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CHANGING COFINALITY OF A MEASURABLE CARDINAL

(An alternative proof)

~Lev BUKOVSKY, Ko&ice

Abstract: Using the method of iterated ultrapower in
Set Theory with a measurable cardinal, it is shown that
there are model-classea N and its generic extension N
such that for a cardinal X, the following holds: Xe is
measurable in N and Kew is a Rowbottom cardinal in N
of cofinality o .
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In the theory of extensions of models of the set theo-
ry, there is an open difficult problem: is it possible to
change cofinality of a cardinal number not collapsing it?
For a measurable cardinal s¢ , K. Prikry in (6] answers this
question affirmatively by constructing a generic extension
in which e is cofinal with @, . Moreover, iﬁ this exten-
sion, 2¢ remains to be a Rowbottom cardinal and all cardi=-
nals are preserved. In this note we prove similar result
by using the method of iterated ultrapower introduced by H.
Gaifmen [3] . Namely, we prove the following (for the nota-

tions, see the part 1)):

- 689 -



Thegrem. Let 9¢ be a measurable cardinal, % a nor-
mal measure on s , Let N, be the transitive class iso-
morphic to the m -th iterated ultrapower of the universe
by using the ultrafilter U .Let Ny, be the Gaifman’s di-

rect limit of N, , mew, and N -@f:‘%ﬂn . Then

a) N is a model of ZFC and N, = N .

b) Cardinals of N are those of .N(‘,° .

c) s,  (the measurable in N, ) is cofinal with @,
o (]

in N .

a) L is a Rowbottom cardinal in N .

e) N 1is a generic extension of N, -
o

The proof of a) - d) will use only elementary proper-
ties of iterated ultrapowers already known to H. Gaifrman.
For the proof of e), the theorem A of the author’s paper [1]
will be used.

The relation of our theorem to Prikry’s result is clear.
By my opinion, the assertion e) is a little surprising.
Unfortunately, we cannot explicitly describe the set of for-

cing conditions for this generic extension.

l. Preliminaries. We remind some notations and well
knowr. facts. We follow K. Kunen [5] with some modifications.

Let 8¢ be a measurable cardinal, % be a normal mea-
sure on ¢ , It is well known that there exists an isomor-

. phism @ of the ultrapower "V/'X, onto a transitive

class N,‘ (Y is the universal class). If X eNo =Y,
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we denote by X the function defined as & (§) =X for
§€ € %¢ . The mapping 44 4:Ng—> Ny defined by 4y, (x)=
= B8(X) is an elementary embedding. Thus, se, = 4,4 (se) is
a measurable cardinal in N, and %y = 4,,(U) is a nor-
mal measure on 8, in .N',, . One can construct the ultrapo-

wer (“"N,,) n Ny /7L1 and the isomorphic transitive class

Ny . Going on, we obtain a systen N, 2 Ny 2 Ng 2 ... of
elementarily equivalent models of ZFC + "there is a measurab-
le cardinal" and a system imm » ME M € W of ele-
mentary embeddings (Lm,m is the identity mapping). As H.
Gaifman [3] has shown, the direct limit of the system N, ,
‘4m,m is a well-founded model. We denote by Ngy, *ue
corresponding isomorphic transitive class and J,m,ﬁ,o will
denote the natural (elementary) embedding of N,  into N, -
" For § £ wp, Ug = 46,g (U) is a normal measure on
% =Lo,§ (oe) in N¢ .

Let us remark that all classes N? , 43,.,,; are defin-
able from U .

If M is a transitive class which is a model of ZF
(i.e. M is closed under Gddel’s operations - see e.g. Go-
del £4) - and M is almost universal), then the superscript
M  over a notation indicates that the corresponding notion
is considered in this model.

The famous Los s theorem may be expressed as

(1) ”V/u =@y, fp)mi{§aae: p(£,(§),...
vy (NI U .

We shall need the following simple facts (see [3]),[5]):
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(2 xe§<oe,, xeN,—> dp p,g(x)= ""m,wo("‘)""‘ .
(3) x =N, M(x)sa&—»xe}{‘ .

(4) ““’o = m%, %m

N

"y
(N (i.e. the class N, conatructed in N,

from U, ) is
Nm
(’o'w’g) = &m*ﬂ,mﬁf for E‘ ﬁ)o ]

N N
me w, and(N%)'”-N%,N""'-N.

(5) equal to qu-mt

"q, denotes the set of all functiona defined on X with

velues in a4 . P(x) is the set of all subsets of x. If £,
9 are functions, we define fe e g = (Vi € D(£))(f(w) 6 g(u))
and fo e @ = (VueD(EN(£(n) s g (w)) . We denote
Wol (£) = the least cardinal o auch that

(Vu e D(£)) (cardl (F()) < ) .
If Nys M, are two transitive models, WM,,M',_ ()

means (see Vop&nka-Hédjek (8] and also [1]): for every func-
tion £ e M , there exists a functionfeMzn 9(u4)such that
feeqg and W¢M"<9«)eec .

It is well known (compare [8]) that

(6) AMM.,,MQ (e¢)  implies that every cardinal d" of

M = « is a cerdinal in M, .
4 L 2
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In [1), the following has been proved:

(7) AMM1 M, () implies that there is a partially
?
ordered set P € M,' satisfying o -chain condition

and a generic set G € P  such that M, = M,(G) .
Moreover, M2 = M4 (Plx) A M,) .

2. Some guxiliary results. We remind the definition of
the sets V(§),fe0n:V(0)= g, V() = (P(?LGJ“V(E)) .
By the axiom of regularity, V=_U V(g§) . For any transi-

feOn
tive model class M,V(g)M = 'V(g) A M . Thus, especi-

N
ally V(§) p Vg A Ny . By (5), we obtain

Ny Ne N
W AN P2 V) FAR V() AN A N=T(§) AN .

Therefore V(§) n N e Ny . By the definition of N , we

have
(8) for every ordinal §, Y(§)n Ne N .
Let F&xm-igson,;i,m"%(g)_—_g} . It is easy

to see that P{x, is a proper class, Fix, s Fix, € ...

v. € Fidpy ... . Evidently §e Pix,—> 6(§)=F§ .
Fix, is a class definable in N, from %, , thus
(Vx e N)(x A Fix, e N, ) .

Let us consider a function £ such that &(£)g Fix,
3
and x =W(€)e N, . For gy ex ,let ko, € =V  be such
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that G(h?)srg,.For § €2 , weset

q(g)z{<ec,w)=(3fy,ex)(u=h”(§) &£(ec) =2 .

By (1), one can easily show that ©(g) 2 £, 6(g) is a
function and & (O(g)) € Fix, . If we denote Ext (€)=
= 68(g) N (0n x x) , we have

(9) for every function £ such that D(f) € Pix, ,W(f)e
e N, , there exists a function Ext(f)e N4 such that
£s Ext (£) , D(Ext(£)) s Fix, and W(£) =

= W(Ext (£)) .

If xeNg, cwwLN" (x) € 224 , then there exists
e set y &« Ny such that x & 4o,4 (9) and caxd.No(q,) &€ e, .
In fact, by (1), there is a function Hr e “°'V' such that
(V§ eoey) Ccaxd (M (§) < oe,) and 6Ch)=x . We set

U Ah(Cg) .
U= oenCE
This observation may be generalized as follows:

- N
Let £ € N; be a function, wi(g) & oe‘z . Then
there is
N, .
(10) a function @ & N, such that Wi (g) € s and
£fS € 4’0,4 (g) .
. o€
Since £ & Ny , there is a function Sv e °N, such
that @ (M) = £ . We may suppose (by (1)) that for every
N
§ex,, WCE) is a function and Wl “(S(§)) & sy .

We set

¥Fin)=w=(3fese)(ne I(h(§IN& w-?&oh(g)(n) .
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N
Evidently Wo °(9,) £ ae"',' . Using (1), cne can easily show
that £ =4 4/0’4(?) -

A cardinal J° is said to be Rowbottom cardinal if, for

any A< d and £1 L1y A there exists a subset x =
€ Jd” having power J° such that £"[x1"8° is countable
(compare e.g. Silver [71). The notion of an M -ultrafilter
has been introduced by K. Kunen (see [5], p. 181).

Using intelligently a classical idea of Erdds-Hajnal

(see [ 2], p. 126), it is easy to prove:

(11) Let M be a transitive model of ZFC, x € M , corel (x)=

£, —>xe€M . Let x= lim o, , X, < ot, < .co &

MneW, 4
If there exists an M -ultrafilter on every «, ,then

o is a Rowbottom cardinal in M .

This assertion is a trivial generalization of the theo-
rem 1.29 in [6]. Replacing the measurea " ‘ugl " in Prikry’s
proof (see [6], pp.14-15) by " M ~ultrafilter on Xy ", we
obtain a proof of (1l).

3. Proof of the theorem. Since an intersection of tran-

sitive and closed (under GGdel’s operations) classes is such
a class, by (8) N is also almost universal, we have that N
is a transitive model of ZF.

~ For to prove N = AC , it suffices, for any x & N , to
£ind a functionfe N such that(£)s On and W(f)= X .

Thus, let x € N and let £ e N, be a function,
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D(£YSFix, and W(£)= x , Let Ffl=4fp s me wo},

N,
where f, = £ and f,,,= Ext "(f,) (see (9)). We set
£w°=M1‘J%£,,, .By. (9), € € Np , D£) s On and

N
W(£,) = x ., Since Pn(f@)s{fk:m«.‘bea}ni and

£Q°=m%‘%£h ,we have £, © N,  and therefore, £, € N.

Thus the axiom of choice AC holds true in N .

Now, we show that

(12) M‘"’NQO,N Cu,;o) holds true.

Let £ e N be a function. We denote £, = 1<x,4) :
i £ (""m,wo (x)) = Ln,wo () % . By the definition of the direct
limit No, » we have f= %}Q:m’%(fn) and £, € N, . We set
My, (X)=4£,(x)} for x ¢ D(£,) . For every m e @, , by
repeated applications of (10), there exists a function n €

N .

€ Ny such that Wd °(g,) & s,  and My, S S 4,,09,).
Thus £, e e ’i‘o,m (om?) -

We set

n(xX)= u = (Am)(x e D(g,N & u =mx,o Gm (x) .

\ N,
Evidently Wd °(A&) < ae;' and g, € S % . Since

4'/‘,’ @, is an elementary embedding, we have
Wol N, (Lg () £ 0, . By the construction of the
h@o o

function % ,one easily obtains £ € € 4 (&) . Since

0,®,
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22 (#)e N, , the assertion (12) follows.

0,4,
Now, the part b) of the theorem follows by (3),(6) and
(12). The part e) follows by (7) and (12).

Noo

Let a = {e,;mew,? . Evidently o =4a,;h s

Vg

£mew,3? e Ny . Since a=42,;m<fjva ",we have

a e N& . Thus also

(13) {oe, ;mew,3s N .

The part c) of the theorem follows by (4) and (13). Sin-
ce U, is an Nm'-ultrafilter on ee, , d) follows by (11),
(3) and (13).

Finally, let us remark that by (7) and (12), N= N‘,o ‘x),
where X = P (or,z,o) A N . The author was not able to pro-

ve or to disprove the following conjectures:
(14) N=Nmo(.x) , where x=Nn Pleey, ),

(15) N=N_, (x), where x=Nn“Poe, .
4

@,
Neither we know the relation of the generic extension N

of N

.. to that constructed in [61, p. 24.
0
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