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We present some results concerning extensions of models of ZFC in which cofinalities of 

cardinals are changed and/or cardinals are collapsed, in particular on minimal such extensions. 

Our main tools are perfect tree forcing PF(S) and Namba forcing Nm(S). We prove that if 

N 2 M is an extension such that (i) M k K = I+ > H,, (ii) 1 fl N E M and (iii) N = Mlf] for 

some cofinal f : oo+ K, then N 2 M is cf(K) = o,-minimal. On the other hand Namba forcing 

Nm(S) where S is a normal ultrafilter on a measurable cardinal K produces an extension 

satisfying (iii) and (ii) for every 1< K, which is not cf(rc) = w,-minimal. 

We show that if S is an K,-complete splitting criterion on K then Pf(S) collapses K+ to X, 

(assuming GCH). Moreover, we prove, under some reasonable assumptions, that every 

extension changing the cofinality of a successor cardinal K must collapse K+. 

Using these results and results on trees from Sections 2, 3 we construct, assuming e.g. GCH, 

for every regular uncountable K a IKJ = &-minimal extension, a cf(K) = o,-minimal extension 

and a IK+[ = X,-minimal extension. 

0. Introduction 

More than 20 years ago the question arose whether it is possible to find a 
generic extension of a given model of ZFC in which cofinalities of some cardinals 
are changed but no cardinals are collapsed. The answer is well known. Prikry [20] 
defined a forcing notion by which the cofinality of a measurable cardinal is 
changed to w. and no cardinals are collapsed. Later, in 1966, Vopenka posed the 
question whether one can change the cofinality of w2 to w. without collapsing K,. 
An affirmative answer was given by the first author in [3], [5]. Independently 
Namba [19], solving a problem concerning Boolean algebras, constructed a 
forcing notion with similar properties as the one in [3]. After Jensen proved his 
important Covering Lemma [S], both forcing notions turned out to be examples 
showing that the Covering Lemma is best possible. Shelah [23], Gitik [ll] and 
others generalized these forcing notions and used them in various constructions. 
However, several problems concerning these forcing notions remainded open. 

This paper arose from two independent results of the authors. The first author 
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proved Theorem l.ll solving the problem of minimality of Namba forcing. The 
second author proved Theorem 5.1, which answers the question about collapsing 
of cardinals for the perfect tree forcing of [3]. The paper is organized as follows: 
Section 1 contains general results on minimal extensions of models of ZFC. In 
Section 2 we investigate general properties of families of trees from the forcing 
point of view. We tried to develop the methods used in [3], [5] and [19]. 
However, one can see that they are closely related to those of Shelah [23]. 
Section 3 introduces some generalizations of the forcing notions of [3] and [19] 
and studies their properties. The goal of Section 4 is the nonminimality of Namba 
forcing for a measurable cardinal. Section 5 is devoted to the proof of the above 
mentioned Theorem 5.1. Finally, in Section 6 we present some generic extensions 
of models of ZFC, where cofinalities of cardinals are changed or cardinals are 
collapsed and they are minimal with respect to these properties. Some open 
problems are collected in Section 7. 

Our set-theoretical terminology is fairly standard and may be found e.g. in [13]. 

K, A, K . . . denote infinite cardinal numbers, E, 5;, . . . are ordinals. “y is the set 
of all functions defined on x with values in y. A” is the weak power Clr_ Ap. An 
ideal J or a filter F is always proper (i.e. lJJ $ J and 0 $ F). 

If P is a (separative) partially ordered set, then r.o.(P) is the unique complete 
Boolean algebra which extends P as a partially ordered set and such that P is a 
dense subset of r.o.(P). 

Let P, Q be partially ordered sets. We say that a function @ from P into Q is 
normal if it is order preserving, its range is dense in Q and for every p E P the 
image of {p’ E P:p’ up} under $ is dense below +(p) in Q (see e.g. [12]). 

The following lemma is well known and we shall state it without proof. 

Lemma 0.1. Let P, Q be separative partially ordered sets and let @ : P-, Q be 
normal. Then the mapping $:r.o.(Q)+r.o.(P) defined by 4(b) = V {p E 
P: #(p) s b} is a complete embedding of Boolean algebras and the mapping 

4 : r.o.(P)+ r.o.(Q) defined by $(a) = /j {b E r.o.(Q) : 4(b) 2 a} extends $J. 

1. Miiality of extensions 

We shall always consider transitive models of ZFC. If M, N are models then we 
say that N 2 M is an extension of models if M G iV and Ord O M = Ord O N. 

Let @(Xl, f * . 9 x,) be a formula of the language of set theory. Let N 2 M be an 
extension of models of ZFC and let aI, . . . , a,, E M. The extension N 1 M is 
called a @(al, . . . , a,)-extension if 

(1.1) Nk$(ai, . . . ,a,) 

A $(a,, . . . , a,)-extension is called a @(al, . . . , a,)-minimal extension if 

’ This theorem was presented to the Oberwolfach Set Theory Meeting in January 1985. 
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moreover: 

(1.2) foreverymodelK,M~K~NandK~~(a,,...,a,)implyK=N. 

A forcing notion P is $(a,, . . . , a,)-minimal if for every M-generic filter G on P 
the generic extension M[G] 2 A4 is @(al, . . . , a,)-minimal. 

Historically the first minimal extension was constructed by Sacks [21]: let PI 
denote the set of all perfect subsets of the unit interval ordered by inclusion; 
constructed in a model M of ZFC. If G is an M-generic filter on PI then 
M[G]=M[ ] h s w ere s is a real (Sacks real). Sacks showed that for any real 
a E M[s], either u E M or M[u] = M[s]. So the forcing notion PI is $(9(w,) II M)- 
minimal, where @(x) denotes the formula (3~) (y c o. &y 4~). In [3] (and [5]) 
the first author found a forcing notion P2 such that any generic extension N of a 
model M obtained by the forcing P2 is #(cur)-minimal, where G(X) denotes the 
formula “x is an ordinal cofinal with oo”. We shall simply say that the forcing 
notion P2 is cf(oy) = o,-minimal. Prikry and Abraham [l] found [NY1 = Ko- 
minimal extensions N 2 M, i.e. the cardinal K1 of M is countable in N and for any 
model K, M 5 K c_ N, K #N, K1 of M is uncountable in K. Assuming the axiom 
of constructibility, Sacks [22] constructed a 1~1 = No-minimal extension for every 
regular cardinal K. 

In our paper we shall investigate mainly @(K)-minimal extensions where #(x) 
is one of the formulas 1x1 = X0, 1x1 = Ki, cf(x) = wo. For example, we shall 
construct an (lNc,“( = X,-minimal) extension N z M which collapses X3 of M to 
Xr = rC? and it is minimal with this property. Our construction of a IKI = K1- 

minimal extension is based on a cf(n) = o,-minimal extension. Since by Jensen’s 
Covering Lemma [8] the existence of a cf(A) = ol-, KY = &-extension for 3L > K2 
implies the existence of O# in M, our method cannot be immediately generalized 
to construct a llzl = X,-minimal extension for (Y > 1. 

We start with general results on IAl = K-minimal and cf(n) = K-minimal 
extensions. 

Theorem 1.1. Let N 2 M be an extension and let p, A, K be cardinal numbers in 
M such that 

(i) M L K = il+ & p is regular & p < A, 
(ii) pA fl NE M, 

(iii) there exists an f E pi fl N, f unbounded in K such that N = M[f]. 
Then N go M is a cf(K) = p-minimal extension. 

The key element of the proof is the following simple result. 

Lemma 1.2. Let M, N, f be us in the theorem. Zf g E pi fl N is unbounded in K 

then there exists a strictly increasing function h E M[g] such that f (5) < h(g) for 
each 5 E p. 
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Proof. By induction on 5 < p, we define a function d E “p as follows: 

d(E) = min{g E P :g(O >f(5) and s(5) > g(rl) for each rl< E]. 

Since p < A, by (ii) and (iii) we have sup{g(n) : q < 5) < K whenever 5 < p, and 
so there exists a 5 < p such that g( 5) is greater than sup{g(q) : q < 5). Therefore 
the function d is well defined. Using (ii) again, we have d E M. Now it suffices to 
set h(E) = g(d(E)) for 5 E ,D. 0 

Proof of Theorem 1.1. Assume M G K E N and K k cf(rc) = p. We show that 
f E K. 

Let g E pi fl K be unbounded in K. By the lemma there is a strictly increasing 
function h E M[g] E K such that f (5) < h(E) whenever 5 E p. Without loss of 
generality we may assume that f (5) > A for each E E p. 

Now, in M, for each ?l E K - A fix a bijection ptl of 3, onto 7). In N, define a 
function k by letting for each E E p 

k(E) =p&(f (8% 

Clearly k E %I hence by (ii), k E M. Since f (5) = phts,(k(E)) we obtain 

f EM[h]sK. 0 

Specifying the parameters we obtain 

Corollary 1.3. Let M c N be an extension such that CP(o,) rl N E M and N = 
M[f], where f is an unbounded function from q, into OF. Then N 2 M is a 
cf( wr) = wO-minimal extension. 

As we have already mentioned the first author showed that the forcing 
introduced in [3] is cf(wy) = w,,-minimal. By Corollary 1.3 also the forcing 
introduced by Namba [19] is cf(wp) = w,-minimal. 

It was a natural open question whether the forcing notions of [3] and [19] do 
collapse K3 or not (see [5, p. 481, compare [23, p. 3681). We are able to answer 
this question affirmatively. 

Theorem 1.4. Let N 1 M be an extension, let p, A, K be cardinals in M such that 

(i) M b A = 25, 
Then 

(ii) N ‘I= cf(K) = p. 

Proof. Let B be the set of all nondecreasing functions from K into K in M. Then 

Mi=lBl=~“. 

Let f E pi fl N be a strictly increasing function unbounded in K. For 5, rl < p 
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we set 

BE,, = k E B :0(E)) <f(rl)]. 
Clearly 

For a given # E “p consider the set A,, consisting of all functions h E M 
with domain f(E) + 1 and with values in f($(Q). Since A+,g~ M and f(E) + 1, 

JWE)) < K, by (i) we get 

On the other hand we can easily see that, in N 

l~BSME,I =z 1!--&%*~ s IAl’. 

Therefore 

N~IMnK~I=IBI~2~.lAlll=IAll: Cl 

Again specifying the parameters we have the following 

Corollary 1.5. Let N 2 M be a cf(wp) = oO-extension such that 

(i) M k 2K1 = X2, (ii) N k 2% = K1. 

Then 
N#+“l~k&. 

Remark. Komjath called our attention to Lemma 4.9 of Shelah [23, p. 4401, 
which actually solves the problem of collapsing & in the extensions considered. 
However, since our Theorem 1.4 is not covered by Shelah’s lemma and our proof 
is different from the one of Shelah we have included it in the paper. 

As a consequence of both theorems we obtain 

Theorem 1.6. Let N 2 M be an extension such that 

(i) M!=GCH, (ii) N k GCH, (iii) P(oO) rl N E M, 

(iv) there is an f E “002” unbounded in WY such that N = M[f]. 
Then the extension N 2 M is both I@1 = NE,-minimal and lH~l= K,-minimal. 

Proof. By Corollary 1.5, N 2 M is a ]HpI = &-extension. 
Now, let M c K E N, K k ]Xy] = X1. Then also K t= I@‘] = X1. Therefore there 

exists a cardinal A s K1 such that K k cf(wy) = il. By (ii) and (iv), A = wO. Using 
Corollary 1.3 we get K = N. q 
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The idea of the proof above will be used very often in Section 6 without any 
comment. Closely related to Theorem 1.4 is the following result which we shall 
need too in Section 6. 

Theorem 1.7. Let N 1 M be an extension, let k < K be cardinals in M, 
M k cf(K) = y, and assume N k lpkl = In(. Then the successor of 3, in N is not the 
successor of K in M. 

Proof. It is easily seen that M k K~ 2 K+. If K+~ = IA(+N then N L IKI S IAl and 
therefore N L Ip~ f~ MI c JpAl = 13cl< (Al+. Cl 

Corollary 1.8. Zf NzM is an extension, N k2’O<N,, nE o, then KE+1 is not KY+,. 

Proof. In Theorem 1.7 take K = X2 and A= KF. 0 

Remark. It is easy to construct an extension M E N such that N I= GCH and 
rc;+1 = x:. 

The following result is in a sense a converse to Theorem 1.6 and partially 
explains why the presented methods (i.e. methods for constructing minimal 
extensions for changing cofinalities of cardinals) should probably be used in order 
to obtain minimal collapsing extensions. 

Theorem 1.9. Let N 2 M be an extension, let p, 3r, K be regular cardinals in M 
and w,, < p < A < K. Assume that 

(i) MkALf=A&2AsK, 

(ii) N 2 M is a IKI = p-extension, 
(iii) N 2 M is a 13Ll = p-minimal extension, 
(iv) $nNsMforeach c<p. 

Then there exists a cardinal 6 in M, p < 6 G A, such that 

N Lcf(6) < /L 

Proof. We first claim that there is a 5 < p such that % n N $ M. For suppose not 
and consider the forcing notion 

By our assumption 

COP@, A.) = COP@, A). 

The set 

9 = {D E Col”(y, A.) : D E M & D is dense} 

is of cardinality 2” in M. Therefore 

Nkl9lsj~ 
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Since ColN(p, A) is p-closed in N one can easily construct, by induction in N, a 
B-generic filter G on ColN@, A). Hence G is an M-generic filter on Col”(p, A). 
Then 

and we have 

which yields a contradiction with (ii) and (iii). 
Now, let ij be the least ordinal such that % fl N $ M. Let 6 be the least ordinal 

such that % n N $ M. Then N k cf(6) s E < p and by (iv), 6 > p. But now we are 
done because 6 is a cardinal in M. 0 

Corollary 1.10. Let N 3 M be an extension such that 

(i) M kGCH, (ii) 9(0,) fl N s M, 

(iii) M G N is Ik$‘l = X,-minimal, (iv) N k 1rCyl = Ki. 

Then 
N i= cf(oz”) = oo. 

We conclude this section with a lemma which we shall need later. It was 
essentially proved by Magidor and Shelah (see [23], p. 3671). First, let us 
introduce a new notion. Let N 1 M be an extension and let A < K be regular 
cardinals in M. A function f E 'K fl N is called fast growing if f is unbounded in K 
and for each F E "K rl M there exists a go < Iz such that f(E + 1) > F(f(lj)) 
whenever f > Eo. 

Lemma 1.11. Let N z M be an extension and let A < K be regular cardinals in M. 

Then either 
(a) there is no fast growing function from A into K in N, or 
(b) for each f E ‘K rl N unbounded in K, there exists an increasing $J E ‘A such 

that f 0 t#~ is fast growing. 

Proof. Assume (a) is false, i.e. there exists an increasing fast growing function 
h E *K rl N. Let f E *K fl N be unbounded. (We may assume that f is increasing.) 
By induction on E < A, we define two functions 

~(~)=min{~<~:f(q)>h(~(~)+l)foreach l;<g}, 

V(E) = min{q < A :h(rl) >f (440) & rl> q(C) for C < 51. 

Given F E "K fl M increasing, for sufficiently large E we have 

F(f (448)) < F(h(v(5))) < h(V(5) + 1) <f (445 + 1)). •I 
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2. Trees 

Our notion of a tree is closely related to Shelah’s notion of a tagged tree (see 
[23, p. 3591). The main difference is in keeping the splitting criterion constant for 
all trees (actually in many applications Shelah did the same). 

The letters s, t, u, v will denote finite sequences of ordinals; s < t means that s 
is an initial segment of t. If s is a sequence with length(s) = n, g an ordinal then 
s-5 denotes the sequence of length n + 1 extending s whose n + 1-th term is 5. 

Let T be a nonempty tree of finite sequences of ordinal numbers 
ordered by C. Let S and R be functions defined on T such that 

(2.1) for each u E T, R(v) is a cardinal, 

(2.2) for each u E T, S(v) c_ B(R(v)), 

(2.3) for each u E T, for every x E S(V), 1x15 2. 

If moreover 

(24 nEO T= IJ T,, where 

To = {O} and T,,, = {v^Zf: v E T,, 5 ER(v)}, 

partially 

then the ordered triple (T, R, S) is called a basic tree. We call R the ramification 
and S the splitting criterion of the basic tree. 

Note that if e.g. R(v) = K for all Y E T then 

T= u “K=<OK. 
rlEO 

In the sequel we shall always consider one fixed basic tree (T, R, S) at a time. 
To simplify the notation, we shall use the symbol T instead of (T, R, S) for a 
basic tree. 

For a set T s T, v E T we put Succ(u, T) = (5 E R(v): v-5 E T} and T(v) = 
{u~T:u 2 v v u < v}. An element v E T is called a splitting point of T if 

Succ(v, T) E S(v). 
A tree T is a subset of the basic tree T satisfying 

(i) (Vu E T)(Vn E o) v r n E T, 

(ii) (Vu E T)(3u E T) u > v. 

A tree T is said to be perfect if 

(25) for each u E T there exists a splitting point v E T with v > u. 

The nth splitting level of T is defined as follows: 

SL,, (T) = {v E T : v is a splitting point of T and 
({u<v:uisasplittingpointof T}J=n}. 
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Now, let us introduce some orders among trees as follows: 

(a) Ti < T2 iff TI E T2; 

(b) q s* T2 iff Ti G T2 and each v E TI which is a splitting 

point of T2 is also a splitting point of T,; 

and for each n E w, 

(c) TI G” T2 iff TI s T2 and SLk( TI) = SL,( T2) for each k 6 n. 

Let us remark that for every tree T there exists a subtree S s* T satisfying the 
following condition 

(2.6) for every v E S, either Succ(v, S) E S(V) 

or )SUCC(V, S)l = 1. 

If a tree T satisfies condition (2.6) then the unique element (if any) sT of 
Sb(T) is called the trunk of T. 

A subset A of w is called a splitting set of a tree T, denoted by A = SS( T), if for 
each v E T, v is a splitting point of T if and only if length(v) E A. A tree having an 
infinite splitting set is called regular. 

Usually the splitting criterion S is defined in such a way that S(V) = 9(R(v)) - 
J for an ideal J over R(v). This explains the following definition. The set S(V) is 
&complete if for each A G P@(v)) - S(v) of size less than A. we have 
U A $ S(v). The splitting criterion S is A-complete if S(V) is &complete for each 

v E T. 

The set of branches Br(T) of a tree T is the set of all infinite sequences of 
ordinals f for which f 1 n E T for each n E o. Consider the space 

equipped with the product topology, where each lJVETnR(v) carries the discrete 
topology. The set of all branches of the basic tree Br(T) is a closed subset of X; 
it is obvious that a nonempty set A G Br(T) is closed if and only if A = Br(T) 
for some tree T. 

We shall need the following. 

Theorem 2.1. Suppose that the splitting criterion is p-complete and let A. < p. Let T 

be a tree and let 

WT) = EUk CE < 

with every CE a Bore1 subset of Br( T). Then there exist a tree S G* T and an 

ordinal &, < h such that 

Br(S) G CEO. 
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The theorem was proved by Shelah (see [23, pp. 362-3631) and is based on the 
determinacy of Bore1 games, which was proved by Martin [17]. For some special 
types of trees and when all CE’s are closed, the results was proved by the first 
author [5, p. 431 and Namba [19]. Let us remark that we shall only need the case 
when all CE’s are closed. 

From this theorem we can obtain Balcar’s theorem [5, p. 471. 

Theorem 2.2. If the splitting criterion is (2’“)+-complete, then every perfect tree T 
contains a regular subtree S s* T. 

Proof. Without loss of generality we may assume that T satisfies (2.6). For each 
A E [o]~ let 

E(A) = {f E Br(T):A = { n E o :f 1 n is a splitting point in T}}. 

The set E(A) is closed in Br( T) and Br( T) = IJ {E(A) : A E [CO] “}. As there are 
only 2”O subsets of o and the splitting criterion is (2”“)+-complete, by Theorem 
2.1 there exist an A E [CO]” and a tree S s* T such that Br(S) E E(A). Clearly S is 
regular. q 

Since we shall use sets of subtrees of a given basic tree as forcing notions, it is 
useful to consider first some properties of such sets. A set .‘X of trees is called 
hereditary if T E X, S <* T implies S E X. A set X is said to be fusion closed if 
the following condition is satisfied: 

(2.7) if for each n E o there is a tree S E X such that T @’ S then T E X. 

A set of trees X is said to be a family of trees if 

(2.8) there exist a set .9& G X and an increasing function r E OCII such that 

(a) &, is hereditary and dense in (X, s), 
and for each n E o, each tree T E X, 

(b) if v E SL,,,(T) then there exists a tree S E X 
such that S co T(v), 

(c) if W, so T(v), W, E X for each v E SL,+,(T) then 
there exist trees Z, co WV such that 

U {Zv : v E SL+z,(W E 3~. 
Let us give some examples. The set A(T, R, S) of all perfect subtrees of a given 

basic tree (T, R, S) is a family of trees (with & = X=A(T, R, S) and r(n) = n). 
We shall also consider a special type of perfect trees: a tree T G T is said to be 

an S-Namba tree if 

(2.9) there exists a trunk sT E T and each v E T, v Z= sT is a splitting point of T. 

The set Nm(T, R, S) (or simply Nm(S)) of all S-Namba trees is a family of trees 
(again X0 = X = Nm(S), r(n) = n). 
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Let T = <ow, R(v) = o, S(v) = [a]” for each v E <oo. Then A(T, R, S) is the 

rational perfect set forcing of Miller [18] and Nm( T, R, S) is Laver’s forcing [15]. 

If T = cow2 and for each v E T, R(v) = o2 and S(v) = [oJ”*, then A(T, R, S) 

is the forcing of [3] and Nm(T, R, S) is Namba forcing [19]. 

If T = <wwI and for each v E T, R(v) = toI, S(v) = [w~]~~, then A(T, R, S) 

is the IX,J = &minimal forcing of Prikry and Nm(T, R, S) is the one of 

Abraham [ 11. 

Finally, if T = <“2, R(v) = (0, l}, S(v) = ((0, l}} for each v E <“2, then 

A(T, R, S) is Sacks forcing [21] and Nm(T, R, S) is Cohen forcing. 

We begin with introducing a condition on the family of trees which guarantees 

that certain countable sets will not be added in the corresponding generic 

extension. 

A family of trees X is said to be A-indecomposable if 

(2.10) for each system {a< E r.o.(X, s): E < A} such that VscA aE = 1, for each 

T E .X such that S(v) is A+-complete for at least one v E Sb(T), there 

exist a c < A. and a tree S co T, S E X such that S c aC. 

Now, following the idea of [3] we shall prove 

Theorem 2.3. Let .‘X be a A-indecomposable fusion closed family of trees and let 
the splitting criterion be (A’“)+-complete. Then the complete Boolean algebra 

r.o.(X, s) is (K,, A)-d’ t b 1s ri utive, i.e. the forcing (X, 6) does not add a new 
function from 0 into A. 

Proof. Let a,,C E r.o.(X, c), n E w, C E A, and 

In order to show that 

it is sufficient to prove that 

(VT E X)(3$ E YI)(3T E X) T’ c T & T’ c ,?, an,+(,,). 

Given T E X we shall find a tree T, E X, T, < T, and a function 

H:U,,, SL,,,,( T,) --, A such that 

(Vn E w)(Vv E SL,c,,(T’))(3V E X) T,(v) s V c a,,H(v). 

We proceed by induction. Let To= T. Assume that T,, E X and 

H 1 Uk<n SL+)(T,) have already been constructed. By (2.8)(b), for each 

u e SL+)(T,) th ere exists a tree W, E 3% such that W, so T,(u). By (2.10) there 

exist an H(u) < A and a tree S, E X such that S, so W, and S, s an,H(uj. Therefore 
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by (2.8)(c), there are 2, do S, (u E SL,+,,(T,)) such that 

u {ZU : u E f%(n,(W E 2-e 

Let us denote this tree by T,,, . 

Let z=n,,, T,. One can readily verify that for each n E w, T, <” T,, so we 
have T, E X. Let W G T,, W E &,. 

Now, for each # E “II, we set 

T@ = “y,U {W(u):u E Sl,,,,(T,) n W & H(u) = @(n)}. 

Every T@ is a tree (not necessarily in X), hence Br(T@) is a closed subset of 
Br(W). Observe that Br(W) = IJs,oA Br(T@). Since the splitting criterion is 
(A’b)+-complete, we can use Theorem 2.1 and obtain a T’ G* W such that 
T’ s T 4~ for some $J E “A. Obviously T’ E X. 

It remains to show that for every n E o, 

T’ G v {S, : u E SL,,,, (T,) n W&H(u) = 4(n)}. 

Suppose not. Then there exists a tree Z E % such that Z < T’ and Z A S, = 0 for 
every u E SL,,,,(T,) fl W, H(u) = $(n). Then 

ZET’~T’~U{W( ) u : u E SL,,,,( T,) n w, H(u) = #(n)> 

G U {&, : u E SL,,,(T,) n W, H(u) = #@)I. 
L,et f E Br(Z). Then f E Br(T,) fl Br(T@) fl Br(W). Let m be such that u = 
f 1 m E SL,,,,(T,). Clearly H(u) = G(n). By (2.8)(b) there exists a tree Z’ E X, 
Z’ G Z(u). Then Z’ E W(u) E S,, a contradiction. 0 

By a slight modification of the proof above one can easily prove 

Theorem 2.4. Let % be a A-indecomposable fusion closed family of trees and let 
the splitting criterion be A+-complete. Then the complete Boolean algebra 
r.o.(X, =G) is (K,, A, A)-distributive, provided cf(A) > oo, i.e. every function from 
o. into A in the generic extension is bounded by a function from the ground model. 

Shelah [23] has obtained a stronger result. Since we shall need it later, we recall 
it. First using methods very similar to those used in the proof of Theorem 2.1, 
Shelah [23, p. 3641 proved: 

Theorem 2.5. Let A be a regular uncountable cardinal. Suppose that for each v E T 
either the set S(v) is A+-complete or IR(v)l < A. Then for every mapping H: T+ A 
there are a 5 < A and a tree S 6* T such that H(v) < 5 whenever v E S. 

Let us consider the following property of a family of trees X: 

(2.11) for each v E SL,,,,,(T), n E o, if for each f E Succ(v, T), WE E T(v^g), 
W, E X, then there is a WV E 5Y such that W, 6’ T(v) and WV c 
U {WE : E E Succ(v, T)}. 
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Now, using Theorem 2.5 instead of Theorem 2.1 in a similar way as in 
Theorem 2.3 we can easily show (cf. [23, p. 365, Theorem 3.81): 

Theorem 2.6. Let A be a regular uncountable cardinal and let YL be a A- 
indecomposable fusion closed family of trees. Suppose that 3i! satisfies (2.11) and 
that for each v E T either the set S(v) is A+-complete or IR(v)l <A. Then the 
complete Boolean algebra r,o.(X, c) is (K,, A, A)-distributive. 

Proof. Let an,B E r.o.(X, s), it E o, q E A, and assume that 

We shall show 

We must prove 

Given T E X, much as in the proof of Theorem 2.3 we first find a tree T, E X 

and a function H : U,,, SL,,,,( T,) + A such that 

(Vn E 4(Vu E SL&T,))(3V E x) T,(u) c V d ,<y(“, a,,,. 

We proceed by induction. Let TO = T. Assume that T, E X, H r Uk+, SL+)(T,) 
have already been defined. Let u E SL,(,JT,). by (2.8)(b) there is a tree W, E X 
such that W, co T,(u). If S(u) is A+-complete then by (2.10) we can find an 
H(u) < A. and a tree S, E X such that S, so W, and S,, s a,,H(,,). Otherwise, pick 
for each 6 E Succ(u, T,) a tree W6 6 T,(ur‘S), W, E X, and Es < )c such that 

W, c an,e6. Since il is regular and ]Succ(u, T,)I < A, we can define 

H(u) = sup{& + 1: 6 E Succ(u, T,)} < it. 

By (2.11) there is an S, so T,(u) with S, E YC and S, c U {W6 : S E Succ(u, T,)}. 

Notice that S, d VacH(u) an,+ 
Now, by (2.8)(c) we can find Z, s OS,, (u E SL,,,( T,)) such that IJ {Z, : u E 

SL,,,,( T,)} E X; let us define T,,, = U {Z, : u E SL,,,,( T,)}. 

Let T, = n,,, T,; then T, E YC. Choose W =G T,, W E 3&, and extend the 
function H to the whole of W in such a way that H(v) < A for every v E W. Using 
Theorem 2.5 there are a co < A. and a tree S c* W such that H(v) < E. whenever 
v E S. Clearly S E X and 

Let us remark that conditions (2.10) and (2.11) are closely related to the 
S-condition of Shelah [23, p. 3601. 
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3. Special trees 

In this section we shall investigate properties of some special types of trees 

considering them as candidates for a forcing notion. We shall be concerned with 

perfect tree forcing, Namba forcing and their generalizations. 

3.1. S-perfect trees 

We start with a generalization of the trees which were introduced for forcing 

purposes by the first author [3, 51 and considered later e.g. in [13, p. 2891, [9, 231. 

Let K be an at most countable set of uncountable regular cardinals. For each 

K E K, let J, be an ideal over K. Moreover, let r be a mapping of o onto K such 

that r-‘( { K}) is infinite for each K E K. 

Consider the basic tree (T, R, S), were T c<‘” sup K and the ramification R and 

the splitting criterion S are defined as follows 

(3.1) if length(v) = n then R(v) = r(n) and S(V) = p(r(n)) -J,+). 

A tree T E T is said to be S-perfect if T satisfies conditions (2.6) and (3.2) 

where 

(3.2) for each ‘II E T, for each K E K, there exist a splitting 

point s 2 v, s E T such that r(length(s)) = K. 

The set of all S-perfect trees will be denoted by Pf(S). 

Let us remark that every S-perfect tree is perfect in the sense of Section 2. If 

the set r has more than one element the converse need not be true. 

Since the properties of Pf(S) we are interested in do not depend on the 

mapping r we can always assume that 

(3.3) (a) if K is finite, K = {K”, . . . , K,_,}, then r(m) = rci where 

i-m (modn); 

(b) if K is infinite, K = {K,,, K~, . . . , K,, . . .}, then r is the sequence 

Ko, K1, Ko, KI, K2, Kot KI, K2, K31 . . . , Ko, KI, . . . , Kn, . . . . 

Moreover, if the ideals J, are of the form [K]‘” for each K E K, we shall simply 

say K-perfect and Pf(K) instead of S-perfect and Pf(S), respectively. And finally, 

Pf(K,, . . . , Kn-I) = Pf({Ko, . . . , K-I)). 
One can easily see that in general the set of trees Pf(S) is neither hereditary nor 

fusion closed. However, Pf(S) contains a nice dense subset. Let T be an S-perfect 

tree. We say that T has an ordered splitting if 

(3.4) for each splitting point v E T, if u E SL,(T) then r(m) = r(length((v)). 

It is easily seen that the set Pf”“(S) of all S-perfect trees with an ordered splitting 

is dense in Pf(S). 

We start with the following simple lemma. 
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Lemma 3.1. The set Pf”“(S) is a fusion closed family of trees. Moreover, if for 
some K the ideal J, is I_+-complete, then Pf”“(S) is &indecomposable. 

Proof. One can readily verify that Pf”“(S) is fusion closed. 
Now, let T E Pf”“(S) and let S < * T. Let v E S be arbitrary. Since S is a tree 

there exists a branch f E Br(S) which goes through the node v. Since f E Br(T), 
for any K E K there exists k > length(v) such that f 1 k is a splitting point of T and 
T(k) = K. Since S 6* T, the node f 1 k is a splitting point of S as well. The same 
argument shows that S has an ordered splitting. Thus Pf”“(S) is hereditary and 
(2.8)(a) holds. 

Without loss of generality we may assume that Jlc, is A+-complete. First, let us 
notice the following simple fact: 

(3.5) if T E Pf(S), v E SL,(T) is such that r(length(v)) = r(O) then there exists 
a tree S E Pf”“(S) with S so T. 

Let us define the function r E ww as follows: if (3.3)(a) holds then we set 
r(k)= k on (k E CO); if (3.3)(b) holds then we set r(k) = k(k+3)/2 (kE 0). 
Obviously, T(r(k)) = ~~ for each K E w. Using (3.5) one immediately obtains 

(2.8)(b) and (c). 
We show that (2.10) holds. Let aE E r.o.(Pf”“(S)) = r.o.(Pf(S)), 5 < Iz, 

V 5<h aE = 1. Given T E Pf”“(S) consider sT E SL,( T) = SL,,,,( T). For each 5 E 
Succ(s,, T), T(s,-E) is an S-perfect tree, hence there exist an f (Q < A. and an 
S-perfect tree TE such that TE 6 arts, and TE s T(s=-E). By the completeness of 
the ideal JR, there exist a set A E J&, A G Succ(sr, T), and an c < A. such that 
f(E) = 5‘ for each 5 E A. Let us set W = UseA TE. Then W so T and W E Pf(S), 
W c aC. Using (3.5) we get S E Pf”“(S) with S <’ W. 0 

As a consequence of this lemma and Theorems 2.3, 2.4 and 2.6 we obtain 

Theorem 3.2. (a) Zf f or each K E K the ideal J, is (A’(‘)+-complete, then the 
complete Boolean algebra r.o.(Pf(S)) is (X0, A)-distributive. 

(b) Zf for each K E K the ideal J, is A+-complete, then r.o.(Pf(S)) is (NE,, A, A)- 
distributive, provided cf(n) > oo. 

(c) Zf A is a regular uncountable cardinal and for each K E K either the ideal J, is 
,I+-complete or K < A, then r.o.(Pf(S)) is (X,, A, il)-distributive. 

Proof. Since Pf”“(S) is dense in Pf(S), (a) and (b) are obvious. One can easily 
verify that Pf”“(S) satisfies (2.11) too. Hence by Theorem 2.6 we get (c). 0 

Let us observe that a regular tree T G T is S-perfect if and only if the set SS(T) 
meets each r-‘({ K}) ( K E K) in an infinite set. As an easy consequence of 
Theorem 2.2 we get 
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To prove (3.6) fix a splitting point v E T and n E w. Since T < S,, and S, E 9i, 
for each 5 E Succ(v, T) there is nE E w such that the set { 5 E K: T(v-5) A 
a(nE, 5) #O} is of size K~. Since S is a-complete there are X, E S(V) and n, E o 
such that nE = n,, whenever E E X,. Since (Succ(v, T)( c K~, one can easily find 
for each 5 E X,, a tree T, s T(v-5) and C$ < ~~ such that 

(a) TE sa(n,, 5;:); 
(b) WE’+Cf+C$‘; 
(c) W%$ = T(n). 
Now it suffices to set S,, = lJ {T, : 5 E X,}. Then S,, co T(v) and (i)-(iii) of (3.6) 

hold. 
Now, by induction on n E CD, we shall construct a sequence of S-perfect trees 

Too~T1’~...“~T,+,“+‘~... and two functions Ho, HI as follows. 

Let v = ST, n = 0. By (3.6) there are n, E o, S, 6’ T and C$ (E E Succ(v, S,)) 
such that (i)-(iii) are satisfied. Let To = S, and define 

Ho(u) = 4, 

H,(v-,Zj) = cz for each 5 E Succ(v, To). 

Suppose that To ‘5 q ‘2 - - * n-1> T, and Ho r Uken SLk( T,), HI r lJksn (v-5 : v E 

SL,(T’), 5 E SWv, G)) h ave been constructed and that for each k s n and each 
u E SL,+,(T,) we have R(u) = T(k). By (3.6) for each v E SL,+,(T,) there are 
n,, E w, S, co T,(v) and I$ < x0 for all 5 E Succ(u, S,) such that (i) and (ii) hold 
and R(u) = T(n + 1) whenever u E SL,(&). Let 

T n+1= u {&J 12, E %+dTJI 

and define 

Ho(v) = % for each ZJ E SL,,,(T,+,), 

WV-E) = r: for each ZJ E SL,+,(T,+,), E E Succ(v, T,,,). 

Let T, = f-l,,, T,. It is obvious that T, E Pf(S). The set (T,: T < So} is dense 
below So E G, hence T, E G for some T s So. One can easily see that if we define 
(in A4[f]) the function 

H: lJ SL,,(T,)+ T, 
IIECO 

by letting, for each n E o and v E SL,(T& 

H(v) = v-c if and only if f(H,(v)) = H,(v-E), 

then we get 

and thus g E M[f]. Cl 

In our applications of the forcing notion Pf(S) in Section 6 we shall need 
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Theorem 3.5. Let k be an uncountable regular cardinal and suppose that for some 
KEK 

(3.7) there are sets A, EJ, (5 E A) such that UECnA5 = K and &,,A, E J, 
whenever 5 < A. 

Then for any M-generic filter G on Pf(S), in M[G] A is cofinal with w,,. 

Proof. Let no, nl, . . . , nk, . . . (k E w) be an increasing sequence of natural 
numbers such that r(n,) = K for each k E w. Suppose that G c_ Pf(S) is M-generic 
and let g = U {sT: T E G}. Without loss of generality the sets A, (E E I.) are 
pairwise disjoint. It is not difficult to see that the function f defined by 

f(h)= E iff g(nk)EAE (hew) 

is cofinal in 1. 0 

3.2. Namba forcing 

Another type of’ trees was studied by Namba [19]. We shall investigate a 
generalization of this forcing notion as introduced by several authors, e.g. [23]. 

Let (T, R, S) be a basic tree. Let us recall that a tree T E T is called an 
S-Namba tree if it satisfies condition (2.9), i.e. T has a trunk sT and all nodes 
above sT are splitting. If the basic tree is given as in Subsection 3.1 with 
J, = [K]<” (K E K), we shall denote by Nm(K) the set of corresponding S-Namba 
trees. 

Lemma 3.6. The set Nm(S) of all S-Namba trees is a hereditary fusion closed 
family of trees. Moreover, if the splitting criterion S is A+-complete, then Nm(S) is 
kindecomposable. 

Proof. Obviously, Nm(S) is hereditary and fusion closed. It is easily seen that 
conditions (2.8)(b) and ( c are fulfilled as well; it suffices to let r(n) = n for each ) 
n E w. It remains to verify condition (2.10). 

Let aC E r.o.(Nm(S)) (5 < A) such that VcCn ag = 1. Suppose T E Nm(S) and 

1(3T, so T)(35; < n)(To E Nm(S) & To < ac). 

We shall construct an S E Nm(S) with S so T such that for each t E S 

l(3T’ so T(t))(ZlI; < A) T’s aC. 

This will yield a contradiction since then S - co T and S cannot be extended to an 

element below any aC. 
Let 

S={tET:l(gT’ so T(t))(3c <I_) T’ <as}. 
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We shall show that S E Nm(S). By assumption, sr E S. Let t ssT, t E S and 
suppose Succ(t, S) 4 S(t). This means that 

For each 5; < A put 

Since the splitting criterion S is A+-complete, there is a co< 1 such that 
X, E S(t). Now, for each E E Xc,, choose a T” co T(t^5) such that TE <aCO. Then 

T’ = Us+ Tf E Nm(S), T’ 4’ T(t) and T’ ~a~~. This implies that t $S, a 
contradiction. Cl 

As a consequence of this lemma and Theorems 2.3 and 2.4 we obtain: 

Theorem 3.7. (a) Zf the splitting criterion is (AK”)+-complete, then the complete 
Boolean algebra r.o.(Nm(S)) is (K,, A)-distributive. 

(b) Zf the splitting criterion is A+-complete, then r.o.(Nm(S)) is (K,, )L, A)- 
distributive, provided cf(d+) > oo. 

In the same way as in the case of S-perfect trees (Theorem 3.5) one can easily 
prove the following: 

Theorem 3.8. Suppose that the basic tree is as in subsection 3.1 and assume that 
for some K E K and an uncountable regular cardinal A condition (3.7) is satisfied. 
Then for every M-generic filter G on Nm(S), in M[G] A is cofinal with oo. 

4. Perfect trees versus Namba forcing 

As we showed in Section 3 both forcing notions Pf(S) and Nm(S) have the 
same distributivity properties (Theorems 3.2, 3.5 and 3.7, 3.8). However, there 
are properties which can distinguish both forcing notions. Magidor and Shelah 
[23, pp. 366-3681 proved that under CH the forcing notions Nm(w,) and Pf(w,) 
are different: the former one adds a fast growing function from w. to w2, the 
latter one does not. This result can be generalized. 

Theorem 4.1. Zf J, is (2K”)+-compZete for each K E K and if sup K E K, then 
whenever G is an M-generic filter on Pf(S), the generic extension M[G] does not 
contain a fast growing function from o. into sup K. 

Proof. Let ~~ = max K. If G is an M-generic filter on Pf(S) then g = lJ {sT : T E 
G} E Woo is unbounded in K~. So by Lemma 1.11 it is sufficient to show that the 
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generic function g has no fast growing part. Or more formally, we have to prove 

(VT E Pf(S))(VA E [w]“)(YS G T)(3H E SK,, n M)(Vm E o) 

(3k E o) k 3 m & S II “H(g(c,(k))” > g(c,(k + l)“)“, 

where for every X E [o]O cx is the counting function of X, i.e. ~~(0) = min X, 
cx(n + 1) = min{k E X : k > cx(n)} (n E CO). 

Let T E Pf(S) and A E [w]O be arbitrary. As the set of all regular K-perfect 
trees is dense in Pf(S) by Theorem 3.3, without loss of generality we may assume 
that T is regular and has an ordered splitting. 

For each branch f E Br( T) define 

Af={m~A:f(m)>max{f(k):k~A&k<m} 

and for each B G A let 

EB = {f E Br(T) :Af = B}. 

By Theorem 2.1 there are 7’,, s* T and B,, G A such that f E Es, whenever 
f E Br(T,). Now there are two possible cases: 

Case I: B0 b finite (obviously B0 is always nonempty). Let B = A - B,,, 
no = max B. and define 

H(o) = ‘yo (a E x0), 

where yo= vo(no) for some V,E To such that length(u,) >no. Let S l Pf(S) be 
such that S G T,(v,). Clearly for each k E B and each v E S rl ‘+‘rco we have 
v(k) < y. and H(v(k)) = yo. In particular, for each k, m E A, if no < k <m then 

s II- “$pz) -c A(&) = 70)‘. 

Case II: B. i.s infinite. Find B1 E [B,]” and a regular S-perfect tree Tl S To such 
that if D = SS(T,) then 

(i) (3”n)(Vv E q) length(v) = cD(2n + l)+R(v) = rco, 

(ii) (Vn E w)(Vv E T,) length(v) = cD(2n)*Z?(v) = K~, 

(iii) (Vn l 0) c,,(2n) < c,,(2n + 1) < cD(2n) < c~(2n + 1) < c,,(2n + 2). 

For each v E Tl fl cJ2n) ~~ pick 5” E Succ(v, T,), & > max ran(v) and set 

S, = U {T,(Gf,): 21 E GdT,)l. 
One can easily check that S = n,,, S,, is an S-perfect tree and S G G. Let us 
define for each 5 E rco 

H(Zj)=min yEKo. { * (vu E s n *‘;‘, “5)(3n E opv 2 u) 
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Now S and H are as required: obviously H E M and for each n E o and each u E S 
such that length(u) > c,,(2n + 1) we have 

H(u(cB,(2n))) > 5, > &,(2n + 1)) 

where v 2 u 1 c,,(2n) is such that v E Sb(T,) f~ S. 
Since B1 E BO c A, if c,,(2n) = cA(k) then c,,(2n + 1) 2 cA(k + 1) and 

u(c,,(2n + 1)) 2 u(cA(k + 1)). This means 

S It- “g is not fast growing on Ai,‘. 0 

On the other hand, by a simple computation we get 

Theorem 4.2. Let the basic tree (T, R, S) be as in subsection 3.1. Zf for some 
K E K and an uncountable regular cardinal A (3.7) holds, then for every M-generic 
filter G on Nm(S) the generic extension M[G] contains a fast growing function 

from w. into il. 

By Theorem 3.4 the forcing notion Pf(S) is cf(K) = wo-minimal provided 
K = max K and the splitting criterion S is a-complete. If K = h+ for some 
uncountable cardinal A and if the splitting criterion S is (AK”)+-complete (e.g. 
under GCH, if A is regular and S is K-complete) then Nm(S) is also cf(rc) = oo- 
minimal (by Theorems 1.1 and 3.7). However, as we shall now show, if K is a 
limit cardinal, then, even if the splitting criterion is K-complete, the forcing 
notion Nm(S) need not be cf(K) = o,-minimal. 

First, let us recall the definition of Prikry’s forcing Pr (see [20]). Let J be a 
normal prime ideal on a measurable cardinal K. The forcing conditions are pairs 
(s, A) where s E [K]<~, A E [K]" - J and max s < min A, ordered by (s, A) s (t, B) 
iff s 2 t, A G B and s - t G B. Prikry [20] showed that the forcing Pr changes the 
cofinality of the cardinal K to w. without adding new subsets of smaller cardinals. 
Dehornoy [7] proved that r.o.(Pr) is isomorphic to r.o.(Nm(S)), where T = <OK, 

R(v) = K and S(v) = P(K) - J for each v E T, provided J is a normal prime ideal 
on K. We shall show that in this case Nm(S) (and hence Pr) is not cf(x) = oo- 
minimal. 

So let us assume that K is a measurable cardinal, J is a normal prime ideal on K 

and 

(4.1) R(v) = K, s(v)=J+ for each v E T=<OK. 

Let Pn be the set of all S-Namba trees T which satisfy the following condition: 

(4.2) (i) there is a set AT E .Z+ such that for each v 3 sT, v E T iff v = sr-u for 
some increasing sequence u E <@A,; 
(ii) for each v E T and each E E Succ(v, T), if v 2 sT then Zj > max ran(v). 

Since J is a normal prime ideal it is not hard to show that Pn is a dense subset 
of Nm(S). To simplify the notation we shall identify a finite set s E [K]'" with the 
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unique strictly increasing function from length(s) onto s. Thus, under this 
identification, if A E J+ and v E <OK then v-[A]‘” is a tree T E Pn such that 
sr = v and AT = A. Obviously, for each T, S E Pn we have T 6 S if and only if 
TESandA,cS. 

For a proof of the following lemma see [13, p. 2661. 

Lemma 4.3. Let B be a complete subalgebra of a complete Boolean algebra D. 
Then B is locally equal to D if and only if M[G] = M[G n B] whenever G is an 
M-generic filter on D. 

Now we shall prove the promised result. 

Theorem 4.4. Let J be a normal prime ideal on a measurable cardinal K and let 
(T, R, S) be as in (4.1). Zf G is an M-generic filter on Nm(S), then M[G] 2 M is 
not a cf(xc) = w,-minimal extension. 

Remark. Note that by Theorem 3.8 M[G] 2 M is a cf(rc) = o,-extension. 

Proof. Since Pn is dense in Nm(S), we must find a complete Boolean subalgebra 
B* of B = r.o.(Pn) which is not locally equal to r.o.(Pn) yet the forcing with B* 
changes the cofinality of K to wo. 

For each T E Pn let us define a tree T* g T as follows 

v E T* iff there exists a u E T such that length (u) > length(v) 
and for each n E CO, if length(v) > n then v(n) is such that 
(i) u(n - l)<v(n) <u(n + 1) whenever n is odd and 
u(n - 1) < u(n + 1) - 1; 
(ii) v(n) = u(n) otherwise. 

Let Pn* = {T* : T E Pn}. It is not difficult to see that (Pn*, s) is a separative 
partially ordered set. Let us define a function r& : Pn+ Pn* by letting 

v(T)=T* (TEPn). 

We claim that r/ is a normal mapping. Obviously 11, is order preserving and onto, 
so it remains to show that whenever T E Pn and S* 6 T*, there exists R c T such 
that R* s S*. Define 

UER iff (uET)&(%ES)(VnEcu) 

2n E dam(v) fl dam(u)-* v(2n) = u(2n). 

It can be easily checked that R * = S*. Thus r@ is a normal mapping. And so by 
Lemma 1.9 B* = rj(r.o.(Pn*)) is a complete subalgebra of B = r.o.(Pn). 

It is not hard to verify that forcing with Pn* changes the cofinality of K to wo. 

Thus if we show that B* is not locally equal to B, our proof will be complete. To 
do this it suffices to find an element b E B such that 

B,={cAa:cEB}#B,*={cAa:cEB*} 

whenever a E B and a s b. We will show that b = 1 works. 
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Let a E B be an arbitrary non-zero element. Since Pn is dense in B, there is 
TOc a, GE Pn such that n = length&,) is odd. Let A, EJ+ be such that 
To = sTO-[AJ’” and let A, = { &,, El, &, . . . , &, . . .} be an enumeration of the 
setATosuchthat~~<~,<52<...<~~<...((rlEK). Letusset 

& = sT03%-&-[AT0 - {& E1, ~dlco and 
& = ~T~--EI-~~-[AT~ - {&I, 51, Edlco. 

Obviously S,,, S, - < To G a, hence S,, S1 E B, and S, A S, = 0. It is sufficient to show 
that S, $ B,*. 

Suppose S, E B,*. Then &, = To A q(u) for some u E r.o.(Pn*). Let A E Pn* be 
such that u = VA. Hence 

So=ToAV{(SEPn:(3TEA)S*~T}. 

Since S, # 0, there exist T EA and S E Pn such that S* < T and S G S,. Let us 
remark that for any u E S, length(v) > n, we have v(n) = &. We define a tree W 
as follows 

u E W - (3u)(u E S & (Vi < length(v))(i #n+ v(i) = u(i)) 

& (n <length(v)-, v(n) = El)). 

It is easy to see that W* = S*. So W * s T and therefore W c So. On the other 
hand W =Z S,, contradicting S, A & = 0. 0 

Remark. The above proof shows essentially that the generic function g : co--, K 

cannot be recovered from its even part (g(2n) : it E o}. 

Let us close this section with a few remarks on the product P x (2 where P and 
Q are Nm(rc) or Pf(K) (i.e. the basic tree is T = <OK, R(v) = K, S(u) = [K]" for 
each u E T). The forcing P X Q changes the cofinality of K to oO, the 
corresponding generic extension is never cf(K) = o,-minimal and hence, even if 
forcing with neither P nor Q adds reals, forcing with the product may add reals. 
Actually, for K = K2 by Theorem 1.1 the forcing P x Q must add a real. 
Moreover, Hart observed that forcing by Nm(K) X Nm(K) adds a Cohen real. 
Indeed, the mapping qj defined on all pairs (T, S) E Nm(K) x Nm(K) with 
length@,) = length(s,) by 

v(T, S) = p iff (i) p E “2, where n = length(+), and 

(ii) p(k) = 0 iff am <s,(k) for each k < II, 

is normal. 

5. Collapsing K+ to E) 

Let K be an uncountable regular cardinal and let J be an ideal on K such that 
J 1 [K]‘“. Let the basic tree (T, R, S) be such that T = <OK, R(v) = K and 
S(V) = g(K) -J f or each v E T. It is easily seen that both Pf(S) and Nm(S) satisfy 
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the (2”)+-cc and do not satisfy the K-CC. Even if we assume GCH, in general we 
cannot give a better estimate than K++ -cc. Actually, if K is a successor cardinal, 
then this estimate cannot be improved since e.g. under GCH both forcing notions 
collapse K+ to K by Theorems 1.4, 3.2, 3.5 and 3.7, 3.8 (and as we already 
mentioned, this result is also proved by Shelah [23, p. 4401). 

By Jensen’s Covering Lemma, if O# does not exist then whenever the cofinality 
of a regular uncountable cardinal K is changed to oO, K must be collapsed. On the 
other hand, if K is a measurable cardinal and J a normal prime ideal on K, then 
the forcing notion Nm(S) for S defined by S(V) = P(K) -J (v E T) is equivalent 
to Prikry’s forcing Pr and it does not collapse cardinals. So it is natural to ask the 
following question: if S is as above, does forcing with Pf(S) preserve cardinals? 

In general the answer is negative. Let us denote by h the least cardinal )L such 
that the Boolean algebra ??(w)/fin fails to be (A, 2’“)-distributive. In [2] the 
authors showed that r.o.(s(o)/fin) collapses 2% to 4. By Theorem 2.2 (compare 
[5], p. 48, Balcar’s theorem]) one can easily see that the complete Boolean 
algebra r.o.(s(o)/fin) can be completely embedded into r.o.(Pf(S)) provided 
S(V) = J for each v E T and J is (2’C”)+-complete: the complete embedding is 
induced by mapping each set X E [w]O to the Boolean union of the set of all 
regular S-perfect trees T such that SS(T) is equal to X modulo a finite set. So if 
4 < 2%, 2% is collapsed to 4. However, this argument does not work if we assume 
e.g. CH, 

Our goal in this section is to prove the following theorem which shows that 
under some assumptions, when forcing with Pf(S), not only 2% but K+ is collapsed 

to 4 as well. 

Theorem 5.1. Let the basic tree (T, R, S) be as in subsection 3.1, let K = 

sup K E K and let .I, 2 [K]‘“. Zf 2” = K+ and if the splitting criterion S is 
(2K”)+-complete, then Pf(S) collapses K+ to 4. 

Remark. Let us note that under the assumption 2” = K+ the forcing notion Pf(S) 
satisfies the K++ -cc and thus all cardinals above K+ are preserved. 

Let the basic tree (T, R, S) be as in the assumptions of Theorem 5.1. If T is a 
regular S-perfect tree and if A. E K then we denote 

S&(T) = SS(T) II r-‘({A}). 

So for TV E T with length(v) E S&(T) we have R(v) = A. 

Let us recall that for every infinite set A c o, c, is the counting function of A. 
We shall prove Theorem 5.1 in a sequence of lemmas. Until the end of the 

proof of Theorem 5.1 we shall assume that the basic tree (T, R, S) as described 
above is fixed (i.e. K =max K, J, I> [K]<~ and S is (2’“)+-complete) and that 

2” = K+. 
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Lemma 5.2. For every S-perfect tree T there is a regular S-perfect tree S such that 
SsTand 

(5.1) if A = SS(S) then S&(S) =A - {cA(3m + 2) :m E o}. 

Proof. By Theorem 3.3 there exists a regular S-perfect tree W with W d T. By 
the definition of S-perfect tree, for every A E K the set SSn(W) is infinite. 
Therefore by induction one can easily find a set A E SS(W) such that A fl S&(W) 
is infinite for each A E K and S&(W) fl A = A - (~~(3~2 + 2) : m E w}. 

Now, take any regular S-perfect tree S C W such that SS(S) =A; S is as 
required. Cl 

Let Pf:(S) denote the set of all regular S-perfect trees satisfying (5.1). By the 
lemma which we have just proved Pf:(S) is dense in Pf(S). 

We shall need the following notion. Let T E T be a tree. For each t E T let 
spr(t) E T be such that spT(t) is a splitting point of T, spT(t) 3 t and no u E T, 
t < u < sp*(t) is splitting. 

Lemma 5.3. Let T E Pf:(S), B = S&(T) and let {SC : 5 E K} be a set of regular 
S-perfect trees such that SS,(Sc) = (~42 n ;n E w} for each c E K. Then there exists ) 
a regular S-perfect tree S c T such that S&(S) = {c,(2n) : n E w} and S A SC = 0 

for all I; E K. 

Proof. Let A = SS(T). 
For each n E w and each v E T fl cam let us fix 

Succ(v, T) such that 
(i) J,(E) E Succ(spT(v-5)) for each ‘5 E Succ(v, T), 

and in addition 

a function fU with domain 

(ii) I{,?$ E Succ(v, T):spT(v^S)-f,(E) E &-}I <K for each f < K. 
This is always possible: since length(spT(v^Q) = c,(3n + 1) = c,(2n + l), the 
node spT(v-Q has at most one immediate successor in every SC and there are 

only K many $3. 
Define 

T’ = U {T(sPT(~T-~)-~~,(~): 5 E SUCC(ST, T)) 
and let 

T(o) = T’ , 

T(“) = U {T’(t) : t E T(“-l) fl cam} for n > 0 , 

and let 

S = (--l T’“’ G T. 
REW 
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One can easily check that S is regular S-perfect tree and S&(S) = {c,(2n) :n E 
w}. Since (by (ii)) each splitting point t of S has less than K immediate successors 
ineach&, wehaveSn&=Oforeach c<K. 0 

Before going further, let us recall a few definitions. Let (P, =z) be a partially 
ordered set and let Q G P. A set R E P is said to be a disjoint refinement of Q if 
the family R is pairwise incompatible and for every q E Q there is an I E R such 
that r G q. 

Let us consider .Y(w)/fin. We say that 0 = {HE : E E fj} is a base matrix for 
s(o)/fin if HE is a maximal almost disjoint (i.e. MAD) family on w for each 5 E h 
and lJ 0 is dense in ??(w)/fin. It is shown in [2] that a base matrix for S(o)/fin 
always exists. 

Lemma 5.4. Let A be an infinite subset of r-l({rc}) and let ??A = {T E 
Pf:(S) : SS,( T) = A}. Then there exists a disjoint refinement of ~3~ of cardinulity 
K+. 

Proof. Since 2” = K+, the cardinality of the set 9* is at most K+; so let 
{T, : 5 < K+} be an enumeration of 9A (with repetitions, if necessary). 

We shall proceed by induction. Let S, s To be such that S, is a regular S-perfect 
tree and SSK(S,J = {c,(2n) :n E w}. 

Let 0 < 5 < K+ and assume that regular S-perfect trees SC, 5; < 5, have already 
been chosen such that for each t < E, SC < TC, SS,(&) = {c,(2n):n E o} and 
SCr\SC,=Owhenever C#<‘<&J 

Since 5 < K+, find by Lemma 5.3 a regular S-perfect tree SE s TE such that 

SSK(&) = {c,4(2 n :~Eo} and&r\&=Owhenever 5~5. ) 
The family {SE : E E K+} forms a disjoint refinement of $‘A. Cl 

Lemma 5.5. There exists a family {.& : 5 < 6) o maximal antichains of Pf:(S) of f 
curdinulity K+ such that U (s4. : 5 E fi} is dense in Pf:(S). 

Proof. Let 0 = {HE : 5 E ij} be a base matrix for CY’(o)/fin. For each E < h let 
{HF: n E w} be as follows: 

Ho,=&, 

H;={A-{OJ,..., n-l}:AeHE} forn>O. 

It is obvious that each H”, is a MAD family on w and if B E [w]O is such that there 
exists A E HE, A G* B, then there exists n E w such that A - (0, 1, . . . , n - 1) G 
B. Let 

6={HT:n<w, CE~}. 

Now by Lemma 5.4 we can find for each n E w, g E fi and A E H”, a disjoint 
refinement of the set 9,+_) of cardinality K+, where A(K) = {c,-~~~,~~(n) : n E A}. 

Let 93, be such a refinement; without loss of generality we may assume that 

.C& c_ Pf:(S) and V %!A = V ‘??Ao+ 
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Let A?; = lJ { 9ZA :A E Hg}. Obviously every &t (n E o, 5 E h) is a maximal 
antichain in Pf>(S) and l&F1 = K+. It remains to show that lJ {a;: n E w, ij E fj} 

is dense in Pf’,(S). 
Let T E Pf L(S) and let SS,( T) = A. 0 is a base matrix hence there are E E h, 

n E o and B E HF such that B GA. Let T’s T be such that SS,(T’) = B. Then 
B = C(K) for some C E [w]” and ?A!= is a disjoint refinement of pB, therefore 
there exists an S E 9Q such that S s T’ 6 T. 0 

Proof of Theorem 5.1. By Lemma 5.5 we can find a family {a,: i$ E lj} of 
maximal antichains in Pf:(S) such that {a, : tg E Ij} is a dense subset of Pf:(S) 
(and hence of Pf(S)). For each tree T E IJ {tiE : 5 E Ij} let {S5,r: 5‘ E K+} be a 
fixed maximal antichain below T in Pf:(S) (by Lemmas 5.2 and 5.3 it exists). 

If G is an M-generic filter on Pf(S) let us define in M[G] a functionf as follows: 

f(E)= 5 iff TE&I~G and Sc,*eG. 

One can easily check that f is a function from h” onto (K+)~: 

(i) f is a function because every family dE is a maximal antichain and hence 
exactly one TE E .s$ belongs to G; if T E G then the same holds for the Sz,T’s. 

(ii) To prove that f is onto it suffices to show that the set {S5,T: T E IJ {a, : 5 E 

Ij}} is dense in Pf(S) for each f E K+. Let S be arbitrary. Since lJ {,$ : 5_ E Ij} is 
dense, there exist 5 E lo and T E A, such that T < S; but then SC,=4 T 6 S. Cl 

Let us remark that the technique for embedding the algebra p(w)/fin into 
r.o.(Pf(S)) described at the beginning of this section does work only for llyl = 1; 
e.g. if IKl = 2 then the set A of all even natural numbers is not a splitting set of 
any S-perfect tree. Nevertheless, for every K we can prove the corresponding 
generalization of Balcar’s theorem: 

Theorem 5.6. Let the basic tree be as in subsection 3.1 and let S be (2%)+- 

complete. Then r.o.(g(o)/fin) can be completely embedded into r.o.(Pf(S)). 

Proof. FixaKEKandletA=r-l({K})E[@]O ForanyXcwset 

n(X)= V {tePfoS(S):SS,(T)= {cA(n):n eX}modfin}. 

One can easily show that n is the required embedding. 0 

We are not able to prove or disprove a similar result for Namba forcing. On the 
one hand, in the case of a measurable cardinal K and a normal prime ideal on K 

Namba forcing cannot contain 9(w)/fin. On the other hand, we have the 
following partial result: 

Theorem 5.7. If 2% = K,, 2” = K, and S(v) = [o$‘* for each v E T then 

r.o.(Nm(S)) contains a complete subalgebra isomorphic to r.o.(p(o)/fin). 
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Proof. Let M be a transitive model of ZFC such that M l= 2% = X1 & 2” = KZ. In 
M, consider Nm(S) and let G be M-generic on Nm(S). By Theorem 3.7, we have 

U Ecu, *co1 rl M[G] s M and by Theorem 3.8, M[G] k Ii$‘j = X1. 
Since 9)(o) II M[G] c M, the partially ordered set P = (s(o)/fin)“l”l belongs 

to M. Let 9 = {D E M : D is dense in P}. Clearly 9 E M and M k (9) = X2, hence 
M[G]k191=N1. 

Now we work in M[G]. Let 9 = (4 : 5 < ml}. We proceed by induction. Let 
u,, E DO be arbitrary. Assume that we have already chosen a, 2 a, 2 - - - 2 aC 3 - - - 

for t < 5 < w1 such that ag E DC for each f‘ < 5. By assumption the sequence 
{as : p < f} belongs to M. Since P is o-closed there exists an aE E DE such that 
uE < a< for each I; < 5. Let H = { zYE : 5 E ml}. Clearly H is an M-generic set on P 
and H E M[G]. It follows that M[H] G M[G] and therefore r.o.(!Y’(w)/fin) can be 
completely embedded into r.o.(Nm(S)) (cf. [13, pp. 265-2671). Cl 

6. Some generic extensions 

In this section we shall present some constructions of mainly minimal generic 
extensions based on the forcing notions introduced in Section 3. Let M be a fixed 
transitive model of ZFC. 

6.1. IK] = k&,-minimal extensions 

Prikry and Abraham [l] proved that both forcing notions Pf(w,) and Nm(w,) 
are IHyl= &-minimal. As we have already mentioned, under the axiom of 
constructibility Sacks [22] constructed a IK( = &-minimal extension for every 
regular cardinal K. 

Using the results of Section 3 we shall now construct a 1~1 = &,-minimal 
extension of a transitive model of ZFC for every uncountable regular cardinal K 

such that K =2^. Suppose K is an uncountable regular cardinal and J is a 
a-complete ideal on K possessing the following property 

(6.1) (i) [K]‘” cJ, and 
(ii) for each uncountable regular cardinal il< K there is a system 

{AS : 5 < A} E J such that &*A5 = K and UEC5AE E J whenever 
C<A. 

Theorem 6.1. Let K be an uncountable regular cardinal in M such that K = 2”. 
Suppose that the basic tree (T, R, S) in M is such that S(v) = J+ for each v E T, 

where J is a u-complete ideal on K satisfying (6.1). Let G be an M-generic filter on 
Pf(S). Then 

(a) M[Gl k I4 = NO, 

(b) M[G] 1 M is a IKI = No-minimal extension. 
Moreover, if M k 2” = K+, then 

(c) K+ is a cardinal in M[G] (i.e. K+ = CO~[~~). 
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Proof. By Theorem 3.5 every uncountable regular cardinal J. 6 K in M is cofinal 
with oO in M[G], therefore K must be countable in M[G] and (a) holds. 

Since .I is o-complete and [K]‘^ L J, (b) follows from Theorem 3.4. 
If M L 2” = K+ and K+ fails to be a cardinal in M[G], then K+ must be 

countable in M[G]. As the forcing notion Pf(S) is of size K+ in M, there exists an 
M-generic filter H on the collapsing algebra Col(K,, K+) (for the definition see 
e.g. [13, p. 2761). But this contradicts the JKI = K,-minimality of M[G] and we 
have proved (c). Cl 

The existence of an ideal J on K as in Theorem 6.1 is guaranteed by the 
following lemma. 

Lemma 6.2. Let K be an uncountable regular cardinal such that K = 2”. Then there 
exists a o-complete ideal satisjjkg (6.1). 

Proof. We shall construct a u-complete ideal satisfying (6.1) on a set C of 
cardinality K. 

For every uncountable regular cardinal p let 

R(p) = {A < fi : A is an uncountable regular cardinal} 

and 

CL=& R(p)p : (VA E R(p))f(A) E A}. 

The set C is defined as follows: 
(i) if K = p+ then C = C,, 

(ii) if K is a limit cardinal then 

c={fE R(dK: (3p E R(K))(f 1 /i E c, 8 (VA 2 ,U)(ii < K-f(n) = 0))). 

Now, for each I E Z?(K) and each 5 < il set 

A;={f~C:f(jl)=c) 

and define J E 9’(C) by 

X E J iff there are a countable set Y E R(K) and ordinals <A < A for 

each L E Y such that X c_ lJ lJ A;. 
.kY is6 

It is easy to verify that J is a u-complete ideal satisfying (6.1). Cl 

Remark. Note that the assumption K = 2” in Theorem 6.1 was needed to ensure 
the existence of an ideal satisfying (6.1). In the case that K < Hfj, is an 
uncountable regular cardinal we can use the forcing Pf(R(K+)), thus avoiding the 
assumption K = 2”. 
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6.2. cf(K) = w,-minimal extensions 

As can be easily seen the extension constructed in subsection 6.1 is in fact 
cf(K) = oO-minimal. 

By Theorem 3.4 the forcing notion Pf(K) is cf(K) = w,-minimal for every 
uncountable regular cardinal K. Moreover, if K > X1 then KY remains a cardinal in 
the generic extension, and if K > 2’” and 2” = K+ and K+ is collapsed to b. So, 
assuming the generalized continuum hypothesis, K++ becomes K2 of the generic 
extension. 

By Theorems 1.1, 3.7 and 3.8 the forcing notion Nm(K+) is cf(rc+) = o,,- 
minimal for every uncountable cardinal K such that K~ = K. On the other hand, 
Theorem 4.4 gives an example where Namba forcing is not cf(K) = w,-minimal 
(for a measurable cardinal K). 

Other examples of cf(K) = o,-minimal extensions are discussed in 6.3 and 6.4. 

6.3. 1~1 = &-minimal extensions 

Under CH and 2^ = K+ = A, the forcing notion Pf(K) gives both a 1~1 = Xl- 

minimal and a l)cl= &-minimal extension in which K1 is preserved (by Theorems 
3.4 and 5.1). We shall now construct a JKI = &-minimal extension which changes 
cofinalities of prescribed cardinals and does not collapse Xi. 

Theorem 6.3. Assume GCH. Let K > 8, be a regular cardinal and let R be a set of 
regular cardinals larger than K1 and not larger than K such that R is a disjoint union 

UCleA R,, where 
(i) A is an at most countable set of regular cardinals, 

(ii) for each u EA, R, is the set of all regular cardinals 3, such that 
p=ZASsupR, and supR, ERr, 

(iii) sup A E A and K E Rsup A. 

Then there exists a forcing notion P which is 
(a) both (K+[ = K,-minimal and IKI= HI-minimal, 
(b) for every regular cardinal A S K in the ground model, cf(J.) = o0 in the 

extension if and only if 3c E R, 
(c) K, and cardinals larger than K+ are preserved. 

Proof. Let K = {sup R, : y E A}. Consider R, and let v = sup R,. In a similar 
way as in Theorem 6.1 we construct a p-complete ideal J,, on Y such that 

JV 2 [vl<’ and for each regular cardinal A, ~1 s )\. s Y, there exists a system 
{A, : c E A} G .I, such that lJecn A, = Y and IJECL;AE E .I,, for each f < Y. Now, 
using K and {JV : Y E K} we construct a basic tree (T, R, S) as in subsection 3.1. 

By Theorems 3.2, 3.4, 3.5 and 5.1 one can easily see that Pf(S) is the required 
forcing notion. 0 
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6.4. A strong minim&y property 

Let us begin with the following simple observation: let M c N be an extension, 
let K be an uncountable cardinal in M such that N k 1~1 = No. Then for any 
cardinal 3L < K in M there exists a model W, M c W s N, such that zC$ is the 
successor of il in M, assuming GCH in M. 

We shall show that if we replace K,, by X1 and Xy by X,” this observation need 
not be true. 

Theorem 6.4. Suppose M k GCH and let in M K be a regular cardinal, 
Kf+K<X& Then there is a forcing notion P E M such that for every M-generic 
filter G on P the following holds: 

(a) M[G] k K, = Xr, 
(b) the successor of K in M is of size X1 in M[G] and K++ = KF'G1, 

(c) if W is a model, M z W G M[G], such that some cardinal ,u EM, 
K1 <u c K+ is of size X1 in W, then W = M[G] (i.e. M[G] k ]u] = HI-minimal for 
every u, X1 < u < K+). 

Proof. Let R = {u : p a regular cardinal in M, K1 < u < K}. Since K < K,,, R can 
be written in the form used in Theorem 6.3. Let P be the forcing notion used in 
the proof of Theorem 6.3. Assertions (a) and (b) then follow from Theorem 6.3. 

Notice that the splitting criterion S is (2%)+-complete, therefore no new reals 
are added and the continuum hypothesis holds in M[G]. 

Now, assume M c W c M[G] and for some cardinal ,U of M, KY < u c K+, we 

have WI= )u] = K1. Then XT>&?. By Theorem 6.3(a) it suffices to show that 
NY = @lo’. 

Since XylG1 is a regular cardinal in W, it cannot be cofinal with oO in M. So 
H~‘G’ = K$!+ 1 for some g < w, . By Theorem 1.7, 5 cannot be a limit (since CH 
holds both in M[G] and W). Therefore X$’ ’ IS a regular cardinal in M. Since 
W k I$=‘] = X,, the cofinality of Xr in W is o. or oi. 

Assume Xf < K. Then the cofinality of Xr in M[G] is X0 (Theorem 6.3(b)). 
Hence cf(XF) in W is o. as well. By Theorem 1.4 (applied to M s W) we obtain 

W k 2+ n MI c ]@‘I”” = X1, 

which is a contradiction since 

W k 12°F fl MI = KY+,, = K,. 

So we have proved that Xr > K and consequently 8,” = $“lG1. q 

7. Problems and comments 

We present some open questions which are closely related to the results 
obtained in this paper. 

In connection with Theorem 6.3 the following questions arise. 
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Question 1. Is there a (KJ = K,-minimal extension which is not a l&l = Xi- 
extension? 

Question 2. Is there a ]i$l = &minimal extension preserving K4 which is not 
l&l = &minimal? 

In connection with Theorem 6.4 it is natural to ask 

Question 3. Can the assumption K < X,, be omitted in Theorem 6.4? 

Question 4. For a given model M, is there an extension N such that #” = Kr and, 
say, rCr = Xr and for any model W, M E W c N, if CardM # CardW then W = N? 

A natural candidate for forcing such an extension is the forcing notion of the 
form used in the proof of Theorem 6.1. 

The forcing notion Pf(o,, q) is not strongly minimal. More precisely we have 
the following. 

Theorem 7.1. Assume GCH. Then r.o.(Pf(w,)) cult be completely embedded in 

r.o.(Pf(02, 04)). 

Remark. Obviously r.o.(Pf(w,)) cannot be embedded in r.o.(Pf(w,, 03)). 

Proof. Using the assumption 2 ‘* = K3 we shall find a ‘nice’ dense subset of 
Pf(w,, wq). Let us recall that the basic tree (T, R, S) is such that for each u E T, 
R(v)= co2 and S(v)= [c@‘* whenever length(v) is even, and R(v)= 04, 
S(v) = [wJoq whenever length(v) is odd. 

Let T be a regular S-perfect tree with A = SS(T) such that every even (odd) 
splitting point is followed by an odd (even) one, i.e. T E Pf”“(S). Such trees form 
a dense subset of Pf(w2, wq). Let u be a splitting point of T such that 
n = length(v) is odd. Let m be the first element of A with m > n. Then m is even. 
LetE={kEm:kisevenandn+l <k =z m}. For Z$ E Succ(v, T) denote 

H(v, T,c)={u rE:length(u)>m+2&uzv^E&ueT}. 

The tree T is said to be nice if for each splitting point v of odd length n, each 5, 
n E Succ(v, T) we have 

H(u, T, 5) = H(u, T, rl). 

Since for each u E SL”(T) (n E w) the function H has at most 2KZ = H3 possible 
values, using fusion one can easily show that the set of all nice trees is dense in 

Pf(% 04). 
For every nice tree T we set 

Ilt(T) = {u e +‘02 : (3~ E T)(Vk E o)(k <length(v)-, v(k) = u(2k))). 
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It is easy to see that q is a normal mapping from the set of all nice trees onto the 
set of all regular trees in Pf(w,); thus I$ induces a complete embedding of 
r.o.(Pf(o,)) into r.o.(Pf(wa, 13~)). Cl 

The following question is rather technical. 

Question 5. Let J be an ideal on X4 possessing the property (6.l)(ii) for A = Xz 
and A. = X4 but not for A = K,. Does the forcing notion Pf(J) change the cofinality 
of rc3 to w,? 

We finish with a simple but probably difficult problem related to Theorem 1.6. 

Question 6. Is there an extension N 2 M such that Xr = KY and X? = Xt+, (and 

consequently N k 2% 3 K2)? 

An affirmative answer to this question yields a solution to the Jensen-Solovay 
problem [14] on violating CH by adding a real (compare the solution by Shelah 
and Woodin [24]). 

References 

[l] U. Abraham, Minimal model of “Kf is countable” and definable reals, Adv. in Math. 5.5 (1985) 

75-89. 
[2] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, 

Fund. Math. 110 (1980) 11-24. 

[3] L. Bukovsky, A changing of cofinality of K,, Mimeographed notes, presented at Logic 

Colloquium ‘69, Manchester. 

[4] L. Bukovsky, Changing cofinality of a measurable cardinal (An alternative proof), Comment. 

Math. Univ. Carolin. 14 (1973) 689-698. 

[5] L. Bukovsky, Changing cofinality of K,, in: W. Marek et al., eds., Set Theory and Hierarchy 

Theory, A Memorial Tribute to Andrzej Mostowski, Lecture Notes in Math. 537 (Springer, 

Berlin, 1976) 37-49. 

[6] L. Bukovsky, Iterated ultrapower and Prikry’s forcing, Comment. Math. Univ. Carolin. 18 

(1977) 79-85. 

[7] P. Dehornoy, Iterated ultrapower and Prikry forcing, Ann. Math. Logic 15 (1978) 109-160. 

[S] K.J. Devlin and R. Jensen, Marginalia to a theorem of Silver, in: G.H. Miiller et al., eds., Logic 

Conference Kiel 1974, Lecture Notes in Math. 499 (Springer, Berlin, 1975) 115-142. 

[9] A. Dodd, The core model, London Math. Sot. Lecture Note Series 61 (Cambridge University 

Press, Cambridge, 1982). 

[lo] D. Gale and F.M. Stewart, Infinite games with perfect information, in; Kuhn and Tucker, eds., 

Contributions to the Theory of Games, Vol. 3, Annals of Math. Studies 28 (Princeton, NJ) 

245-266. 
[li] M. Gitik, The nonstationary ideal on K,, Israel J. Math. 48 (1984) 257-288, 

[12] S. Grigorieff, La non-contradiction relative de I’axiome de Martin, in: GMS Seminar, (Publ. 

Math. Univ. Paris VII, Paris 1979) 61-74. 
[13] T. Jech, Set Theory (Academic Press, New York, 1978). 
[14] R.B. Jensen and R. Solovay, Some applications of almost disjoint sets, in: Y. Bar-Hillel, ed., 

Mathematical Logic and Foundations of Set Theory (North-Holland, Amsterdam, 1970) 84-104. 



298 L. Bukovsky’, E. Copla’kovb-Hartovn’ 

[15] R. Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976) 151-169. 
[16] M. Magidor, Changing cotinality of cardinals, Fund. Math. 99 (1978) 61-71. 
[17] D.A. Martin, Bore1 determinacy, Ann. of Math. 102 (1975) 363-371. 
[18] A. Miller, Rational perfect set forcing, in: J.E. Baumgartner et al., eds., Axiomatic Set Theory, 

Contemporary Mathematics 31 (Amer. Math. Sot., Providence, RI, 1984) 143-159. 
[19] K. Namba, Independence proof of (w, w&distributive law in complete Boolean algebras, 

Comment. Math. Univ. St. Paul. 19 (1970) l-12. 
[20] K. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. 68 (1970). 
[21] G.E. Sacks, Forcing with perfect closed sets, in: D.S. Scott, ed., Axiomatic Set Theory, Proc. 

Sympos. Pure Math. (Amer. Math. Sot., Providence, RI, 1971) 331-355. 
[22] G.E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. in Math. 19 (1976) 213-262. 
[23] S. Shelah, Proper Forcing, Lecture Notes in Math. 940 (Springer, Berlin, 1982). 
[24] S. Shelah and H. Woodin, Forcing the failure of CH by adding a real, J. Symbolic Logic 49 

(1984) 1185-1189. 


