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We present some results concerning extensions of models of ZFC in which cofinalities of
cardinals are changed and/or cardinals are collapsed, in particular on minimal such extensions.
Our main tools are perfect tree forcing PF(S) and Namba forcing Nm(S). We prove that if
N2 M is an extension such that (i) MExk=A" >R, (ii) ANNc M and (iii)) N = M[f] for
some cofinal f: w,— k, then N o M is cf(kx) = we-minimal. On the other hand Namba forcing
Nm(S) where S is a normal ultrafilter on a measurable cardinal k¥ produces an extension
satisfying (iii} and (ii) for every A < k, which is not cf(x) = w,-minimal.

We show that if S is an X,-complete splitting criterion on k then Pf(S) collapses k¥ to R,
(assuming GCH). Moreover, we prove, under some reasonable assumptions, that every
extension changing the cofinality of a successor cardinal x must collapse k™.

Using these results and results on trees from Sections 2, 3 we construct, assuming e.g. GCH,
for every regular uncountable k a |k} = X,-minimal extension, a cf(k) = wy,-minimal extension
and a |k*| = X,-minimal extension.

0. Introduction

More than 20 years ago the question arose whether it is possible to find a
generic extension of a given model of ZFC in which cofinalities of some cardinals
are changed but no cardinals are collapsed. The answer is well known. Prikry [20]
defined a forcing notion by which the cofinality of a measurable cardinal is
changed to w, and no cardinals are collapsed. Later, in 1966, Vopénka posed the
question whether one can change the cofinality of w, to w, without collapsing X;.
An affirmative answer was given by the first author in [3], [5]. Independently
Namba [19], solving a problem concerning Boolean algebras, constructed a
forcing notion with similar properties as the one in [3]. After Jensen proved his
important Covering Lemma [8], both forcing notions turned out to be examples
showing that the Covering Lemma is best possible. Shelah [23], Gitik [11] and
others generalized these forcing notions and used them in various constructions.
However, several problems concerning these forcing notions remainded open.

This paper arose from two independent results of the authors. The first author
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proved Theorem 1.1' solving the problem of minimality of Namba forcing. The
second author proved Theorem 5.1, which answers the question about collapsing
of cardinals for the perfect tree forcing of [3]. The paper is organized as follows:
Section 1 contains general results on minimal extensions of models of ZFC. In
Section 2 we investigate general properties of families of trees from the forcing
point of view. We tried to develop the methods used in [3], [5] and [19].
However, one can see that they are closely related to those of Shelah [23].
Section 3 introduces some generalizations of the forcing notions of [3] and [19]
and studies their properties. The goal of Section 4 is the nonminimality of Namba
forcing for a measurable cardinai. Section 5 is devoted io the proof of the above
mentioned Theorem 5.1. Finally, in Section 6 we present some generic extensions
of models of ZFC, where cofinalitics of cardinals are changed or cardinals are
collapsed and they are minimal with respect to these properties. Some open
problems are collected in Section 7.

Our set-theoretical terminology is fairly standard and may be found e.g. in [13].
K, A, U, ... denote infinite cardinal numbers, §, C, ... are ordinals. *y is the set
of all functions defined on x with values in y. A% is the weak power ¥, A*. An
ideal J or a filter F is always proper (i.e. |_JJ ¢J and @ ¢ F).

If P is a (separative) partially ordered set, then r.o.(P) is the unique complete
Boolean algebra which extends P as a partially ordered set and such that P is a
dense subset of r.0.(P).

Let P, Q be partially ordered sets. We say that a function ¢ from P into Q is
normal if it is order preserving, its range is dense in Q and for every p € P the
image of {p' € P:p’ <p} under ¢ is dense below ¢(p) in Q (see e.g. [12]).

The following lemma is well known and we shall state it without proof.

Lemma 0.1. Let P, Q be separative partially ordered sets and let ¢:P— Q be
normal. Then the mapping ¢:r.0.(Q)—r1.0.(P) defined by ¢(b)=\/ {pe
P:¢p(p)<b} is a complete embedding of Boolean algebras and the mapping

¢ :1.0.(P)—>1.0.(Q) defined by ¢(a) = /\ {b er.0.(Q): p(b) = a} extends ¢.

1. Minimality of extensions

We shall always consider transitive models of ZFC. If M, N are models then we
say that N o M is an extension of models if M c N and OrdN M =Ord N N.

Let ¢(xy, . . ., x,) be a formula of the language of set theory. Let N o M be an
extension of models of ZFC and let a,, ..., a,e M. The extension No M is
called a ¢(ay, . . ., a,)-extension if

(1.1)  NeE¢(a,,...,a,)
A ¢(a,,...,a,)extension is called a ¢(a,,...,a,)-minimal extension if

! This theorem was presented to the Oberwolfach Set Theory Meeting in January 1985.
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moreover:
(1.2) for every model K, Mc K< N and Kk ¢(a,,...,a,) imply K=N.

A forcing notion P is ¢(ay, . . ., a,)-minimal if for every M-generic filter G on P
the generic extension M[G] o> M is ¢(ay, . .., a,)-minimal.

Historically the first minimal extension was constructed by Sacks [21]: let P,
denote the set of all perfect subsets of the unit interval ordered by inclusion;
constructed in a model M of ZFC. If G is an M-generic filter on P; then
M[G] = M|s] where s is a real (Sacks real). Sacks showed that for any real
a € M[s], either a € M or M[a] = M[s]. So the forcing notion P, is ¢(P(w,) N M)-
minimal, where ¢(x) denotes the formula (3y) (y c wo & y ¢ x). In [3] (and [5])
the first author found a forcing notion P, such that any generic extension N of a
model M obtained by the forcing P, is ¢(w3)-minimal, where ¢(x) denotes the
formula “x is an ordinal cofinal with w,”. We shall simply say that the forcing
notion P, is cf(w3’) = wy-minimal. Prikry and Abraham [1] found [RY|=R,-
minimal extensions N o M, i.e. the cardinal X, of M is countable in N and for any
model K, Mc K= N, K#N, R, of M is uncountable in K. Assuming the axiom
of constructibility, Sacks [22] constructed a |k| = Ny-minimal extension for every
regular cardinal k.

In our paper we shall investigate mainly ¢(x)-minimal extensions where ¢(x)
is one of the formulas |x|=X,, [x|=N,;, cf(x)=w, For example, we shall
construct an (|R%/| = X,-minimal) extension N o M which collapses X; of M to
KM =RY and it is minimal with this property. Our construction of a |k|=N,-
minimal extension is based on a cf(A) = w,-minimal extension. Since by Jensen’s
Covering Lemma [8] the existence of a cf(1) = w,-, XY = X,-extension for A > K,
implies the existence of 0* in M, our method cannot be immediately generalized
to construct a |A| = X,-minimal extension for a > 1.

We start with general results on |A|=kx-minimal and cf(A)= x-minimal
extensions.

Theorem 1.1. Let N o M be an extension and let u, A, x be cardinal numbers in
M such that
(1)) MExk=A" & pis regular & u <A,
(i) ANNcM,
(iii) there exists an f € "k N N, f unbounded in x such that N = M[f].
Then N o M is a cf(k) = p-minimal extension.

The key element of the proof is the following simple result.

Lemma 1.2. Let M, N, f be as in the theorem. If g € "k NN is unbounded in k
then there exists a strictly increasing function h € M([g] such that f(&) < h(&) for
each & e u.
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Proof. By induction on & < u, we define a function d € “u as follows:

d(&) =min{{ e p:g(£) > f(§) and g(£) > g(n) for each n < &}.

Since u <A, by (ii) and (iii) we have sup{g(n):n <&} <k whenever § <pu, and
so there exists a § < u such that g(£) is greater than sup{g(n):n < &}. Therefore
the function d is well defined. Using (ii) again, we have d € M. Now it suffices to

set h(§) =g(d(§)) for Eep. [

Proof of Theorem 1.1. Assume M c Kc N and KEcf(x)=u. We show that
fek.

Let g € *k N K be unbounded in x. By the lemma there is a strictly increasing
function k& € M[g] = K such that f(&)<h(E) whenever & e u. Without loss of
generality we may assume that f(&) > A for each § € .

Now, in M, for each n € k — A fix a bijection p, of A onto 7. In N, define a
function k by letting for each § e u

k(&) =pui(f(8)-
Clearly k € “A hence by (ii), k € M. Since f(&) = p,)(k(5)) we obtain
feM[h]c K. O

Specifying the parameters we obtain

Corollary 1.3. Let M = N be an extension such that P(wo) N\NcM and N =
M([f], where f is an unbounded function from w, into w3'. Then NoM is a
cf(w3') = wy-minimal extension.

As we have already mentioned the first author showed that the forcing
introduced in [3] is cf(w3')= wy-minimal. By Corollary 1.3 also the forcing
introduced by Namba [19] is cf(@2’) = wy-minimal.

It was a natural open question whether the forcing notions of [3] and [19] do
collapse X3 or not (see [5, p. 48], compare [23, p. 368]). We are able to answer
this question affirmatively.

Theorem 1.4. Let N o M be an extension, let u, A, k be cardinals in M such that
(i) MEA=2% (ii)) Ntcf(x) = pu.
Then
NE|* Kk N M| <A
Proof. Let B be the set of all nondecreasing functions from k into x in M. Then
ME|B|= k"

Let f € "k NN be a strictly increasing function unbounded in k. For §, n<pu
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we set

By, ={geB:g(f(§) <f(m}

Clearly
B = m U BEJI‘
Een nep
Hence
B= B .
¢g“ Q‘ & ¢(8)

For a given ¢ € “u consider the set A, . consisting of all functions h e M
with domain f(&) + 1 and with values in f(¢(&)). Since A, € M and f(§) +1,

f(9(8)) <k, by (i) we get
ME|A, & <A

On the other hand we can easily see that, in N

Eep Sep

Therefore
NEIM N k| =|B|<2¥- A" =|A| (]

Again specifying the parameters we have the following

Corollary 1.5. Let N o M be a cf(w?') = wq-extension such that
(i) ME2M=R,, (ii)) NE2®=R,.

Then
NEIRY|<R,.

Remark. Komjath called our attention to Lemma 4.9 of Shelah [23, p. 440],
which actually solves the problem of collapsing X; in the extensions considered.
However, since our Theorem 1.4 is not covered by Shelah’s lemma and our proof
is different from the one of Shelah we have included it in the paper.

As a consequence of both theorems we obtain

Theorem 1.6. Let N o M be an extension such that
(i) MEGCH, (ii) NEGCH, (iii) P(wl) NN M,

(iv) there is an f € “w3' unbounded in w3 such that N = M[f].
Then the extension N 2 M is both |RY| = R,-minimal and |RY| = R,-minimal.

Proof. By Corollary 1.5, N o M is a |RY| = X,-extension.

Now, let M c K N, KE[RY|=R,. Then also Kk [R¥| =R,. Therefore there
exists a cardinal A <X, such that K Fcf(w3’) = A. By (ii) and (iv), A = w,. Using
Corollary 1.3 we get K=N. O
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The idea of the proof above will be used very often in Section 6 without any
comment. Closely related to Theorem 1.4 is the following result which we shall
need too in Section 6.

Theorem 1.7. Let NoM be an extension, let A<k be cardinals in M,
MEcf(x) = u, and assume N E|*A| = |A|. Then the successor of A in N is not the
successor of x in M.

Proof. It is easily seen that ME k"= k™. If k™™ =|A|"" then NF|k|=<|A| and
therefore NE|*"k N M| < |#A| =|A|<|A|*. O

Corollary 1.8. If No M is an extension, NF 2R new, then R, | is not XY, ..
Proof. In Theorem 1.7 take k =R¥ and A=R). 0O

Remark. It is easy to construct an extension M c N such that NEFGCH and
N2>l+1 = R}lv-

The following result is in a sense a converse to Theorem 1.6 and partially
explains why the presented methods (i.e. methods for constructing minimal
extensions for changing cofinalities of cardinals) should probably be used in order
to obtain minimal collapsing extensions.

Theorem 1.9. Let N o M be an extension, let u, A, x be regular cardinals in M
and wo<u <A< k. Assume that
() MEA =1 &2'<K,
(ii) N o M is a |k| = p-extension,
(iii) N2 M is a |A| = u-minimal extension,
(iv) Su NN c M for each E<p.
Then there exists a cardinal & in M, u <9 <A, such that

NECi(8) < .

Proof. We first claim that there is a & < p such that A N\ N ¢ M. For suppose not
and consider the forcing notion

Col(u, A)= U %A.

E<p
By our assumption
Col*(u, A) = Col™(u, A).
The set
9 ={D cCol™(u, 2):D € M & D is dense}
is of cardinality 2* in M. Therefore
NE|D|=spu
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Since Col™(u, 4) is u-closed in N one can easily construct, by induction in N, a
%-generic filter G on Col™(u, A). Hence G is an M-generic filter on Col™(u, A).
Then

M c M[G]cN,
and we have
MI[G]EAl=p & k= |A™Y|>y,

which yields a contradiction with (ii) and (iii).

Now, let £ be the least ordinal such that AN N ¢ M. Let 6 be the least ordinal
such that ¥5 NN ¢ M. Then N kcf(8) < & <y and by (iv), 6 > . But now we are
done because 0 is a cardinal in M. O

Corollary 1.10. Let N o M be an extension such that
(i) MEGCH, (ii) P(wg) NNc M,
(iii) M < N is |RY) = R,-minimal, (iv) NEIRY|=R,.

Then
NEcf(@0?) = w,.

We conclude this section with a lemma which we shall need later. It was
essentially proved by Magidor and Shelah (see [23], p. 367]). First, let us
introduce a new notion. Let N oM be an extension and let A <k be regular
cardinals in M. A function f € *c N N is called fast growing if f is unbounded in x
and for each Fe kN M there exists a & <A such that f(§+1)> F(f(8))
whenever § > &,,.

Lemma 1.11. Let N o M be an extension and let A < k be regular cardinals in M.
Then either

(a) there is no fast growing function from A into x in N, or

(b) for each f € *k N N unbounded in k, there exists an increasing ¢ € *A such
that f ° ¢ is fast growing.

Proof. Assume (a) is false, i.e. there exists an increasing fast growing function
he*NN. Let f € * N N be unbounded. (We may assume that f is increasing.)
By induction on § < A, we define two functions

¢(8) =min{n <A:f(n)>h(y(5) +1) for each L <&},
Y(8) =min{n <A:h(n)>f(P(8)) & n>y(£) for { <&}

Given F € “x N M increasing, for sufficiently large & we have

F(f(¢(EN) <Fh(yE)) <h(¥y(E)+ 1D <f(p(E+1). O



2. Trees

Our notion of a tree is closely related to Shelah’s notion of a tagged tree (see
[23, p- 359]). The main difference is in keeping the splitting criterion constant for
all trees (actually in many applications Shelah did the same).

The letters s, ¢, u, v will denote finite sequences of ordinals; s < means that s
is an initial segment of ¢ If s is a sequence with length(s) =, § an ordinal then
s~ denotes the sequence of length n + 1 extending s whose n + 1-th term is &.

Let T be a nonempty tree of finite sequences of ordinal numbers partially
ordered by <. Let § and R be functions defined on T such that
2.1 foreachv e T, R(v)isa cardinal,

(2.2) foreachveT, S(v)c P(R(v)),
(2.3) foreachveT, foreveryxeS(v), |x|=2.

If moreover

(2.4) T=UT, where

T={#) and T,.={v Evel, EcRW)),

then the ordered triple (T, R, S) is called a basic tree. We call R the ramification
and § the splitting criterion of the basic tree.
Note that if e.g. R(v) = k for all v € T then

T=U "k=""k

new

In the sequel we shall always consider one fixed basic tree (T, R, S) at a time.
To simplify the notation, we shall use the symbol T instead of (T, R, S) for a
basic tree.

For aset TcT, veT we put Succ(v, T)={EeR(v):v"EeT} and T(v)=
{ueT:u=vvu<v}. An element veT is called a splitting point of T if
Succ(v, T) € S(v).

A tree T is a subset of the basic tree T satisfying

i) (VveT)(Vnew)v'ineT,

) MveT)FueT)u>v.

A tree T is said to be perfect if
(2.5) for each u € T there exists a splitting point v € T with v>u.

The nth splitting level of T is defined as follows:

SL,.(T) = {v e T :v is a splitting point of T and
[{u <v:uis a splitting point of T}| =n}.
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Now, let us introduce some orders am

@ T<T iff TeT;
(b) T1=*T, iff T,<T,andeachv e T, which is a splitting

and for each n € w,
(¢) 1="T, iff T,<T, and SL,(T;) =SL.(T,) for each k <n.

Let us remark that for every tree T there exists a subtree S <* T satisfying the
following condition

(2.6) foreveryv eS, either Succ(v, S) € S(v)
or |Succ(v, §)| =1.

If a tree T satisfies condition (2.6) then the unique element (if any) s of
SLy(T) is called the trunk of T.

A subset A of w is called a splitting set of a tree T, denoted by A = SS(T), if for
each v € T, v is a splitting point of T if and only if length(v) € A. A tree having an
infinite splitting set is called regular.

Usually the splitting criterion § is defined in such a way that S(v) = P(R(v)) -
J for an ideal J over R(v). This explains the following definition. The set S(v) is
A-complete if for each A c P(R(v))—S(v) of size less than A we have
U A ¢ S(v). The splitting criterion § is A-complete if S(v) is A-complete for each
veT.

The set of branches Br(T') of a tree T is the set of all infinite sequences of
ordinals f for which f | n € T for each n € w. Consider the space

X=11 UT R(v)
equipped with the product topology, where each |, .z, R(v) carries the discrete
topology. The set of all branches of the basic tree Br(T') is a closed subset of X;
it is obvious that a nonempty set A = Br(T) is closed if and only if A =Br(T)
for some tree 7.
We shall need the following.

Theorem 2.1. Suppose that the splitting criterion is p-complete and let A< u. Let T
be a tree and let

Br(T)= EL<JA Ce

with every Cg a Borel subset of Br(T). Then there exist a tree S<*T and an
ordinal &, < A such that

BI'(S) = CEO'
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The theorem was proved by Shelah (see [23, pp. 362-363]) and is based on the
determinacy of Borel games, which was proved by Martin [17]. For some special
types of trees and when all C¢’s are closed, the results was proved by the first
author [5, p. 43] and Namba [19]. Let us remark that we shall only need the case
when all C¢’s are closed.

From this theorem we can obtain Balcar’s theorem [5, p. 47].

Theorem 2.2. If the splitting criterion is (2™°)*-complete, then every perfect tree T
contains a regular subtree S <* T.

Proof. Without loss of generality we may assume that T satisfies (2.6). For each
Ae[w]?let

E(A)={feBr(T):A={new:f | nisasplitting point in T}}.
The set E(A) is closed in Br(T) and Br(T) =|J {E(A):A € [w]®}. As there are
only 2™ subsets of w and the splitting criterion is (2°°)*-complete, by Theorem

2.1 there exist an A € [w]® and a tree S <* T such that Br(S) c E(A). Clearly S is
regular. O

Since we shall use sets of subtrees of a given basic tree as forcing notions, it is
useful to consider first some properties of such sets. A set & of trees is called
hereditary if T € %, S <* T implies S € X. A set ¥ is said to be fusion closed if
the following condition is satisfied:

(2.7) if for each n € w there is a tree S € # such that T<" S then T € #.
A set of trees X is said to be a family of trees if

(2.8) there exist a set %, = ¥ and an increasing function r € “w such that
(a) H, is hereditary and dense in (¢, <),
and for each n € w, each tree T € ¥,
(b) if v € SL,(,)(T) then there exists a tree S € ¥
such that § <° T(v),
(c) if W, <®T(v), W, € X for each v € SL,,,,(T) then
there exist trees Z, <° W, such that
U {Zu ve SL,.(,,)(T)} e X.
Let us give some examples. The set A(T, R, §) of all perfect subtrees of a given
basic tree (T, R, §) is a family of trees (with %, = % = A(T, R, §) and r(n) = n).
We shall also consider a special type of perfect trees: a tree T < T is said to be
an §-Namba tree if
(2.9) there exists a trunk s € T and each v € T, v =s¢ is a splitting point of 7.

The set Nm(T, R, S) (or simply Nm(S)) of all §-Namba trees is a family of trees
(again %, = H =Nm(S), r(n) =n).
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Let T=""0, R(v)= o, S(v)=[w] for each v € ““w. Then A(T, R, §) is the
rational perfect set forcing of Miller [18] and Nm(T, R, §) is Laver’s forcing [15].

If T =""w, and for each v € T, R(v) = @, and S(v) =[w,]*?, then A(T, R, S)

is the forcing of [3] and Nm(T, R, §) is Namba forcing [19].

If T=""w, and for each ve T, R(v)= w,, S(v)=|w,]*", then A(T, R, S)
is the IX;|=NR,-minimal forcing of Prikry and Nm(T, R, S) is the one of
Abraham [1].

Finally, if T="92, R(v)={0,1}, S(v)={{0,1}} for each ve =2, then
A(T, R, 8) is Sacks forcing [21] and Nm(T, R, §) is Cohen forcing.

We begin with introducing a condition on the family of trees which guarantees
that certain countable sets will not be added in the corresponding generic
extension.

A family of trees X is said to be A-indecomposable if

(2.10) for each system {a; €r.0.(¥, <):E <A} such that \/¢.,as =1, for each
T € % such that $(v) is A"-complete for at least one v € SLo(T), there
exist a { <A and a tree S <"T, S € ¥ such that § <a,.

Now, following the idea of [3] we shall prove

5 2! Ly e

Theorem 2.3. Let & be a A-indecomposable fusion closed family of trees and let
the splitting criterion be (A™)*"-complete. Then the complete Boolean algebra
r.o.(, <) is (Ro, A)-distributive, i.e. the forcing (¥, <) does not add a new
function from o into A.

Proof. Leta, er.o.(¥, <), new, {€A, and

it is sufficient to prove that

(VT eX)PBpe“A)AT' e X)T'<T&T'< N\ a, 4(n)
Given TeXH we shall find a tree T.e¥, T.<7, and a function
H:U,co SL,(n)(T.) = 4 such that

(Vn e w)(Yu € SL,,,,(T..))(AV € X) T(v) =V <a, uq).

We proceed by induction. Let T;=T7. Assume that T,eX and
H | Uk<, SL,y(T,,) have already been constructed. By (2.8)(b), for each
u € SL,(,)(T;,) there exists a tree W, € % such that W, <° T,(u). By (2.10) there
exist an H(u) <A and a tree S, € ¥ such that S, <° W, and S, < a,, y(,)- Therefore
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by (2.8)(c), there are Z, <°S, (u € SL,(,)(7;,)) such that
U{Z,:ueSL,,(T,)} e X.

Let us denote this tree by T,,.;.

Let T =( \new I.. One can readily verify that for each n € w, T.. <" T,,, so we
have T.e K. Let W< T,, WeH.

Now, for each ¢ € “A, we set

T?= N U{Wu):ueS,u,(T.)NW & H(u) = ¢(n)}.

Every T? is a tree (not necessarily in %), hence Br(T?) is a closed subset of
Br(W). Observe that Br(W)=Jscoy Br(T?®). Since the splitting criterion is
(A%)*-complete, we can use Theorem 2.1 and obtain a T'<* W such that
T'< T? for some ¢ € “A. Obviously T' € ¥.

It remains to show that for every n € w,

T'<s\/{S,:ueSL,(T.) N W & H(u) = ¢(n)}.
Suppose not. Then there exists a tree Z € ¥ such that Z<T' and Z A §, =0 for
every u € SL,,,(T.) "W, H(u) = ¢(n). Then
ZT' cT?cU{Wu):u eSLuy(T) N W, H(u) = $(n))
U {S,:u € SL,(,(T.) N W, H(u) = ¢(n)}.
Let f € Br(Z). Then f e Br(T.)NBr(T®)NBr(W). Let m be such that u=

f 1 meSL,,(T.). Clearly H(u) = ¢(n). By (2.8)(b) there exists a tree Z' € X,
Z'<Z(u). Then Z' c W(u) c S,, a contradiction. 0O

By a slight modification of the proof above one can easily prove

Theorem 2.4. Let ¥ be a A-indecomposable fusion closed family of trees and let
the splitting criterion be A*-complete. Then the complete Boolean algebra
r.0.(¥, <) is (Ro, A, A)-distributive, provided cf(A) > w,, i.e. every function from
wy into A in the generic extension is bounded by a function from the ground model.

Shelah [23] has obtained a stronger result. Since we shall need it later, we recall
it. First using methods very similar to those used in the proof of Theorem 2.1,
Shelah [23, p. 364] proved:

Theorem 2.5. Let A be a regular uncountable cardinal. Suppose that for eachve T
either the set S(v) is A*-complete or \R(v)| < A. Then for every mapping H:T— A
there are a E <A and a tree S <* T such that H(v) < & whenever v € .

Let us consider the following property of a family of trees J:
(2.11) for each v €SL,,(T), n € , if for each § € Succ(v, T), W c T(v"E),
W € ¥, then there is a W, eX such that W,<°T(v) and W, c
U {W: & € Succ(v, T)}.
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Now, using Theorem 2.5 instead of Theorem 2.1 in a similar way as in

Theorem 2.3 we can easily show (cf. [23, p. 365, Theorem 3.8]):

Theorem 2.6. Let A be a regular uncountable cardinal and let # be a A-
indecomposable fusion closed family of trees. Suppose that ¥ satisfies (2.11) and
that for each v €T either the set S(v) is A*-complete or |R(v)|<A. Then the
complete Boolean algebra r.o0.(¥, <) is (Ro, A, A)-distributive.

Proof. Let a, , er.0.(¥, <), n € w, n € A, and assume that

A Va,,=1

new nei

We shall show

Va,,=1
Eeir ne\w n\e/E mn

i od e

L4 ¥ X
YV Imust prove

e ek
new 1€gy

Given T € %, much as in the proof of Theorem 2.3 we first find a tree T, e X

and a function H :U,ee SLyn)(T)— A such that
(Vne w)(VveSL,(T.)AV e X) T(v)<V =< \/( Ay e
n<H(v)

We proceed by induction. Let T, = T. Assume that T,, € X, H | U<, SL,y(T.)
have already been defined. Let u € SL,,,(T,,). by (2.8)(b) there is a tree W, e &
such that W, <°T,(u). If S(u) is A*-complete then by (2.10) we can find an
H(u)< A and a tree S, € ¥ such that S, <°W, and S, <a, y(.). Otherwise, pick
for each & e Succ(u, T,) a tree W< T,(u"6), Ws;€¥H, and &; <A such that
Ws <a, g, Since A is reguiar and jSucc(u, T,)j < A, we can define

H(u) =sup{&s; +1:6 € Succ(y, T,)} <A.
By (2.11) there is an S, <® T, (u) with S, € ¥ and S, = |J {W;:6 € Succ(y, T,)}.

Notice that §, < \/.

yre M o
(920 LU0 54 L LY V Oo<t{u)*n,o*

Now, by (2.8)(c) we can find Z, <°S, (u € SL,(,)(7,)) such that | {Z,:ue
SL,.)(T.)} € ¥; let us define T,,., =\ {Z,:u € SL,,,(T,)}.

Let T.=( \ucw I.; then T,eX. Choose W=<T,, WeH, and extend the
function H to the whole of W in such a way that H(v) <A for every v e W. Using
Theorem 2.5 there are a & <A and a tree S <* W such that H(v) < §, whenever
veS. Clearly S € ¥ and

SS/\ \/ a,,,c. d

new ek

Let us remark that conditions (2.10) and (2.11) are closely related to the

Arnl

S-condition of Shelah [23, p. 360].
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3. Special trees

In this section we shall investigate properties of some special types of trees

considering them as candidates for a forcing notion. We shall be concerned with
perfect tree forcing, Namba forcing and their generalizations.

3.1. S-perfect trees

We start with a generalization of the trees which were introduced for forcing
purposes by the first author [3, 5] and considered later e.g. in [13, p. 289], [9, 23].

Let K be an at most countable set of uncountable regular cardinals. For each
k € K, let J, be an ideal over k. Moreover, let I be a mapping of @ onto K such
that I'"'({x}) is infinite for each k € K.

Consider the basic tree (T, R, §), were T =~"sup K and the ramification R and
the splitting criterion § are defined as follows

(3.1) if length(v) = n then R(v) =I'(n) and S(v) = P(I'(n)) — J (-

A tree T c T is said to be S-perfect if T satisfies conditions (2.6) and (3.2)
where

(3.2) foreach v eT, for each k € K, there exist a splitting
point s = v, s € T such that I'(length(s)) = k.

The set of all §-perfect trees will be denoted by Pf(S).

Let us remark that every S-perfect tree is perfect in the sense of Section 2. If
the set I has more than one element the converse need not be true.

Since the properties of Pf(§) we are interested in do not depend on the
mapping I" we can always assume that

(3.3) (a) if K is finite, K = {Ky, . . . , K,_,}, then I'(m) = k; where
i=m (modn);
(b) if K is infinite, K = {kq, K, . .., K, . .}, then I'is the sequence
Ko, K1, Ko, K1, K2, Ko, K1, Ko, K3, ..., Ko, Kiy oo, Kpy oo

Moreover, if the ideals J,. are of the form [k]™* for each k € K, we shall simply
say K-perfect and Pf(K) instead of S-perfect and Pf(S), respectively. And finally,
Pf(k, . .., k,—1) = Pf({Kko, . . . , Kpn_1}).

One can easily see that in general the set of trees Pf(S) is neither hereditary nor
fusion closed. However, Pf($) contains a nice dense subset. Let T be an S-perfect
tree. We say that T has an ordered splitting if

(3.4) for each splitting point v € 7, if v € SL,,(T) then I'(sn) = I'(length((v)).

It is easily seen that the set Pf°(S) of all S-perfect trees with an ordered splitting
is dense in P{(S).
We start with the following simple lemma.
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Lemma 3.1. The set Pf°%(8) is a fusion closed family of trees. Moreover, if for
some K the ideal J is A*-complete, then P{°(S) is A-indecomposable.

Proof. One can readily verify that Pf°(S) is fusion closed.

Now, let T e Pf**(S) and let S<*T. Let v €S be arbitrary. Since S is a tree
there exists a branch f € Br(S) which goes through the node v. Since f € Br(T),
for any k € K there exists k > length(v) such that f | k is a splitting point of T and
I'(k) = k. Since S <* T, the node f | k is a splitting point of S as well. The same
argument shows that S has an ordered splitting. Thus Pf*(S) is hereditary and
(2.8)(a) holds.

Without loss of generality we may assume that J, is A"-complete. First, let us
notice the following simple fact:

(3.5) if T ePf(S), v e SLy(T) is such that I'(length(v)) = I'(0) then there exists
a tree S € Pf(§) with S<°T.

Let us define the function r € “w as follows: if (3.3)(a) holds then we set
r(k)=k -n (ke w); if (3.3)(b) holds then we set r(k)=k(k+3)/2 (k€ w).

Nhvinnely T\ = & far aac o m Te
JOVIOUSLY, 1\ Kg IO0T €aCil K€ W. US

(2.8)(b) and (c).

We show that (2.10) holds. Let ar er.o.(Pf(S))=r.0.(Pf(S)), £<A4,
Ve<rae =1. Given T € Pf*(S) consider sy € SLo(T) = SL,)(T). For each £e
Succ(sz, T), T(sy"&) is an S-perfect tree, hence there exist an f(§) <A and an
S-perfect tree T such that T; <a;) and T; < T(sy"§). By the completeness of
the ideal J,, there exist a set A eJ;, AcSucc(sy, T), and an { <A such that
f(E)=¢ for each Ee€ A. Let us set W =Ugca Tz. Then W=<°T and W e P{(S),
W <a,. Using (3.5) we get S e Pf(S) with S<°W. O

As a consequence of this lemma and Theorems 2.3, 2.4 and 2.6 we obtain

Theorem 3.2. (a) If for each k€K the ideal J, is (A*)*-complete, then the
complete Boolean algebra r.o.(P(S)) is (Ry, A)-distributive.

(b) If for each k € K the ideal J, is A"-complete, then r.o0.(Pf(S)) is (Ry, A, A)-
distributive, provided cf(1) > wy.

(¢) If A is a regular uncountable cardinal and for each k € K either the ideal J, is
A*-complete or k <A, then r.0.(Pf(8)) is (Ry, A, A)-distributive.

Proof. Since Pf*(S) is dense in Pf(S), (a) and (b) are obvious. One can easily
verify that Pf>*(S) satisfies (2.11) too. Hence by Theorem 2.6 we get (¢). O

Let us observe that a regular tree T < T is S-perfect if and only if the set SS(T)
meets each I'"'({k}) (k€ K) in an infinite set. As an easy consequence of
Theorem 2.2 we get
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Theorem 3.3. If each ideal J,, k € K, is (2*)*-complete then the set of all regular
S-perfect trees is dense in P(S).

The following theorem generalizes the minimality results for Pf(x) obtained by
Prikry (k = w,) and the first author (x > w,). The proof will follow the obvious
idea for proving such results as given e.g. in [13, pp. 284-288].

Theorem 3.4. Suppose k,=max K and let J,, o [k,]~*°. If for each k € K the ideal
J.. is o-complete, then the forcing notion P(S) is cf(x,) = wo-minimal.

Proof. Let Pf(S) be constructed in a model M and let G be an M-generic filter on
Pf(S). Since the generic function g =\ {s7: T € G} is a cofinal function from w
to ko and M[G]= M|g], it remains to show that whenever N is a model of ZFC
such that M = N ¢ M[G] and N Ecf(x,) = w,, then N = M[G].

Let fand Ty € G be such that

Tyl “f is a function from @ to K.

We shall show that either f is bounded by a function from the ground model M,
or else M[f]= M[G].
For each n € w and each { <k let a(n, &) =||f(7i) = £|| and consider

Do={S<Ty:(Vne w)|{{ eky:S Ana(n, §)#0}| <xko}
and
B, ={S<Ty:(VT<S)3new) |{{eko: T Aa(n, §)#0}| = Ko}

It is easily seen that P, U @, is dense below Ty, hence (Z,U 2,) N G #9.
If Sy € 9,N G let us define the function h by letting, for each n € w,

h(n) =sup{{ € ko: 5 A a(n, ) #0}.
Since k, is regular, h € “k,. Obviously 4 € M and for each n € @
Solk“f(fi)<h(n)””.

Now, suppose that So€ 2; N G. We shall show that the set of all conditions
S <8, such that

S IF“g can be recovered from f”

is dense below S,.
Let T < S, be arbitrary. First we show

(3.6) if v e T is a splitting point of T and n € w then there are n, € ®, S, <'T(v)
and for each & € Succ(v, S,) &< Kk, such that
(i) (VEeSucc(v, S,)) S,(v"E) IFf ()= {57
(ii) (VE & eSucc(v, S,)) E+E' — L5+ L5
(iii) (Vu € SLy(S,)) R(u) = I'(n).
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To prove (3.6), fix a splitting point v € T and n € w. Since T < S, and S, € %,
for each & e Succ(v, T) there is n: € @ such that the set {{ex:T(v7E) A
a(ng, §) #0} is of size k,. Since § is o-complete there are X, € $(v) and n, € @
such that nz = n, whenever & € X,. Since [Succ(v, T)| < k,, one can easily find
for each § € X, a tree Ty < T(v~&) and ¢& < Kk such that

(a) Tz <a(n,, £5);

(b) E+E—> #8355

(¢) R(sg)=TI(n).

Now it suffices to set S, =\ {T;: £ € X, }. Then S, <° T(v) and (i)-(iii) of (3.6)
hald

Now, by induction on # € w, we shall construct a sequence of S-perfect trees
T,'> T,'=---"=T,.,""'=- - . and two functions H,, H, as follows.

Let v =57, n=0. By (3.6) there are n, € w, S, <°T and £% (& € Succ(v, S,))
such that (i)—(iii) are satisfied. Let T, = S, and define

HO(U) =Ny,
H,(v"E)=§% for each £ € Succ(v, Tp).

Suppose that T,°= T, '=- - ""'= T, and Hy | U<, SLi(T), Hy | U< {v"E:vE
SL,(T:), & € Succ(v, T;)} have been constructed and that for each k£ < n and each
ueSL,,.(T) we have R(u)=I'(k). By (3.6) for each veSL,,(T,) there are
n, € w, S, <°T,(v) and < K, for all £ e Succ(v, S,) such that (i) and (ii) hold
and R(u) =I'(n + 1) whenever u € SL,(S,). Let

T, =U{S,:veSL, . (T,)}
and define
Hy(v)=n, foreachveSL,, (T, .1),
H(v"E)=¢5 for each v € SL, (T, +1), & € Succ(v, T,.,).

Let T.=( \ew T It is obvious that T, e Pf(S). The set {T..: T < S;} is dense
below S, € G, hence T, € G for some T <S,. One can easily see that if we define
(in M[f]) the function

H:\JSLA(T.)— T,

by letting, for each n € @ and v € SL,(T..),

H(v)=v"§ ifand onlyif f(Hy(v))=H(v"E),
then we get

{g}=MN {Tm(u) :(Vv=su)ve U SL(T.)—>H(v)e Tm(u)},
and thus g e M[f]. O

In our applications of the forcing notion Pf(S) in Section 6 we shall need
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Theorem 3.5. Let A be an uncountable regular cardinal and suppose that for some
kekK

(3.7) there are sets Agel, (§e€i) such that gy A =k and Ug Az €J,
whenever { <A.

Then for any M-generic filter G on P{(S), in M[G] A is cofinal with w,.

Proof. Let ny, ny,...,n,, ... (k€w) be an increasing sequence of natural
numbers such that I'(n,) = kx for each k € w. Suppose that G c Pf(S) is M-generic
and let g = {s7:T € G}. Without loss of generality the sets A (§€A) are
pairwise disjoint. It is not difficult to see that the function f defined by

flky=§ iff gln)eA: (kew)

is cofinal in A. O
3.2. Namba forcing

Another type of trees was studied by Namba [19]. We shall investigate a
generalization of this forcing notion as introduced by several authors, e.g. [23].

Let (T, R, S) be a basic tree. Let us recall that a tree T < T is called an
S-Namba tree if it satisfies condition (2.9), i.e. T has a trunk s; and all nodes
above sy are splitting. If the basic tree is given as in Subsection 3.1 with
J. =[k]™* (k € K), we shall denote by Nm(K) the set of corresponding S-Namba
trees.

Lemma 3.6. The set Nm(S) of all S-Namba trees is a hereditary fusion closed
family of trees. Moreover, if the splitting criterion S is A*-complete, then Nm(S) is
A-indecomposable.

Proof. Obviously, Nm(S) is hereditary and fusion closed. It is easily seen that
conditions (2.8)(b) and (c) are fulfilled as well; it suffices to let r(r) = n for each
n € w. It remains to verify condition (2.10).

Let a; € r.0.(Nm(S)) (& <A) such that \/., a; =1. Suppose T € Nm(S) and

AL <'T)AEL <A)(Tye Nm(S) & Ty < a).
We shall construct an § € Nm(S) with S <° T such that for each t € S
AT <°TE))BEE<A) T’ <a;.

This will yield a contradiction since then S <®7 and S cannot be extended to an
element below any a;.
Let

S={teT:~@AT' <"TE)AE<A) T'<a}.
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We shall show that S € Nm(S). By assumption, s; €S. Let t=s,, t€S and
suppose Succ(t, S) ¢ S(¢). This means that

—_ APPLe ) ot

[ AR LN . ~ T
{§eR):1" 5el
A

o (2
& (3

For each { <A put

X, ={EeR(0):rEeT& AT <"T("E) T’ <a,}.

Since the splitting criterion § is A*-complete, there is a ;<A such that
X, €8(t). Now, for each & € X, choose a T¥<° T(¢+"&) such that T5=<a,,. Then
T'=Ugex, T*€Nm(S), T'<"T(t) and T'<ay, This implies that 1¢S, a
contradiction. O

As a consequence of this lemma and Theorems 2.3 and 2.4 we obtain:

Theorem 3.7. (a) If the splitting criterion is (A™)*-complete, then the complete
Boolean algebra r.o.(Nm(S)) is (X,, A)-distributive.

(b) If the splitting criterion is A*-complete, then r.0.(Nm(S)) is (R, 4, A)-
distributive, provided cf(A) > w,.

In the same way as in the case of S-perfect trees (Theorem 3.5) one can easily
prove the following:

Theorem 3.8. Suppose that the basic tree is as in subsection 3.1 and assume that
for some k € K and an uncountable regular cardinal A condition (3.7) is satisfied.
Then for every M-generic filter G on Nm(S), in M[G] A is cofinal with w,.

4. Perfect trees versus Namba forcing

As we showed in Section 3 both forcing notions Pf(S) and Nm(S) have the
same distributivity properties (Theorems 3.2, 3.5 and 3.7, 3.8). However, there
are properties which can distinguish both forcing notions. Magidor and Shelah
[23, pp. 366-368] proved that under CH the forcing notions Nm(w,) and Pf(w,)
are different: the former one adds a fast growing function from w, to w,, the
latter one does not. This result can be generalized.

Theorem 4.1. If J, is (2%)"-complete for each x €K and if supK € K, then
whenever G is an M-generic filter on Pf(S), the generic extension M[G] does not
contain a fast growing function from w, into sup K.

Proof. Let ko =max K. If G is an M-generic filter on Pf(S) then g= {sr: T €
G} € “kp is unbounded in x,. So by Lemma 1.11 it is sufficient to show that the
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generic function g has no fast growing part. Or more formally, we have to prove
(VT e Pf(S))(VA € [w]®)(3S < T)(AH € "k, N M)(Vm € w)
Fkew)k=m& St “H(g(ca(k))” >glcalk +1))7,

where for every X € [w]® cx is the counting function of X, i.e. ¢x(0) =min X,

cx(n +1)=min{k € X :k > cx(n)} (n € o).

Let T e Pf(S) and A € [w]® be arbitrary. As the set of all regular K-perfect
trees is dense in Pf(S) by Theorem 3.3, without loss of generality we may assume
that 7 is regular and has an ordered splitting.

For each branch f € Br(T) define

Ar={meA:f(m)>max{f(k):ke A&k <m}
and for each Bc A let
Ep={feB1(T):A; =B}.

By Theorem 2.1 there are T,<*T and Byc A such that f e E; whenever
f € Br(Ty). Now there are two possible cases:
Case 1. B, is finite (obviously B, is always nonempty). Let B=A — B,,
ny = max B, and define
H(a) = %Yo (a € KO)’

where y,=vy(ng) for some vy e T such that length(vg) >n,. Let S € Pi(S) be
such that S < Ty(v,). Clearly for each ke B and each veSN*"'kx, we have
v(k) <y, and H(v(k)) = yo. In particular, for each k, m € A, if n, <k <m then

S I-<g(m) < H(g(k)) = ¥o".

Case 11: B, is infinite. Find B, € [By]® and a regular S-perfect tree T; < T, such
that if D = SS(7;) then

@) (3”n)(VYv € T;) length(v) = cp(2n + 1) = R(v) = Ky,
(i) (Vn e w)(Vv e T)length(v) = cp(2n)— R(v) = Ky,
(i) (Vrew)cp(2n)<cg(2n+1)<cp(2r)<cp(2r+1)<cg,(2n +2).
For each v € T, N “s®k, pick &, € Succ(v, T;), &, > max ran(v) and set
S, =U{Ti(v"§,):v € SL,u(Th)}-
One can easily check that S =(),c0 S, is an S-perfect tree and S<7;. Let us

define for each § € k

H(§) = min{y € Ko: (Vu esSN kU "E)(Eln € w)(Av=u)

v eSLo(T) & v>E.}.
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Now S and H are as required: obviously H € M and for each n € w and each u € §
such that length(u) > cp,(2n + 1) we have

where v = u | cg,(2n) is such that v e SL,,(T;) N S.
Since B,cBoc A, if cp(2n)=ca(k) then cp(2Zn+1)=cs(k+1) and
u(cp,(2n + 1)) = u(ca(k + 1)). This means

S Ik ‘g is not fast growing on A”, O

On the other hand, by a simple computation we get
Theorem 4.2. Let the basic tree (T, R, S) be as in subsection 3.1. If for some
K € K and an uncountable regular cardinal A (3. 7) holds, then for every M -genertc
| & P APy S PN AATLY nasntnn ~ £ocd ormtisses

]luer G on NI ) € ge. 1eric extension | llUJ contains a ju.u 5ruwms _[ulu,uun

from @, into A.

By Theorem 3.4 the forcing notion Pf(S) is cf(x)= wo-minimal provided
x=max K and the splitting criterion § is o-complete. If xk =A" for some
uncountable cardinal A and if the splitting criterion § is (A™)*-complete (e.g.
under GCH, if A is regular and § is xk-complete) then Nm(S) is also cf(x) = w,-
minimal (by Theorems 1.1 and 3.7). However, as we shall now show, if x is a
limit cardinal, then, even if the splitting criterion is x-complete, the forcing
notion Nm(S) need not be cf(x) = wy-minimal.

First, let us recall the definition of Prikry’s forcing Pr (see [20]). Let J be a
normal prime ideal on a measurable cardinal k. The forcing conditions are pairs
(s, A) where s € []™“, A € [k]*~J and max s <min A, ordered by (s, A) < (¢, B)
iff s2¢t, Ac B and s —t c B. Prikry {20] showed that the forcing Pr changes the
cofinality of the cardinal k to w, without adding new subsets of smaller cardinals.
Dehornoy [7] proved that r.o (Pr) is isomorphic to r.0.{(Nm($)), where T ="k,
R(v) =k and S(v) = P(x) —J for v € T, provided J is a normal prime ideal
on k. We shall show that in this case Nm(S) (an
minimal.

So let us assume that x is a measurable cardinal, J is a normal prime ideal on x
and

d hence Pr) is not cf(x) = w4

LI CRX,
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Let Pn be the set of all S-Namba trees T which satisfy the following condition:

(4.2) (i) there is a set Ar €J™ such that for each v=s,, ve T iff v =s;"u for
some increasing sequence u € ““Ar;
(ii) for each v € T and each & € Succ(v, T), if v = sy then § > max ran(v).

Since J is a normal prim 1

Since rmal rd to show that Pn is a dense subset

har hat 18 a dense su
1

e s
of Nm(S). To simplify the notation we shall identify a finite set s € [K]~“ with the
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unique strictly increasing function from length(s) onto s. Thus, under this
identification, if Ae€J* and v e ““kx then v7[A]™® is a tree T € Pn such that
sr=v and A; = A. Obviously, for each T, S € Pn we have T <3S if and only if
TcSand Ay cS.

For a proof of the following lemma see [13, p. 266].

Lemma 4.3. Let B be a complete subalgebra of a complete Boolean algebra D.
Then B is locally equal to D if and only if M[G]= M[G N B] whenever G is an
M-generic filter on D.

Now we shall prove the promised result.

Theorem 4.4. Let J be a normal prime ideal on a measurable cardinal x and let
(T, R, S) be as in (4.1). If G is an M-generic filter on Nm(S), then M[G] 2 M is
not a cf(x) = wy-minimal extension.

Remark. Note that by Theorem 3.8 M[G] o M is a cf(k) = we-extension.

Proof. Since Pn is dense in Nm(S), we must find a complete Boolean subalgebra
B* of B =r.0.(Pn) which is not locally equal to r.o.(Pn) yet the forcing with B*
changes the cofinality of k to w,.

For each T € Pn let us define a tree T* c T as follows

veT* iff there exists a u € T such that length () > length(v)
and for each n € w, if length(v) > n then v(n) is such that
(i) u(n —1)<v(n)<u(n+1) whenever n is odd and
un—)<u@n+1)-1;
(ii) v(n) = u(n) otherwise.
Let Pn*={T*:T ePn}. It is not difficult to see that (Pn*, <) is a separative
partially ordered set. Let us define a function y:Pn— Pn* by letting

w(T)=T* (T €Pn).

We claim that 1 is a normal mapping. Obviously y is order preserving and onto,
so it remains to show that whenever 7 € Pn and S$* < T*, there exists R < T such
that R* < §*. Define

ueR iff (ueT)& (JveS)(Vnew)
2n € dom(v) N dom(u)— v(2n) = u(2n).
It can be easily checked that R* = S*. Thus v is a normal mapping. And so by
Lemma 1.9 B* = ¢(r.0.(Pn*)) is a complete subalgebra of B =r.0.(Pn).
It is not hard to verify that forcing with Pn* changes the cofinality of k to w,.

Thus if we show that B* is not locally equal to B, our proof will be complete. To
do this it suffices to find an element b € B such that

B,={cAna:ceB}#B,={cAa:ce B*}

whenever a € B and a < b. We will show that b =1 works.
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a € B be an arbitrary non-zero element. Since Pn is dense in B, there is
7;,<a Toe Pn such that n =length(s;,) is odd. Let Ay eJ” be such that
=55, [Ar]"* and let A, = {&, §;, &, ..., &,, ...} be an enumeration of the
set Ay, such that §, <&, <§,<---<§,<---(nek). Let us set

So=s7."Es"E [Ar, — {Eo» E1, £2}]° and

(1] 565 :u; 52 <25

S =STOA§1A~§2 [Ar,— {0, &1, &7
Obviously Sy, $; < Ty <a, hence S, S, € B, and §; A S, = 0. It is sufficient to show
that S, ¢ B;.
Suppose S, € B;. Then Sy= Ty A P(u) for some u er.o.(Pn*). Let A = Pn* be
such that u =\/ A. Hence
So=ToA\/ {SePn:(3TeA)S*<T}.

Since S,#0, there exist T €A and S € Pn such that S*<7 and S<3§;. Let us
remark that for any v € 8, length(v) > n, we have v(n) = §,. We define a tree W
as follows

veW e (Ju)(ueS & (Vi<length(v))(i #n— v(i) = u(i))

AWASDFEA Y 7 21/
It is easy to see that W* = S* So W*=T and therefore W <S§,. On the other
rnnd YIJ — © emamdan A sl e © C _n mM
1aIld ¥Y == 01, LOIILLAUICULE g N\ D1 — U LJ

Remark. The above proof shows essentially that the generic function g:w— k

dalk . hiois & - W X

cannot be recovered from its even part {g(2n):n € w}.

Let us close this section with a few remarks on the product P X Q where P and
Q are Nm(k) or Pf(x) (i.e. the basic tree is T = ~“k, R(v) = k, S(v) =[x]* for
each veT). The forcing P X Q changes the cofinality of x to w,, the
corresponding generic extension is never cf(k) = wo,-minimal and hence, even if
forcing with neither P nor Q) adds reals, forcing with the product may add reals.
Actually, for k=X, by Theorem 1.1 the forcing P X Q must add a real.
Moreover, Hart observed that forcing by Nm{k) X Nm(k) adds a Cohen real.
Indeed, the mapping vy defined on all pairs (7, S)e Nm(x) X Nm(k) with
length{s,) = length{ss} by

w(T,S)=p iff (i) p €2, where n =length(s7), and
(i) p(k) =0iff s,-(k) <ss(k) for each k <n,

is normal.

5. Collapsing x™ to D

T at - ha an n~ranntahla ragilar rardinal an lat T ha an sdanl An 2~ ciinkh “\n‘
LANL AN UL all ullivuulitauvie A\-suu:u Ladluliiial aliu Ivl J UL All JuLvdl Ull A DULll uiau
Jo[k]™ . Let the basic tree (T, R, §) be such that T ="k, R(v)=k and
S(v) = P(x) — J for each v e T. It is easily seen that both Pf(§) and Nm(S) satisfy
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the (2)*-cc and do not satisfy the x-cc. Even if we assume GCH, in general we
cannot give a better estimate than x**-cc. Actually, if k is a successor cardinal,
then this estimate cannot be improved since e.g. under GCH both forcing notions
collapse k* to x by Theorems 1.4, 3.2, 3.5 and 3.7, 3.8 (and as we already
mentioned, this result is also proved by Shelah [23, p. 440]).

By Jensen’s Covering Lemma, if 0% does not exist then whenever the cofinality
of a regular uncountable cardinal k is changed to w,, k must be collapsed. On the
other hand, if x is a measurable cardinal and J a normal prime ideal on k, then
the forcing notion Nm(S) for S defined by S(v) = P(x) —J (v € T) is equivalent

ta Prikrv’e forcine Pr and it doeg not collance cardinale €A it ic natnural ta aclk the
1O OIIKTY § I0ICINE T aniG 1t GOCS NIOT COuaPpsT CarGinass. SO 1t 1S Nqiura: 1O as< ull

following question: if § is as above, does forcing with P{(S) preserve cardinals?

In general the answer is negative. Let us denote by § the least cardinal A such
that the Boolean algebra P(w)/fin fails to be (4, 2™)-distributive. In [2] the
authors showed that r.0.(#(w)/fin) collapses 2™ to ). By Theorem 2.2 (compare
[5], p. 48, Balcar’s theorem]) one can easily see that the complete Boolean
algebra r.0.(?(w)/fin) can be completely embedded into r.o.(Pf(S)) provided
S(v)=1J for each ve T and J is (2™)*-complete: the complete embedding is
induced by mapping each set X € [w]® to the Boolean union of the set of all
regular S-perfect trees T such that SS(T) is equal to X modulo a finite set. So if
h < 2%, 2% is collapsed to §). However, this argument does not work if we assume
e.g. CH.

Our goal in this section is to prove the following theorem which shows that
under some assumptions, when forcing with Pf(S), not only 2™ but x* is collapsed
to b as well.

Theorem 5.1. Let the basic tree (T, R,S) be as in subsection 3.1, let k=
supKeK and let J. o[k~ . If 2=k" and if the splitting criterion S is
(2%)*-complete, then PL(S) collapses k™ to §.

Remark. Let us note that under the assumption 2¥= k" the forcing notion Pf(S)
satisfies the k" *-cc and thus all cardinals above x* are preserved.

Let the basic tree (T, R, S) be as in the assumptions of Theorem 5.1. If T is a
regular S-perfect tree and if A € K then we denote

SS,(T) = SS(T) N I *({A}).

So for v e T with length(v) € SS,(T) we have R(v) = A.
Let us recall that for every infinite set A ¢ @, ¢4 is the counting function of A.
We shall prove Theorem 5.1 in a sequence of lemmas. Until the end of the
proof of Theorem 5.1 we shall assume that the basic tree (T, R, §) as described
above is fixed (i.e. k=max K, J. 2[x]"* and § is (2*)*-complete) and that
2¥=k".
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Lemma 5.2. For every S-perfect tree T there is a regular S-perfect tree S such that
S=<Tand

(5.1) if A =SS(S) then SS.(S)=A ~ {ca(3m +2):m € w}.

Proof. By Theorem 3.3 there exists a regular S-perfect tree W with W <T. By
the definition of S-perfect tree, for every A€ K the set SS,(W) is infinite.
Therefore by induction one can easily find a set A = SS(W) such that A N SS,(W)
is infinite for each Ae K and SS,(W)NA=A~ {c,3m +2):m € w}.

Now, take any regular S-perfect tree S=<W such that SS(S)=4; S is as
required. O

Let PfL(S) denote the set of all regular S-perfect trees satisfying (5.1). By the

| P i bhhosra tricd sasmss ad DEr O\ 2o Ao S DO
ICHIkc Wlllbll w¢E lldVC Jubl. PIOvVCU 'L, D) lb ucubc lll rny).

We shall need the following notion. Let T c T be a tree. For each te T let
(}c T be such that Spr (1\ is a cnh no noint of T, SPT(!)?! and no u e T,

™n_.
vT [BeT-28 ng potr
su

<spr(¢) is splitting.

Lemma 5.3. Let T e Pfi(S), B=SS,(T) and let {S::{ ek} be a set of regular
S-perfect trees such that SS. (Q._\ = h‘..(?n\ ;new} for each £ € k. Then there exists

LD IFCCY 220070 SIREL DO R \EBA\STE = W et € EARNY

a regular S-perfect tree S < T such that SSK(S) {cB(Zn) new} and SAS; =0
for all § € k.

Proof. Let A =SS(T).

For each n e w and each v e TN“CVk let us fix a function f, with domain
Succ(v, T) such that

(1) £, (&) € Succ(spr(v~E)) for each & € Succ(v, T),
and in addition

(ii) |{& e Succ(v, T):spr(v"E)f,(E) € S¢ }| < k for each { < k.
This is always possible: since length(spr(v™§)) =c4(3n+1)=cz(2n +1), the
node spr(v"&) has at most cne immediate successor in every S; and there are
only x many S;’s.

Define

T'=\J{T(spr(sr"&E) [, (E): & € Succ(sy, T)}

7 v =

and let

T =J{T'():te T" VY NCMk} forn>0,
and let
S=NTW=<T.

new
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One can easily check that S is regular S-perfect tree and SS,.(S) = {cz(2n):n e
w}. Since (by (ii)) each splitting point ¢ of S has less than k¥ immediate successors
in each S;, we have SN S, =0 for each {<k. O

Before going further, let us recall a few definitions. Let (P, <) be a partially
ordered set and let Q = P. A set R c P is said to be a disjoint refinement of Q if
the family R is pairwise incompatible and for every g € Q there is an r € R such
that r = gq.

Let us consider P(w)/fin. We say that @ ={H::£ e b} is a base matrix for
J/’(m\/ﬁn if H. is a maximal almost disioint (1 .e. MAD) familv on @ for each £ h

2338 22 A5p 20 4 INAANNIAL QRIVSL LAy VAL anniy VR WIELILalli o T gy

and U O is dense in ?(w)/fin. It is shown in [2] that a base matrix for P?(w)/fin
always exists.

Lemma 5.4. Let A be an infinite subset of I' '({k}) and let P,={Te€
Pfi(S):SS(T)=A}. Then there exists a disjoint refinement of P, of cardinality
K.

Proof. Since 2“=k", the cardinality of the set %, is at most x*; so let
{T::E <k*} be an enumeration of %, (with repetitions, if necessary).

We shall proceed by induction. Let S, < T, be such that S, is a regular S-perfect
tree and SS,.(S) = {c4(2n):n € w}.

Let 0<&<k™ and assume that regular S-perfect trees S;, { <&, have already
been chosen such that for each {<§&, S, <T;, SS,(S;)={cs(2n):n € w} and
St A Sg- =0 whenever { # ' <&.

Since £<k”, find by Lemma 5.3 a regular S-perfect tree S; < 7; such that
SS.(S:) = {ca(2n):n € w} and Sz A S; =0 whenever { <&.

The family {S;:§ € k*} forms a disjoint refinement of #?,. O

Lemma 5.5. There exists a family {de: & <Y} of maximal antichains of Pf(S) of
cardinality k™ such that \_ { g : E € b} is dense in Pf(S).

Proof. Let ©={H::Eeh} be a base matrix for #(w)/fin. For each § <} let
{H%:n € w} be as follows:

Hg = H,

={A-{0,1,...,n—1}:AeH;} forn>0.

It is obvious that each H} is a MAD family on @ and if B € [w]” is such that there
exists A € Hs, A c* B, then there exists newsuchthat A—{0,1,...,n—-1}c
B. Let

6= {Hi:n<w, Eeh}.

Now by Lemma 5.4 we can find for each ne w, §€l) and A € H; a disjoint

refinement of the set 2,4, of cardinality x*, where A(x)= {crp(n):n€A}.
Let &, be such a refinement; without loss of generality we may assume that

R4 c Pfi(S) and V Ri=V P Ay
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Let f3={J{R4:A € HE}. Obviously every &% (n€ w, §€b) is a maximal
antichain in Pfi(S) and | &% = k. It remains to show that | {#%:n e w, E€ b}
is dense in PfL(S).

Let T e Pf(S) and let SS,.(T)=A. O is a base matrix hence there are § € b,
new and B € Hf such that Bc A. Let T'<T be such that SS,(7’') = B. Then
B = C(x) for some Ce€[w]® and % is a disjoint refinement of Py, therefore
there exists an S € R-such that S<T'<T7. O

Proof of Theorem 5.1. By Lemma 5.5 we can find a family {#:§€bh} of
maximal antichains in PfL(S) such that {::5 € b} is a dense subset of Pfi(S)
(and hence of Pf(S)). For each tree TelJ{H::5eh} let {S,:{ek™} be a

foad s 1 T hal T3 1 1
fixed maximal antichain below T in Pf1(S) (by Lemmas 5.2 and 5.3 it exists).

If G is an M-generic filter on P{(S) let us define in M[G] a function f as follows:
fe)=¢ iff Ted:NG and S.reG.

One can easily check that fis a function from §™ onto (x*)™:
(i) fis a function because every family & is a maximal antichain and hence
exactly one T; € o belongs to G; if T € G then the same holds for the $; 7’s.
(ii) To prove that fis onto it suffices to show that the set {S; 2T el J{H::E€
b}} is dense in Pf(S) for each { € k™. Let S be arbitrary. Since |_J {sf::E € b} is
dense, there exist § € ) and T € Ag such that T< S; but then S, ,<T=<S. O

Let us remark that the technique for embedding the algebra #(w)/fin into
r.o.(Pf(S)) described at the beginning of this section does work only for |K|=1;
e.g. if |[K| =2 then the set A of all even natural numbers is not a splitting set of
any S-perfect tree. Nevertheless, for every K we can prove the corresponding
generalization of Balcar’s theorem:

Theorem 5.6. Let the basic tree be as in subsection 3.1 and let S be (2%)*-
complete. Then r.0.(P(w)/fin) can be completely embedded into r.o.(P{(S)).

Proof. Fix a k € K and let A =T"'({x}) € [w]®. For any X c w set
a(X) =\ {7 € Pf*(8):SS.(T) = {cs(n):n € X} mod fin}.
One can easily show that 7 is the required embedding. O
We are not able to prove or disprove a similar result for Namba forcing. On the
one hand, in the case of a measurable cardinal x and a normal prime ideal on K

Namba forcing cannot contain P(w)/fin. On the other hand, we have the
following partial result:

Theorem 5.7. If 2%=R,, 2%=R, and S(v)=[w,]** for each veT then
r.0.(Nm(S8)) contains a complete subalgebra isomorphic to r.0.(?(w)/fin).
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Proof. Let M be a transitive model of ZFC such that ME2% =R, & 28 =N,. In
M, consider Nm(S) and let G be M-generic on Nm(S). By Theorem 3.7, we have
Uk<w, 01 N M[G] = M and by Theorem 3.8, M[G]F R3] = R,.

Since P(w) N M[G] < M, the partially ordered set P = (P(w)/fin)*[¢! belongs
toM. Let @ ={D e M:D is dense in P}. Clearly & €e M and M k£ |9D| = X,, hence
M[G]E|D| = N,.

Now we work in M{G]. Let & = {D;:& < w,}. We proceed by induction. Let
ag € D, be arbitrary. Assume that we have already chosenay=a,=---=q; =" - -
for { <& < w, such that a; € D, for each { <& By assumption the sequence
{a;: £ <&} belongs to M. Since P is o-closed there exists an a;z € D; such that
as < a; for each { <&. Let H = {s{;: & € w,}. Clearly H is an M-generic set on P
and H € M[G]. It follows that M[H] < M[G] and therefore r.0.(?(w)/fin) can be
completely embedded into r.0.(Nm(S)) (cf. [13, pp. 265-267]). O

6. Some generic extensions

In this section we shall present some constructions of mainly minimal generic
extensions based on the forcing notions introduced in Section 3. Let M be a fixed
transitive model of ZFC.

6.1. |k| = Ny-minimal extensions

Prikry and Abraham [1] proved that both forcing notions Pf(w,) and Nm(w,)
are |R¥|=N,-minimal. As we have already mentioned, under the axiom of
constructibility Sacks [22] constructed a |k|= Nyp-minimal extension for every
regular cardinal k.

Using the results of Section 3 we shall now construct a |k|=R,-minimal
extension of a transitive model of ZFC for every uncountable regular cardinal x
such that x =2%  Suppose k is an uncountable regular cardinal and J is a
o-complete ideal on k possessing the following property

(6.1) (i) [¥]™*<J, and
(ii) for each uncountable regular cardinal A<k there is a system
{Az:E<A} cJ such that Ugy As =k and Ug<; Az €J whenever
E< A

Theorem 6.1. Let x be an uncountable regular cardinal in M such that x = 2¥.
Suppose that the basic tree (T, R, S) in M is such that S(v)=J" for each v eT,
where J is a o-complete ideal on « satisfying (6.1). Let G be an M-generic filter on
P{(S). Then

(a) M[G]FIx|="Ro,

(b) M[G] =M is a |k| = Ry-minimal extension.
Moreover, if ME2*=k", then

(c) x* is a cardinal in M[G] (i.e. k* = 0},
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Proof. By Theorem 3.5 every uncountable regular cardinal A < k in M is cofinal
with @y in M[G], therefore x must be countable in M[G] and (a) holds.

Since J is o-complete and [x]=* < J, (b) follows from Theorem 3.4.

If ME2¥=k" and k™ fails to be a cardinal in M[G], then k™ must be
countable in M[G]. As the forcing notion Pf(S) is of size k™ in M, there exists an
M-generic filter H on the collapsing algebra Col(R,, k*) (for the definition see
e.g. [13, p. 276]). But this contradicts the |x| = Ro-minimality of M[G] and we
have proved (c). O

The existence of an ideal J on kx as in Theorem 6.1 is guaranteed by the
following lemma.

Lemma 6.2. Let x be an uncountable regular cardinal such that x = 2%. Then there
exists a o-complete ideal satisfying (6.1).

Proof. We shall construct a o-complete ideal satisfying (6.1) on a set C of
cardinality k.
For every uncountable regular cardinal u let

R(p) = {A<u:21is an uncountable regular cardinal}
and

Co={fe™™pu:(VAeR(u)) f(A) e A}.

The set C is defined as follows:
(i) if k=" then C=C,,
(ii) if k is a limit cardinal then

C={f € ¥x:@u e RW)(f | p€C, & (VA=) <K—f(3) = 0))}.
Now, for each A € R(x) and each £ <A set

At={feC:f()=8)
and define J ¢ ?(C) by

X eJ iff there are a countable set Y < R(k) and ordinals §, < A for

eachAe Ysuchthat X < U U AL

A€eY Eeg;

It is easy to verify that J is a o-complete ideal satisfying (6.1). O

Remark. Note that the assumption x = 2% in Theorem 6.1 was needed to ensure
the existence of an ideal satisfying (6.1). In the case that x <XY is an
uncountable regular cardinal we can use the forcing Pf(R(x*)), thus avoiding the
assumption k = 2F,
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6.2. cf(x) = wy-minimal extensions

As can be easily seen the extension constructed in subsection 6.1 is in fact
cf(x) = wo-minimal.

By Theorem 3.4 the forcing notion Pf(k) is cf(kx) = wy-minimal for every
uncountable regular cardinal k. Moreover, if k > X, then R remains a cardinal in
the generic extension, and if x >2% and 2*=k"* and x* is collapsed to §. So,
assuming the generalized continuum hypothesis, k** becomes R, of the generic
extension.

By Theorems 1.1, 3.7 and 3.8 the forcing notion Nm(x™) is cf(x™) = w,-
minimal for every uncountable cardinal k such that k™ = k. On the other hand,
Theorem 4.4 gives an example where Namba forcing is not cf(x) = w,-minimal
(for a measurable cardinal x).

Other examples of cf(x) = w,-minimal extensions are discussed in 6.3 and 6.4.

6.3. |k| = N;-minimal extensions

Under CH and 2%= k" = A, the forcing notion Pf(x) gives both a |k|=R;-
minimal and a |A| = X;-minimal extension in which X, is preserved (by Theorems
3.4 and 5.1). We shall now construct a |k| = X;-minimal extension which changes
cofinalities of prescribed cardinals and does not collapse X;.

Theorem 6.3. Assume GCH. Let x > R, be a regular cardinal and let R be a set of
regular cardinals larger than X, and not larger than k such that R is a disjoint union
Weea Ry, where
(i) A is an at most countable set of regular cardinals,

(ii) for each pueA, R, is the set of all regular cardinals A such that
p<AssupR,andsupR, €R,,

(iii) supA € A and k € Ryp 4.
Then there exists a forcing notion P which is

(a) both |k*| = NRy-minimal and |k| = R,-minimal,

(b) for every regular cardinal A< x in the ground model, cf(1) = w, in the
extension if and only if A€ R,

(¢) R, and cardinals larger than k™" are preserved.

Proof. Let K ={supR,:u e A}. Consider R, and let v=sup R,. In a similar
way as in Theorem 6.1 we construct a p-complete ideal J, on v such that
J,2[v]®" and for each regular cardinal A, p<A<v, there exists a system
{Ag:E €A} cJ, such that gy Az = v and Ug: A; €J, for each { <v. Now,
using K and {J, : v € K} we construct a basic tree (T, R, §) as in subsection 3.1.

By Theorems 3.2, 3.4, 3.5 and 5.1 one can easily see that Pf(S) is the required
forcing notion. O



Minimal collapsing extensions of models of ZFC 295

6.4. A strong minimality property

Let us begin with the following simple observation: let M c N be an extension,
let ¥ be an uncountable cardinal in M such that NE|k|=¥,. Then for any
cardinal A <k in M there exists a model W, M c W < N, such that XY is the
successor of A in M, assuming GCH in M.

We shall show that if we replace R, by 8, and R}¥ by RY this observation need
not be true.

Theorem 6.4. Suppose MEGCH and let in M k be a regular cardinal,
RM < x <RY. Then there is a forcing notion P € M such that for every M-generic
filter G on P the following holds:

(a) M[G]ER, =N,

(b) the successor of k in M is of size R, in M[G] and x** = R}1C],

(©) if W is a model, McW cM[G], such that some cardinal ueM,
R <u<=sk"is of size X, in W, then W = M[G] (i.e. M[G] is |u| = R,-minimal for
every u, Ry<pu=sk™).

Proof. Let R = {u:p a regular cardinal in M, R, <p <k}. Since k <X,,, R can
be written in the form used in Theorem 6.3. Let P be the forcing notion used in
the proof of Theorem 6.3. Assertions (a) and (b) then follow from Theorem 6.3.

Notice that the splitting criterion § is (2")*-complete, therefore no new reals
are added and the continuum hypothesis holds in M[G].

Now, assume M < W < M[G] and for some cardinal g of M, RY <pu<k*, we
have W F|u|=X,. Then RY >RY. By Theorem 6.3(a) it suffices to show that
RY = R1C1,

Since R¥(°! is a regular cardinal in W, it cannot be cofinal with w, in M. So
RYIGT=RY,, for some £ < w,. By Theorem 1.7, § cannot be a limit (since CH
holds both in M[G] and W). Therefore X{' is a regular cardinal in M. Since
W E|RY| =R, the cofinality of XY in W is @, or w,.

Assume XY < k. Then the cofinality of XY in M[G] is R, (Theorem 6.3(b)).
Hence cf(RY) in W is w, as well. By Theorem 1.4 (applied to M = W) we obtain

WEZE N M| < |RMPo =R,
which is a contradiction since
WE2% N M| = RY, =X,
So we have proved that XY > k and consequently R} = R¥[€]. O

7. Problems and comments

We present some open questions which are closely related to the results
obtained in this paper.
In connection with Theorem 6.3 the following questions arise.
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Question 1. Is there a |X,;| =N,-minimal extension which is not a |X;] =X;-
extension?

Question 2. Is there a |X;| = X,-minimal extension preserving X, which is not
IX;] = N;-minimal?

In connection with Theorem 6.4 it is natural to ask
Question 3. Can the assumption k <K, be omitted in Theorem 6.4?

Question 4. For a given model M, is there an extension N such that X} =X} and,
say, XY = R¥ and for any model W, M c W c N, if Card™ # Card” then W = N?

A natural candidate for forcing such an extension is the forcing notion of the
form used in the proof of Theorem 6.1.

The forcing notion Pf(w,, w,) is not strongly minimal. More precisely we have
the following.

Theorem 7.1. Assume GCH. Then r.o.(Pf(w,)) can be completely embedded in
r.0.(Pf(w,, wy4)).

Remark. Obviously r.o.(Pf(w,)) cannot be embedded in r.0.(Pf(w,, ws)).

Proof. Using the assumption 2™2=X,; we shall find a ‘nice’ dense subset of
Pf(w,, w,)- Let us recall that the basic tree (T, R, S) is such that for each ve T,
R(v)=w, and S(v)=[w,]”* whenever length(v) is even, and R(v)= w,,
S(v) =[w4]“* whenever length(v) is odd.

Let T be a regular S-perfect tree with A = SS(T) such that every even (odd)
splitting point is followed by an odd (even) one, i.e. T € Pf*(S). Such trees form
a dense subset of Pf(w,, w,). Let v be a splitting point of T such that
n = length(v) is odd. Let m be the first element of A with m > n. Then m is even.
Let E={k € w: k is even and n + 1<k <m}. For & € Succ(v, T) denote

Hu, T,E)={u | E:length(u)=zm+2&usv E&ueT}.

The tree T is said to be nice if for each splitting point v of odd length n, each &,
n € Succ(v, T) we have

H(w, T,5)=H(v, T, n).

Since for each v € SL,,(T) (n € w) the function H has at most 2™ = R, possible
values, using fusion one can easily show that the set of all nice trees is dense in
Pf(w,, @,).

For every nice tree T we set

P(T) = {v e ““w,:(Au € T)(Vk € w)(k <length(v)— v(k) = u(2k))}.
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It is easy to see that v is a normal mapping from the set of all nice trees onto the
set of all regular trees in Pf(w,); thus y induces a complete embedding of
r.o.(Pf(w,)) into r.o.(Pf(w,, w,)). O

The following question is rather technical.

Question 5. Let J be an ideal on R, possessing the property (6.1)(ii) for A=,
and A =R, but not for A = X;. Does the forcing notion Pf(J) change the cofinality
of X, to w,?

We finish with a simple but probably difficult problem related to Theorem 1.6.

Question 6. Is there an extension N o M such that XY =R} and X} =R¥,, (and
consequently N E2%=R,)?

An affirmative answer to this question yields a solution to the Jensen—Solovay
problem [14] on violating CH by adding a real (compare the solution by Shelah
and Woodin [24]).
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