the ramification of 4 ats.

Take a J-branch H of 4.

For each n, H(n) is such that the pairs {H(n), H(n+p)}, p in w, have
the same image by f, say i(n).

The set of H(n) such that i(n) = G and the set of H(n) such that
i(n) = 1 define a partition of the range of H; one of these iwo sets, at
least, is not in J; it is the desired homogeneous set for f.

To prove the proposition with the hypothesis of weak 7T-ideal we
have to replace A by a strong J-tree.

To do this we first note that there exists a well-ordering of Seq(w) of
order type w which extends the non-linear inclusion ordering. The iso-
morphism s from w onto Seq(w) which is deduced from this well-order-
ing is constructed by blocks as follows; the first block is just formed of
the empty sequence; if the n first blocks give s(0), ..., s(k) then the
n+1—st block is s(0) x (112g), ..., s(k) +(m; ) where m; is the first integer
such that s(i) *(m;) is different from s(0), ..., s (k).

We now define inductively 4 and a decreasing sequence (x (n)), # in
w, of subsets of w which are not in J.

The empty sequence s(0) is in 4 and x(0) is x. If s(n) does not extend
an s(k), k< n, then we do not put s(n) in A and we let x(n) be x(n—1).
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If s(n) extends,an s(k), k < n, there is a k, k < n, and an m such that
s(n) =s(k)*(m), we put s(n) in 4 if and only if m is in x (k). Asx(n—1)
is not in J there is a subset y of it which is not in J such that all the
pairs {m, p}, p in y, have the same image by f, we take such a subset as
x(n).

Clearly if s(n) is in A, the ramification of 4 at s(n) is x (n), hence 4
is a strong J-tree. Taking a J-branch, we end the proof as above.

Definition 4. A strong J-partition is a J-partition which has at most one
element not in J.

Definition 5. J is a weak selective ideal if for every strong J-partition
there is a selector not in J.

Proposition 6. If J is Ramsey then it is a weak selective ideal.

Proof. Let (x,,), n in w, be a strong J-partition. Suppose that just x, is
not inJ. On the complement of x, which is not in J since we have a J-
partition, we define a two-valued function on the pairs: f({m, n}) = 0 if
and only if m and n are in the same element of the partition. Clearly an
homogeneous set is included in an element of the partition or is a selec-
tor. As we have a strong J-partition, an homogeneous set which is not in
J is a selector. Hernce the proposition.

Lemma 7. J is c.d.s. if and only if for every J-partition there is a set
which is not in J and meets each element of the partition on a set in J.

Proposition 8. J is selective if and only if it is c.d.s. and weak selective.

Proof. Use Prop. 2.3 to show one impiication; transform a J-partition
into a strong one, using Lemma 7, to show the other implication.

Proposition 9. There is a Ramsey ideal which is not c.d.s.

Proof. Let (x,), n in w, be a partition of w in disjoint infinite sets. Let
J be the set of subsets of w which meet each x,, at a finite number of
points.
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If x is not in J then x meets an x,, on an infinite set. If fis a two-
partition of the pairs of x, applying the Ramsey’s theorem, there is an
infinite homogeneous set included in the intersection of x and x,. Such
a set is not in J. Hence J is a P.amsey ideal. Obviously J is not c.d.s.

Proposition 10. There is a c.d.s. ideal which is not weak selective.

Proof. Let (x,)), n in w, be a partition of w in disjoint infinite subsets.
LetJ be the set of subsets of w which have an infinite intersection with
only a finite number of x,,.

Clearly J is an ideal which is not weak selective since (x,,), 7 in w, is
a strong J-partition. In fact it is not weak p-point.

Now show thatJ is c.d.s. Let (X p ), p in w, be a J-partition. If the
union of the X, which are in J is not in J then this union is the desired
set of Lemma 7. So we suppose that no X, p 18 in J. Thus each X, meets
infinitely many x,, on an infinite set, it is then easy io get a set whose
intersections with the X, are infinite swbsets of different x,,. Such a set
is not in J and meets the X p on sets in J, hence it is the desired one.

Definition 11. J is a very weak T-ideal if for every x not in J there is a
J-branch for every tree whose ramifications differ from x on a setinJ.

Definition 12.J is weak inductive if for every decreasing sequence (x,,),
n in w, of subsets of w which are not in J and such that x,, —x,,, isin
J for each n, there exists a strictly increasing function H from w into w,
with range not in J, such that H(n+1) is in x ,, for each n.

Definition 13. J is weak Ramsey if for every x not in J and every parii-
tion f of the pairs of elements of x into two sets, such that for each n in
x either the set of m in x such that f({n, m}) = 0 is in J or the set of m
in x such that f({n, m}) = 1 is in J, there is a homogeneous subset of x
which is not in J.

Proposition 14. If J is an ideal then the following are equivalent:
i) J is weak selective
ii) Jis weak inductive
iii) J is a very weak T-ideal
iv) J is weak Ramsey
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Proof. To show that i), ii), iii) are equivalent it suffices to repeat the -
proofs of Prop. 1.10, 1.12, 1.13 and 1.14.
The proof that iii) implies iv) is just that given in Prop. 3 for T-ideals.
It is obvious that iv) implies ii).

Proposition 15. There is a weak selective ideal which is not Ramsey.

Proof. Let (x,), s in Seq(2) (the two-valued finite sequences), be a fam-
ily of infinite subsets of w sucly that xy is w and x, o) and x5, (1) are
disjoint with union x, for each s in Seq(2).

Define J as follows: x is in J if and only if the set of s such that the
intersection of x and x, is finite is dense in Seq(2) (w.r.t.the inclusion
ordering). Clearly J is a proper ideal and the x, are not in J.

Let y, be the union of the x;, ), s with length .

Define a partition f of the pairs of integers: f({n, n+p}) = 0 if and
only if n+pisiny,.

A homogeneous set for f is included or disjoint, modulo a finite set,
of infinitely many y, , hence it is in J. So J is not Ramsey.

We now show that it is weak selective. Let (X;), 7 in w, be a strong
J-partition. If each X, is in / then each x; meets infinitely many X;
since it is notin J, so it is easy to get a selector x which meets each x,,
such an x has in fact an infinite intersection with each x, hence it is not
in J. Note that if a set y is not in J then there is an s such that for every
extension f of s the intersection of y and x, is infinite, hence for every
extension ¢ of s the intersection of y and x, is not in J. So if we consider
a strong partition (X;) whose only element not inJ is X, there is an s
such that for every extension ¢ of s the intersection of w—X, and x, is
not in J and so meets infinitely many X;, hence a selector which meets
each x,, t extending s, hence which has an infinite intersection with each
X;, t extending s, and so is not in J. Thus J is weak selective.

Corollary 16. The following implications can not be reversed:
i) Jis a T-ideal
implies ii) J is u weak T-ideal
J is selective
J is inductive
J is Ramsey and c.d.s.
J is weak selective and c.d.s.
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implies iii) J is Ramse};

implies i) J is a very weak T-ideal
J is weak selective
J is weak inductive
J is weak Ramsey.
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