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A MINIMAL MODEL FOR CH: 
ITERATION OF JENSENSS REALS 

BY 

URI ABRAHAMI 

ABSTRACT. A model of ZFC + 28o= 82 iS constructed which is minimal with 
respect to being a model of _CH. Any strictly included submodel of ZF (which 
contains all the ordinals) satisfies CH. In this model the degrees of constructibility 
have order type @2. A novel method of using the diamond is applied here to 
construct a countable-support iteration of Jensen's reals: In defining the ath stage of 
the iteration the diamond '4guesses" possible ,B > xx stages of the iteration. 

Introduction. Let V be a transitive universe (i.e., model of ZFC). We say that V is 
a minimal model for CtI (negation of continuum hypothesis) if CH holds in V 
and whenever V* C V is a transitive submodel of ZFC + CH which contains all 
the ordinals of V, then necessarily V* = V. 

A minimal model for CH has previously been constructed by Marcia J. Groszek; 
in fact [G] any countable transitive universe M of CH is generically extended to a 
minimal (above M) model for CH (i.e., there is no model for CH which is strictly 
included in between M and the generic extension). 

We give here another construction of a minimal model for CH. The main 
structural difference between our model and Groszek's is that here the degrees of 
constructibility are linearly ordered in order-type @2 while in [G] it is the complexity 
of the structure of the constructibility degrees which is the key to the minimality of 
the extension. 

So, our paper is devoted to the proof of the following theorem. We use L (the 
universe of constructible sets) as the ground model. 

THEOREM. There is a constructible poset P such that if P is an L-generic filter oter P 
then L[P] is a minimal model for CH in which the degrees of constructibility have 
order-type @2 

The proof of this theorem might appear somewhat technical, yet the general ideas 
are very natural. Therefore, I think the reader will appreciate a description of the 
proof. 

G. Sacks [Sa] considered the poset of all perfect trees; he showed that a generic 
extension which is obtained via the poset of perfect trees is a minimal extension of 
the ground model. J. Baumgartner and R. Laver iterated this Sacks' forcing with a 
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countable support iteration [B, L]. A. Miller, in a by-product of his work [M], proved 

that in the model of [B, L] (obtained by iterating @2 many times the Sacks forcing) 

the degrees of constructibility have order-type @2. (The degrees of constructibility 

are the equivalence classes obtained by regarding the partial order "x is construcible 

fromy" x E L[y]- defined on the subsets of .) 

This model is the first which comes to mind when the problem of finding a 

minimal model for CH is considered. If the degrees of constructibility have 

order-type @2, and since 82 = 82L holds in this model, any submodel of CH must 

contain tS 2 many reals and hence all the reals. Yet, this submodel does not 

necessarily contain all subsets of ,. P. Dordal showed that indeed the model 

obtained by iterating the Sacks perfect-trees posets is not a minimal model for CH. 

(See [G] for a full discussion and proof.) The reason, in short, is that although all the 

82 reals must appear in the intermediate model of CH, the sequence of generic 

reals need not. A possible approach is to use Jensen's method [J1] for obtaining a 

definable real of minimal degree of constructibility.2 In the next section we describe 

Jensen's real, and in the subsequent section the iteration of these posets which is 

our main point. 
Jensen's poset is a subset of the collection of all perfect trees. The motivation for 

constructing such a poset, Jensen says, comes from the construction of a Souslin tree 

in L. [J1] uses the constructible diamond-sequence to thin out a subcollection of the 

Sacks poset which satisfies the c.a.c. (any antichain is countable). However, the most 

important property of this subcollection is that it is a rigid poset, and the conse- 

quence of this is that the generic object over the Jensen poset is unique. So, if we 

iterate Jensen's posets and if the degrees of constructibility have order-type @2 in the 

resulting model, then any intermediate model of CH must not only contain all the 

reals but actually also the unique sequence of generic reals and so is the full model. 

Thus the only problem is to get the right order-type of constructibility degrees. 

When analyzing Miller's proof of the fact that @2 iS the order-type of the 

constructibility degrees in the [B, L] model of the Sacks iteration, one can see that a 

crucial point is the closure of the perfect trees under fusions. In fact [B, L] 

formalized the notion of fusion also for the iteration of Sacks forcing and it is that 

notion which is used. But the deflated poset of Jensen is not closed under the 

arbitrary fusion sequence and so Miller's arguments cannot be applied directly. The 

remedy, of course, is to close the Jensen posets under enough fusion sequences so as 

to apply the Miller argument, yet to do so sparsely so that a rigid poset will result. 

But there is a problem here: When constructing the a poset (a < @2) in the iteration 

of Jensen's posets, we have to take into account fusion sequences of iterated 

conditions which involve posets which are not even yet constructed (they will be 

constructed at stages ,B, a < ,B < @2) How could we do that? A problem of similar 

nature appeared before Jensen in [D, J] where he iterated Souslin trees @2 times and 

used the diamond and square for that. Here, however, we need a different approach. 

2I am indebted to J. Baumgartner and P. Dordal for a discussion of this point. 
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We use Shelah's idea in his proof [S] of the omitting-type for L[Q]. The diamond is 
used to give the future posets. 

In §1 we bring the basic definitions and lemmas needed subsequently; much of 
the material there is essentially due to Baumgartner-Laver [B, L] and to Miller [M]; 
the poset Q(P) (when P is the Sacks poset) was considered first by Shelah. 

About notations: We use V, W to denote universes of set-theory. V is usually the 
ground model, and if P is a poset then VP is the Boolean-valued model of RO(P). P 
will denote an iteration of length B. PO is the empty set and VPo is to be read as V. P 
denotes a generic filter over P, and V[P] is the generic extension. For a name 
x E VP, xP denotes the interpretation of x in V[P]. Sometimes we mix VP and 
V[P], and if a E V[P] we may regard it as a name and use it in the forcing language. 
U, S, T will denote trees; P, Q, R, posets. We write 0 IFPm to mean (tp c P) p IFP(p. 

Let us close the introduction with an open question: Is there in our model a Il2 set 
of reals which picks just one real from each equivalence class of constructibility? Is it 
consistent to have such a set in a model of ZFC where the degrees of constructibility 
have order-type w2? (Recall that a Jensen real is a Il2 singleton.) 

1. Basic definitions and properties. 
Perfect trees. 82 is the collection of all functions from a natural number into 

{O, 1}. s and t denote members of @2. T c@2 is a perfect tree if 

,. \ . 

VlJsctcl sEl,ano 

(2) T is nonempty and every s E T splits in T, i.e., there are t, and t2 in T, 
S c tl n t2 but t1 ¢ t2 and t2 ¢ tl. 

The collection of perfect trees is partially ordered by inclusion. We read T, 5 T2 
as T, is above T2. 

When are two trees compatible? Given perfect trees T and S, define T A S the 
meet of T and S in a Cantor-Bendixon fashion as follows. Begin with UO = T n s 
and define trees Ua a < )1 inductively: Ua I is the tree of all s C Ua which splits in 
Ua. For limit 8, Us = ni<UI Finally, TA S = Ua for the first a such that 
Ua = Ua+ , 

T A S is either a perfect tree or the empty set. T A S 7& 0 just in case T and S are 
compatible (i.e., T n s contains a perfect tree). A consequence of this is that the 
notion of compatibility is absolute: if T A S = 0 in some transitive structure in 
which the Cantor-Bendixon process can be carried out, then T A S = 0 in any 
extension of that structure and T is incompatible with S. 

Also obvious is that T A S is the least upper bound of T and S (in the reversed 
inclusion partial order): U C T A S for every perfect tree U such that U C T n s. A 
consequence is that 

(1.1) (TAS)AU=TA(SAU). 

For a perfect tree T and s E@2 let 

Ts = {t E Tls C t or t C s} . 
Ts is a (nonempty) perfect tree just in case s C T. 
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The following can be easily proved 

(l.la) (T A S)5 = T5 A S5, (Tl U T2) A S = (Tl A S) U (T2 A S). 

Perfect posets. A collection P of perfect trees is called a perfect poset if 

(1) @2 C P and (82)5 C P for s C@2. 

(2) T A S C P whenever T and S are compatible and in P. (Hence T C P and 

sC TimplyTsCP.) 

(3) T U S C P whenever T and S are in P. 

Generic reals. If P is a generic filter over a perfect poset P, then r = u n P CZ2 

is called the canonical generic real of P. 

P can be easily recovered from r and P as follows. Say X is a branch of T if 

T r n C T for all n C w. Look at the set of all T C P such that r is a branch of T, this 

is P. 
The posets Q(P). For any perfect poset P we associate a new poset, Q(P), 

consisting of all pairs (T, n) with T C P and n C w. The partial order is defined by: 

(T', n') < (T, n) (and we say (T, n) extends (T', n')) if T c T', n' < n, and 

Xls Cn 2(s C T s C T'). 

If Q is a generic filter over Q(P), then (by a density argument) 

T= U {Tnn21(T,n)EQ} 

is a perfect tree, and 

( T, n ) < ( T, n ) whenever ( T, n ) C Q . 
* . 

(It is clear that T is not a member of P and (T, n) is not in Q(P), so the above is an 

acceptable abuse of notation.) * . < 
This perfect tree T is called the generic tree of Q or the tree derived from Q. 

1.2. LEMMA. Let R be a perfect poset; (2 a V-generic filter over Q(R); T the generic 

tree of Q. Put R* = the closure under finite unions of 

R U { T A S | S C R & T A S + 0 } . 

Then, R* is a perfect poset, and for any X- G V, X C R a maximal antichain, X is a 

maximal antichain of R* too. 

PROOF. Since R is a perfect poset and since R* is closed under finite unions, all 

that is necessary to conclude that R* is a perfect poset is to show the closure of R* 

under (nonempty) meets. So let S = S1 U * * * U Sn T = T1 U * * * U Tn be in R* 

a 

(whereSi, TiareinRU {TASISCR&TAS7& 0}).ToshowthatSA TER*, 

it is enough to remark that 

S A T = U Sl A TJ and Si A TV C R U { T A S I S E R} . 

1 SI ,JAT, 

(Use (1.1) and (l.la) and conclude also that (T A S) A (T A S') = T A (S A S').) 

Now if X c R, in V, is a maximal antichain, and T C R* is arbitrary, we have to 

prove that T is compatible with some member of X. We can assume w.l.o.g., 

T c R U {TA SIS C R&TA S 7& 0}, and, since Xis maximal is R, it is enough 

to deal with T = T A S for some S C R. 
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Let (U, n) C Q(R) be an arbitrary condition which forces T = T A S. We will 
find an extension of (U, n) which forces T A S to be compatible with some member 
of X. Since (U, n) lF T C U, it must be that U and S are compatible (in the ground 
model V, by absoluteness) and U A S E R. Pick s Cn2 n (u A s), let U' = 
(U A S)s then U' C R and we can find U" C R which is above U' and above a 
member of X. Now put 

U* = UM U U { Ut | t c n2 n u and t + s }, 

then U* C R, (U, n) < (U*, n), and U* = U". Since (U*, n) lF s { T and Ts C U*, 
and since U* C S is above a member of X, we get that (U*, n) lF Ts C T A S is 
above a member of X. 

In fact, a slightly stronger claim can be proved: Say that X C R is a maximal 
antichain above T C R iff any S C T in R is compatible with some member of X. 
Then, if X C V is a maximal antichain above T in R, X remains a maximal antichain 
above T in R*. (Look at X U {S C R | S is incompatible with T}, apply the lemma, 
and use the absoluteness of incompatibility.) 

1.3. Iteration of perfect posets. We are interested in iterating CD2 times perfect 
posets. P71 will stand for a countable-support iteration of length n < @2 Of perfect 
posets. The definition of P,7 is by induction on . The members of P,1 are countable 
functions f with dom( f ) a countable subset of 11 such that f r y C Ps1 for all y < n 

and f r y lFP"t(y) C R(y)",3 where R(y) is a name in VPy of a perfect poset. (But 
R(O) is a perfect poset and Pl consists of all functions from 1 into R(O).) Sometimes 
we writef(y) even when y 2 dom(f) and then we meanf(,) to be the name of the 
full tree-@2. 

The partial order is defined as usual. So, fsg iff dom(f)5dom(g) and 
(tot E dom( t )) g r (t IFPag(<x) c t(a). 

If P71 is a generic filter over P,7 then PE = P71 n P, (for y < ) is a generic filter over 
Psl; and {s(y)lf C P7y}, as interpreted in V[P], form a V[P] generic filter over 
R(,u). Thus Pn gives a sequence (rDlD E 71) of generic reals. 

1 .4. LEMMA. IP71 can be recovered from < rg I D E 11 > and PrB 

PROOF. We recover PE, y < X, inductively. P1 is the set of all functions in P1 such 
that rO is a branch of f(O). Similarly, PE + 1 consists of all f E Pll+ l such that fr y E PE 
and f(,u) is interpreted in V[P] as a tree in which r,, is a branch. In case y is a limit 
ordinal 

PF = { f E Py tt r T E Pf for all X E ,u} 

can be easily derived. O 

1 .5. DEFINITION AND PROPERTIES OF f | a. Given f E P,7 and a: D 82, where D is 

a finite subset of dom(f), define fla as follows: fl a is a function with the same 
domain as f and 

( 1) ( f | a )(y ) = f(, ) for ,u u D, but 

3By a standard tnck, we can assume 0 IF"f(Z) E R(Z)". 



662 URI ABRAHAM 

(2) 0 IFP(fla)(,u) =t(,u)ff(p), for ,u E D. Recall,f(y)<y(p) is the subtree off(,) of 
those functions compatible with a(y). In casefl a E P,7 (i.e., for every y E D, (fl a) r 
y IFPya(y) E f(y)) we say that a is consistent with f. 

(l.Sa) Put y = min D, then a is consistent with f iff fr y lF o(y) E f(y), and 
a r (D-{,U}) is consistent withtl (o r {y}). 

It is easy to prove that if a is consistent withf then 
(i)tAtl , 

(ii) a | n is also consistent with f, 
(iii) a is consistent with f r D whenever U dom(s ) < . 

In what follows, F denotes a finite function and DF its domain, F: DF @. We 

say that a is bounded by Fif a: DF 62 satisfies a(,u) EF(y)2 for all y E DF. 
Iff E P7, and DF 5 dom(t), define (t, F) to be determined if, for any a bounded 

by F, either a is consistent with f or else there is F4 E DF such that a r y is consistent 
withf and ( fr y) | (a r y) 1F a(y) y f(y). (The definitions in 1.5 are from [B, L, §2].) 

If a is bounded by F and consistent with a we say that a is consistent with ( f, F). 
The next lemma gathers some useful facts. It is similar to Lemma 2.2 in [B, L] and its 
proof is left to the reader. 

1.6. LEMMA. (a) If ( f, F) is determined then so is ( f, Fr ,u). 
(b) If f s g in P7,, ( f, F) is determined and a is consistent with (g, F), then a is 

consistent with f too and f | a < g | a. 
(c) Iff < g but f(t) = g(g) for g E DF and if ( f, F) is determined then so is (g, F). 
(d) Put y = n(DF). (f, F) is determined ifffr y knows what is f(y) nFy2 and 

for each s EF(y)2 such that f r y lF s E f(y), ( f', F') is determined where f' = 
fl{(,s)}andF' =Fr(DF-y+ 1). 

(e) Given a determined ( f, F ) there exists a consistent with ( f, F ). And the set 
{fl a l a is consistent with ( f, F)} is a maximal antichain above f. 

1.7. DEFINITION OF UNION IN P,7. Let fi,* . . ,fn E P,, be given. Suppose for some 
y < nfir y =tjr y for i, j < n. Moreover, for distinct sl,. Sn Ek2 

tir,fflF,((,u) nk2= {Si}. 

We define f = U l sivxn fi to be the condition in P11, with dom( f ) = U l AlSndom( f ), 
determined by the following conditions: 

(l)fr y = g r ,u, 
(2) 0 lFf(y) = UlAiA"ti(y), 
(3) if the generic real for R(,u) extends s' thenf(D) = gi(t) (for t > ,u). 
A direct check shows that f s fi, f l {(,u, si)} = fi, and if Vi, g s fi then g s f. Also, 

{ f | 1 < i < n} is a maximal antichain above f: if f s f ' then f ' is compatible with 
somet. 

For F: D X, F': D' 6D, we say FS F' if D 5 D' and F(,U) S F'(,U) for all 

y CD. 
1.8. DEFINITION OF Q(P7,). Q(P7,) is the collection of all pairs (f, F) wheref E 

and F: DF X, DF C dom( f ) is finite. 
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Q(P,7) is partially ordered as follows: (f, F) < ( f', F') iff f af' in P,7, F < F', 
and for every y E DF 

t' r y 1F t(y) n F(y)2 = tt(y) n F(y)2 

We adopt the convention that F(,U) = O in case y y DF and f(y) =@2 if y 2 

dom( f ). Clearly, if F < F' then ( f, F ) < ( f, F'). 

1.9. LEMMA. (a) If ( f, F) < (g, F) and a is bounded by F, then a is consistent with g 
if a is consistent with f. (If we assume, moreover, that ( f, F) is determined, then, 
together with Lemma 1.6(b) we get that a is consistent with g iff a is consistent with f.) 

(b) For any ( f, F ) E Q(P,, ) there is g E PrB such that ( f, F ) < ( g, F ) and ( g, F ) is 
determined. 

PROOF OF (a). The proof goes by induction on IDFI (the cardinality Of DF) 
Suppose DF = {U}, ( f, F) < (g, F) and a (bounded by F) is consistent withf, then 
fr ylF a(y) Ef(y). But (since (f, F) < (g, F)) also gr ylFf(y) nFf)2 = g(y) 

n F(y)2, hence g r y lF a(y) E g(,u). 
Suppose now I DF I ' 1 and put y = min DF. Assume the premise of the lemma 

and that a is consistent withf, we want to prove that a is consistent with g. For that 
we shall use equivalence 1.5(a). The previous paragraph shows that g r y lF a(y) E 

g(y). It remains to prove that a r (DF-{,U}) = ' is consistant with g 1 (o r {y}) = g'. 
Since a is consistent with f, l.S(a) implies that o' is consistent with f | (o r {y}) = f'. 
Put F' = F-{(,u, F(,u))}. If we prove (f', F') < (g', F'), then the induction hy- 
pothesis implies that o' is consistent with gt. 

First, f t < gt is an easy consequence of f < g and the fact that a r {l } is consistent 
with f and with g. Then, since g < gt (by l.S(i)), and since ( f, F) < (g, F), and 
since f t(l ) = f(l ) and gt(l ) = g(l ) for y < ii, gt lF f t(l ) n Ff11)2 = gt(l ) n Ff)2, 
for ii E DF-{,U}. It follows that ( f , Ft) < (gt Ft). 

PROOF OF (b). Again, by induction on I DF I . When I DF I = 1, say DF = {,U}, simply 
extend fr 1 and find g E Pr f < g such that gr 1 describes f(y) nFf1l'2 and 
g(l) = f(l). When gDFlz 1, put y = min DF and Ft = Fr (DF-{,U}). Extending 
f r El, we can assume that f r y describes f(y) n F(1l)2. Let sl, . . . F Sn E F(11)2 be all those 
thatfr y knows to be inf(y) nFf1l)2. We shall define inductivelygO,. . . ,gn E P,7 such 
thati jtiryafjry. 

To begin with,go = f. If ti is defined, PUt fit = fi r y u (( f l {y, Si+l}) r n-) then 
extend fi', using the induction hypothesis, and find ti+ l > f ' such that ( fi', F') < 
( f,+ l < Ft) and (ti+ l, Ft) is determined. 

Now, when fn is defined (assuming w.l.o.g. that f r s1 = fj r El) we set g = UlsiSn fi. 
fag since (V1 sian) fafi (see 1.7). (g, F) is determined since grEllF g(,u) 
nFf)2= {sl,...,sn}, and gl{(y,si)} =f and (fi,F') is determined. (f,F)< 

, F) is also obvious. C] 

1.10. LEMMA. Let D C PrR be dense. For any determined ( f, F) C Q(Pr) there is 
(g, F) > ( f, F) satisfying this: 

g | a C D whenever a is consistent with ( g, F ) . 



664 URI ABRAHAM 

PROOF. Again by induction on I Fl; or use Lemma 3.1 of [M]. 
The next lemma is similar to Lemma 5 of [M] but the proof is complicated by the 

fact that an arbitrary perfect poset is not closed under fusions. (And so, when we are 
in the middle of an iteration we do not know that what remains to be forced is again 
a countable-support iteration.4) 

Let us call sets of the form {u C@21s C u} for some s C@2 basic open sets (of 
height 11Sll) 

1.11. LEMMA. Suppose f C Pr T is a name, andf lF T CS2 A T T VPr for all D < B. 
Assume ( f, F) is determined. Put z = {o | a is consistent with ( f, F)}. Then there are 
disMoint basic open sets CO, for a C 2, and there is g C PrZ with ( f, F) s (g, F) such 
that 

glalTeCo foroz. 
So g 1F T C U {CO 1 a C E}. (We can clearly assume that all the CO have the same 
height.) 

PROOF. Observe first that if f s h C Pr y < rl, then there are hl, h2 extending 
h, hl r ,u = h2 r ,u, giving incompatible information about s r m for some m C X (i.e., 
hi 1F T r m = si, i = 1, 2, and 51 7& 52) Otherwise, we would get h 1F T C VP. Con- 
tinuing, for any given n, there are extensions hl...hn of h giving incompatible 
information on T r m (for some m) such that h I r ,u = h 2 r ll = * * * = hn r ,u. 

The proof of the lemma proceeds by induction on I F I . For I F I = 1 put DF-{,U}. 
Let 51 Sk be all those functions forced by fr ,u to be in f(,u) nFy)2. Set 
fl =tl{(y,sl)}; use the observation above to findtil...gkl extendingfl giving 
incompatible information on s r m such that fil r y = * * * = fkl r y. Repeating this 
process k-1 more times for 52 5k and extending a little bit more, we can 
findfji (1 s i, j s k) withfjir ,u =fj,i r , fji extendstl {(,u, si)}; and for some m for 
each 1 s i s k, fji (j = 1,. ..,k) gives incompatible information on sr m. Now 
choosej(i) s k for each i s k so that fj(i) (i = 1,. . .,k) gives incompatible informa- 
tion on s r m. Finally let g be the union of tj(ly, . . . ,gj(k. (See 1.7 for definition and 
properties of unions.) 

Next, assume I Flz 1 and y = min DF. Let sl, . . . ,Sk be the members off(y) n F(y)2 
(that is, those forced by fr y to be there). Let F' = Fr (DF-{,U}). Begin with 
fi' =fl {(y, 51)}, (fi, F') is determined (1.6(d)) and (f, F') s (fi', F'). Let v = 
min DF Extending fi r v and calling this extension fi' r v again, we can find I > F(v) 
such thatfitr v completely describesf(v) nZ2 and, moreover, each s Ef(v) nFf^)2 
has > IIF'lI k many different extensions in f(v) nZ2 (where IIF'lI is the number of 
possible o's bounded by F'). 

Now let F* > F' with dom(F*) = dom(F') be defined by F*(v) = I and equal to 
F' at other arguments. Clearly, (fi, F*) > (Fl, F') is determined too. The induction 
assumption can be applied to yield (fi, F*) > (fi', F*) and m(l) E X such that for 
different a (consistent with ( fi, F*)) fi | a gives incompatible information on X r m(l). 

4However, in §2 we are using only c.a.c. posets. Hence, for the proof of our theorem, Lemma 5 of [M] 
is perfectly sufficient. 
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Next, we repeat this procedure for 52 etc., and find fi, f2, . . . fk with g r y s tj r y 

for i < j, such that fi relates to Si the same way fi relates to sl . Then, extending a little 
more we can assume fi r y = tj r , and the following hold: 

(l) t extendsfl {(y, Si)}. 

(2) ( f, F') < ( fi, Fi*), ( f, Fi*) iS determined and dom(Fi*) = dom(F'), Fi*(v) = 
I(i) but Fi* is equal to F' on other arguments, and 

(3) g r v forces that each 5 C f(v) n F(V)2 has > llF'll * k many different extensions 
inf(v) n l(l)2. 

(4) For different a 's (consistent with ( fi, Fi*)) fi l a gives incompatible information 
on s r m(i). 

Extendinggi furthermore (Lemma 1.10) calling again this extension by fi, we can 
assume m(i) = m (does not depend on i). 

In the second stage of the proof of the lemma, we will find gi > fi, such that the 
following will hold: 

(ol) ( f, F') < (gi, F'), but gi r v forces that every member of gi(v) n F(V)2 has only 
one extension in gi(v) n '(i)2 . 

(,8) If i 7& j then gi l a and gj | ' give incompatible information on s r m whatever a 

and o' (bounded by F' and consistent with gi and gj respectively) are. 

The construction of the gi is inductive. Suppose now it is the turn of gl to be 
defined. Call a (consistent with ( f, Fi*)) bad if the value of s r m decided by f 1 o has 
already been given by gj l o' for some j < i and o' (consistent with (gj, F')). There 

are less than k llF'll possible bad o 's. Hence for each member of t(v) n Ff^)2 (i.e., 

forced by g r v to be there which is the same as being forced by fr v to be there, 
since (f, F') < ( fi, F')) we can find an extension inti(v) nFi)2 which is not a(v) for 
a bad a. 

Define gi > f such that ( f, F') < (gi, F') and no member of gi(v) n"i)2 is a(v) 
for a bad a, and every member of gi(v) n F(V)2 has only one extension in gi(v) n (i)2. 
It is clear that the gi's satisfy (cx) and (,B). Finally let g= Ulsiskgi then g is as 
required. O 

1.12. Projections of Q(P,7). The map ( f, F) H (fr ,u, Fr y) is a projection of Q(P,7) 
onto Q(Pp ). Hence, if G is a generic filter over Q(P,7 ) then {( f r , F r y ) | ( f, F ) C G} 
is generic over Q(Pp ) (y < r1). 

1.13. M-generic conditions and filters. H(83) is the collection of all sets with 
transitive closure of cardinality less than S 3. PrZ denotes an iteration of length r1 < @2 

of perfect posets. It will turn out that P,7 C H(83). V = L is our ground model 
(although we shall not use this fact in this section). 

In what follows, M is a countable elementary substructure of H(S 3)and P C M is 
a poset. Let us review some of the notions we shall need from Shelah's theory of 
proper forcing. 

Say that f C P is an M-generic condition (over P) if for every D C M, a dense 
subset of P, and for every f' > f (in P) there are f* > f' and d C D n M with 
d sf*. 

Say that G c P is an M-generic filter (over P) if G n M is a filter over P n M and 
G n D n M 7& 0 whenever D C M is dense in P. 
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As will be clear later on, P71 will be an iteration of perfect posets of cardinality S l 

(GCH is assumed in V) each satisfies the c.a.c. (countable antichain condition), the 

iteration is taken with countable support (as explained in 1.3); it follows then (from 

a general theorem of Shelah about proper forcing [S1]) that P77 satisfies the S 2-a.c. In 

fact, if 71 < @2 then this theorem provides a dense subset of P7} of cardinality S 1. Let 

us describe this dense subset. (Laver's argument [L] is the prototype, but we cannot 

apply it literally since our posets are not closed under arbitrary fusions.) 

Define when f C P,: is essentially countable by induction on cx. Any f C Pl is 

essentially countable ( f then is a function on 1 such that f(O) is a perfect tree). For a 

successor ordinal: J C Pa+l is essentially countable whenfr cx is and whenf(o) = a 

is a name of a perfect tree of the following kind: a = <Et | t C82> where E, c P< is 

always a countable collection of essentially countable conditions. (The interpretation 

of a is the collection of all t C@2 such that Et n P<: + 0.) For limit 8, f C Pa is 

essentially countable if, for all a < 8, f r a is. 
The proof of the 82-a.c. proceeds by showing that the essentially countable 

conditions in P,7 form a dense subset. Therefore we stipulate that P71 consists only of 

essentially countable conditions. It easily follows now that P,7 C H(tt3) ( < @2) 

Let P,7 be a V-generic filter over P77. M[P,7] denotes the collection formed by 

interpreting in V[P,7] all the names which are in M. Similarly we understand 

H(83)[P71] (H(83) is in V). It follows that H(83)[P,7] = (H(83))Z[P7P]. (Use the 

S 2-a.c. of P7 and the fact that the cardinality of Pn is < S 2-) 

Suppose Pn C M and n is an M-generic condition (over P,? ), and f C Ps j then Pn is 

an M-generic filter and M[P71] is an elementary substructure of H(83)Z[Pt11. (See 

[S1].) 

Denote by M the transitive structure isomorphic to M, and by qT: M M the 

Mostowski collapse. 
* 

- 

Put G = M n P. Then qT"G- is an M-generic filter over 7r(Pt7) and M[vr"G] is a 

transitive generic extension of M. X can be extended to collapse M[Pt7] onto 

M[qT"G], and we continue to denote by sr this extension. 
The next lemma shows the role of the poset Q(P,7) (defined in 1.8) is to provide 

M-generic conditions over P,1. 

1.14. LEMMA. If G C M n Q(P) is an M-generic filter over Q(P71) and f E PrB 

satisfies e < f whenever (e, F) C G, then f is an M-generic condition over P7,. 

PROOF. Let D C M be a dense subset of P,7. Since Lemmas 1.9 and 1.10 hold in M 

and since G is M-generic, there is a determined (g, F) E G such that gla C D 

whenever a is consistent with ( g, F). 
Given f' > f (w.l.o.g. (t', F) is determined), use 1.6(e) to find a consistent with 

( f', F). But g < f' by assumption, so a is consistent with g and gla a ftl a (by 

1 .6(b)). f ' < f ' | a (1 .5(i)), so an extension of f ' is found above g | a C D n M. 

1.15. DEFINITION OF g AND -H. In the ground model V, M is a countable 

elementary substructure of H(83) and P,7 E M. So there clearly is G c Q(P) n M 

which is an M-generic filter over Q(P71). For any such G we will define now g E P,7 

and a sequence of names H (g and H depend on M, P71 and G). dom(g) = dom(H) 

= M n 1, and, for y C M n 71, H(y) and g(y) are names in Pp forcing defined as 
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follows. Actually, we put ourselves in V[P] (where Pp is V-generic over P) and 
describe the interpretations of g(y) and H(y); this will convince the reader that the 
names H(p4) and g(,u) can be defined in V. 

Collect all ( f, F) E G such that fr y E P; for each such ( f, F) look at the 

interpretation of f(,u), f(,u)Py, and form the pair ((f(y))PA, F(y)) (F(y) is 0 if 

y y dom(F) and f(,u)Py is 82 if y 2 dom(f)). The collection of all these pairs is 

y))PA, a subset (possibly empty) of Q(R(y)). (Where, remember, R(y) is in V[P] 

the perfect poset which is iterated in the next stage, Pp * R(y) is Pp + 1 .) 
Suppose U = U {T nn2 1 (T, n) E (H(y))P} is a perfect tree and even a member 

of R(y), then we set 

g( ,u )Py = U; otherwise, g( ,u )PA = @ 2 . 

1.16. LEMMA. (in the notation of 1.15) Suppose ,u E M, ,u E X, and f E P,> is such 

that h r s1 < f whenever (h, F) E G. Then 

f 1F H( t4 ) is an M[P,] -generic filter over Q(R( y )) . 

PROOF. Note that Pp is the name of the generic filter. The definition of H implies 
that f 1F H(y) = {(h(,u), F(,u)) | (h, F) E G}. Since G is a filter, it is not too difficult 
to check that f lF H(y) is a filter over Q(R(y)) n M[P]. Why is this filter M[P,,]- 

generic? 
Observe first that (since M < H(83) and as the forcing relation can be defined in 

M) M[P] is forced (by f) to be an elementary substructure of H(83)ZtP]. (See 

[S1].) 
Let f < fi E Pfi1 and D E M a name (in VP) be given such that fi lF D is dense 

open in Q(R(y)). Our aim is to prove fi 1F D n H(y) 7& 0, and then, by a density 
argument for Pp, the desired property of H(y) follows. 

Find a name D' E M such that for any p E P,, p lF D' is dense open in Q(R(y)), 

and if p lF D is dense open, then p lF D = D'. 
Define now (in M) 

E = {(h, F) E Q(P,+z)lhr yIFP(h(y), F(,(1)) g D'}. 

We claim that E is dense in Q(P+l). Indeed, given arbitrary (h, F) E Q(P+l) (by 

Lemma l.9(b) we assume it is determined), we have hr ,u1F (h(,u), F(,u)) has an 

extension in D'. So we can find a name (a, n) such that h r ,u 1F (h(,u), F(,u)) s (a, n) 

E D'. Using Lemma 1.10 now, there is (g, Fr ,u) > (h r ,u, Fr [u) in Q(P) such that 

for every a consistent with (g, Fr y) there is n(a) E X and g l a lF (h(,u), F(,u)) < 

(a, n(a)) E D'. 
Let n > any possible n(a). Then gla lF (h(,), F(,) < (a, n(a)) < (a, n) E D'. 

1.6(e) implies that g lF (h(y), F(,u)) < (a, n) E D'. So 

(g U {(y,a)}, (Fr y) U {(y n)}) E E 

and extends (h, F ). 
So E is dense. And since G n Q(P+ l ) is M-generic (1.12) we can find (h, F) E E 

n G. By the premise of the lemma h r y s f, and f s fl, so fi iF (h(,(l), F(,)) E D'. 

Yetti lF D' = D, sofi iF (h(ll), F(y)) E H(y) n D. O 
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2. Description of the iteration of Jensen's reals. L is the ground model, and the 
following constructions are done there. Let <S<:lcx C 1) be a o sequence. For 
definiteness and absoluteness reasons we shall take the canonical diamond sequence 
(see [J2]) in which S<: C cx is the first (in the well-order of L) "counterexample" to 
the sequence <Si | i < cx) when a is limit countable ordinal, and S<:+ l = 0 . It follows 
that the definition of 5<: is absolute for transitive structures in which this definition 
can be carried out. 

For every X 1 < D < @2 let t be the first constructible bijection of X 1 onto t. 
Suppose Pp has been defined, we want to describe the next step in the iteration. 

Describing this step in terms of actual generic extensions, assume Pp is an L-generic 
filter over Pp and < rD | D C y ) is the resulting L-generic sequence of reals over P; we 
have to define in L[<rD | D C y )] = L[P] a perfect poset R = R(y) (the Jensen poset) 
and then, if R is the name of that poset, set PH+I = Pp * R. (Or y = O and we want 
actually to construct the poset R(0).) 

Let A = A(y) c X 1 encode the generic sequence < rD | D C y ) in some canonical 
straightforward way. For example, if y > 1, define a relation Z on xI by (i, j) C Z 
iff t(i) < t(j); also put Y = {(t, k) | k C r9 (O}. Then ask A to encode Z and Y, 
using the canonical correspondence between X 1 and X l X X 1. So, 

L[A] = L[(rDlt E M)] = L[P] (orA = 0 incasey = 0). 

In L[A] we define inductively an increasing and continuous sequence <Ri = 
Ri(y) | i C 1 ) of countable perfect posets; then we will set R(y) = R = Ul<sU,lRi. 

2.1. To begin with, Ro is the closure under finite unions of {(@2)S l s C@2}; and for 
limit 8,R,= = Ui<,=Ri. Suppose Rl is defined, the construction of Ri+l is described 
below. 

Set Ri+l = Ri unless the following happens. 

(1) Si encodes (in some canonical obvious way) three objects: a 
relation Ei C i X i and two ordinals ai, bl smaller than i. 
(Ei X {ai} X {bi} which is a subset of i X i X i X i is encoded 
by Si C i.) Moreover, El is well founded and (i, Ei) is a 
model of ZF- (set theory without the power-set axiom). Put 
(M, E) to be the transitive structure isomorphic with (i, Ei). 
We also ask that i E M is "the first uncountable cardinal" 

there and that the isomorphism of i onto M takes ai E i to 
dM =p,7 E M a poset which is, in M, an iteration of length r1 
of perfect posets. And bi E i is taken by that isomorphism to 
biM which is a function in M. 

(2) The decoding of A n i gives a sequence <sD | D E ii) of reals of 
length ii and ii E M. This sequence is M-generic over Pp, 
where ii< r1 and-Pp = {grylg EP,7}. (Ory=0.) 

(3) When forming the extension N = M[<sDlt E ,i)] we get 

Ri EN. (In case ii = 0, N = M.) For X E M, XN denotes the 
interpretation of the name X in the generic extension N. 
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In case (1)-(3) hold, we look at Q(RI) and pick in L[A] some N-generic filter, Qi, 
over Q(R,) such that (biM(y))N E Qi (if that is a condition in Q(Ri)). In factS great 
care is given to the choice of Qi (in 2.5), but let us postpone that for awhile and see 
what can be deduced so far. Let T be the generic tree of Qi. Finally let Ri+ l be the 
closure under finite unions of Rl U {T A S | S C Ri & T A S 7& 0 }. Ri+ l is a per- 
fect poset (see Lemma 1.2). _ _ 
_Let us denote the transitive model M by M(S,) and the generic extension N by 

M(Si)[A n i]. Observe that i < j M(Si) C M(Sj). (As i is countable in M(S>) the 

set Si can be defined there.) 

2.2. LEMMA. If X E M(Si)[A n i][T] is a maximal antichain in Ri+l, then X is a 
maximal antichain in Rj for j > i + 1. 

PROOF. By induction on j. If j is limit the argument is trivial since Rj = UI<jRI. 
Supposej = k + 1, where k > i and Xis maximal in Rk. If Rk+l 76 Rk, 

M(Sk)[A n k] 

can be constructed and Rk is found there, so T is there and X E M(Sk)[A n k]. 
Lemma 1.2 gives the desired conclusion when V there is replaced by M(Sk)[A n k]. 
Using the absoluteness of incompatibility (§1) we get that if X in the lemma is 
maximal antichain above U E Ri+ I, then it stays maximal above U in Rj, j > i + 1. 

2.3. LEMMA. In L[A] = L[PH], R satisfies the c.a.c. 

PROOF. The proof is by induction on y. Assuming each R(y'), ' < , satisfies the 
c.a.c. in L[PH,], Pfi, is an iteration of proper posets each of cardinaltiy 81; hence P, 
satisifes the 82-a.c. and is proper (see 1.13). 

Let X C L[<rg | t C y >] be a maximal antichain of R. We show X is countable. Let 
X be the name of X in Pp forcing, and R the name of R. Find in L an elementary 
substructure K < H(S 3 ) of cardinality X, such that 

81 + 1 5 K and ,P,,R,X E K. 

Put K= Uae>lMa a union of a continuous and increasing chain of countable 
elementary substructures of K (such that , Py, R, X E Mo)* Since K has cardinality 
S there is in L a well-founded relation E on xI such that (wl, E) is isomorphic to 
(K, E). By a standard coding (see 2.1(1)), we find constructible E' C wI which 
encodes three objects: the relation E and two countable ordinals, one representing Py 
(in (X1, E)) and the other an arbitrary condition on Q(P) (for this argument it does 
not matter which). The set {<x l E' n a = sO} is stationary; and remains so in L[P], 
since Pp is proper (see [S1]). 

The following three sets are closed unbounded in X 1 . 

{ I a = S l n M,:}, 
{al(Ma, E) is isomorphic to (a, E n a x ) and E n a x a is encoded by 

E' n }, 
{a 1 Py is Ma-generic over P}. 

This last set is closed unbounded since Pp satisfies the 82-a.c. and Pp is, hence, 
KLgenenc over , 
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Pick i in the intersection of those three closed unbounded sets such that E' n i = 
Si. Then Si encodes a transitive structure M wh ch is isomorphic to Ml. Let 7r: 

Mi M be the isomorphism. qT(SI) = i. qT(P) = Pp is in M an iteration of perfect 

posets (and ii = s(y)). Pp and some member of Q(P) are also decoded through Sl. 
Mi[P] < H(83)LtP1. Pp is Mi-generic over Pp, so tr"Pp is M-generic over Pp and _ _ . 

* 

N = M[r"P] is the collapse of Mi[P]. We continue to use 7r to denote this collapse 
function of Mi [Pp ] onto N. The sequence < rD | D E y > and its code A are in Ml [Pp ]. So 
sT(<rD 1t E y>) = <sD lt E y), encoded by 7r(A) = A n i, is M-generic. Also, 
<sg | D E i> is the sequence of generic reals given by qT"Pp, hence N = Ml A n i] = 
M[<sviD E M>]- 

Now, R E M,[P] (since R E Mi) and R = Uj<(,,Rj, hence qT(R) = Uj<,7r(Rj) 
(since i = q7(S)), but sr(Rj) = Rj (since Rj is hereditarily countable) so that finally 
sr(R) = Uj<iRj = Ri E N. Similarly XE Mi[P], and qT(X) = xn Rl E N= 
M(Si)[A n i] is a maximal antichain of Ri. 

All conditions (1)-(3) in the definition of Ri+l are fillfilled, Lemmas 1.2 and 2.2 
can be applied to derive that qT(X) is maximal in R. Hence sm(X) = X. And s7(X) is 
countable. 

2.4. LEMMA (UNIQUENESS OF THE GENERIC OBJECT). Let R be an L [P,I ]-generic filter 
over R. Then R is the unique L[P]-generic filter over R in L[Pp, R]. 

PROOF. The canonical generic real of R was defined at the beginning of §1. A 
function X E@2 is called L[P]-generic over R (generic for short) if {U E R 1 s is a 
branch of U} is an L[P]-generic filter over R. By the duality between generic reals 
and generic filters, it is enough to prove that the canonical generic real is the unique * p 
generic function in L[P,,, R]. 

Suppose S E R, X E L[P] is a name in R-forcing and in L[P] 

S IFR X E@2 is a function different from the canonical generic function. 
We would like to get an extension of S in R which forces " is not generic". 

By extending S and using the supposition, we can assume there are n E X and 
e E"2 such that e n S but S IF T r n = e. 

As in the proof of Lemma 2.3, there is i E w1 such that Si encodes a transitive 
structure M(Si) a model of ZF--in which i is the first uncountable cardinal. And 
such that the following holds: A n i encodes a generic sequence and 

N = M(Si)[A n i] 
is a generic extension via P,. N is the transitive collapse of M[P] an 
elementary substructure of H(83)LtP]-and R, S, X E M[P]. Moreover 

( bl 'M )) = (S' o) 

X is a name in R-forcing of a real; so, since R satisfies the c.a.c., X is hereditarily 
countable and s(X) = . Also s(S) = S, and 7r(R) = Ri. It follows that, in N, 

S lF(R)s E@2 is a function different from the canonical generic function. 
Also, S lX(R)f r n = e. 
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Now, in N, for each U E 7r(R) = Ri construct the following set D(U) C Q(Ri). 
D(U) = {(T, m) E Q(RI ) l T 5 S and for some U' C U, U' E Ri, T IFR X is not a 
branch of U'}. 

Claim. D(U) E N is dense above (S, O) in Q(Ri) for any U E Ri. 
PROOF. Let U E Ri be given. D(U) E N is clear since the definition is done in N. 

For any (T, m) E Q(Ri), T 5 S, look for k E X such that U nk2 contains more 
than 2t members. Then extend T to T' such that T n m2 = T' n m2 and 

(ts E T nt2)(3e(s) Ek2)Ts lF Tr k = e(s). 

PicktE Unk2,t7&e(s)foralls,andput U'= Ut.ThenT'lFTisnotabranchof 
U'. And (T, m) s (T', m). O 

Recall how Ri+ l was defined: a tree T was derived from an N-generic filter Q 
over Q(Ri). We choose Si in such a way that Si, through bM(S), points at (S, O), so 
that (S, O) E Qi 

The D(U) are dense sets in Q(Ri) above (S, O). Hence for any U E Ri there is 
(T, m) E Qi n D(U); it follows that there is U' C U, in Ri, such that 

T IbR X is not a branch of U'. (The forcing is in N.) By Lemma 1.2 any maximal 
antichain of Ri in N remains a maximal antichain of Ri+l; hence X is a name of a 
branch also in the Ri+l - forcing. 

But since T 5 T it follows from Lemma 1.2 that 

(*) TIFR+' is not a branch of U' (in N [T]). 

_ . 

So in N[T], every U E Ri has an extension U' in Ri such that (*) holds. But this is 
also true for any U E Ri+l: Because if U E Ri+l-Ri, say U = T A S* for some 
S* E Ri (X.l.o.g. U has this form), then of course U cannot have s as a branch. 
(RecallSIFPn=e, so TlFPn=e,bute2Sandafortiorie TAS*.)Hence 

_ * 

there is in N[T] a dense set of U' E Ri+ l for which (*) holds. So by Lemma 2.2 any 
member of R is compatible with some such U', Hence (*) holds in R for a dense set 
of U', hence T lF s is not generic. O 

2.5. Let us come back to the definition of R. We want to describe in more detail 
how the filter Qi is actually chosen and then to use its special properties. Come back 
to 2.1 (the section where Ri+l is defined) and assume (1)-(3) hold. Let G E L be the 
first (in L canonical ordering) M = M(Si)-generic filter over Q(P,7-) with biM E G (if 

_ 
E 

bM E Q(P,7)). Assume y < r7 (if i = , Qi can be arbitrary). Let 

H( ii ) = (( f(,ii N, F(,i )) | where ( f, F) E G ) . 

X 

In case H( ii) is N-generic over Q(Ri), define Qi = H( ii); otherwise Qi can be an 
arbitrary N-generic filter (in L[A]). 

This ends the description of the iteration: P^,2 is our final poset. In the next section 
we show that in the generic extension L[P^2] the degrees of constructibility have 
order-type @2. Then we conclude the theorem. Yet a major technical piece is 
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missing; this is provided by the following: 

2.6. MAIN LEMMA: THE FUSION LEMMA. In L, for any a E H(83), r1 E @2 and any 

gO E PrZ there is a countable elementary substructure M < H(83) with a E M, and a 

condition g E PrZ extending gO such that the following is true. 

{ ( f, F ) E M l ( f, F ) < ( g, F ) } is an M-generic filter over Q(PrZ ) Z 

(It is clear that any two conditions in this set are compatible.) 

PROOF. As in the proof of 2.3, pick in L some elementary substructure K < H(83) 

with card(K) = 81, w1 + 1 c K, and gO, 1, P71, a E K. Encode the model K, the 

poset P,7, and the condition gO by a subset E of @1. Put K = UO(ESIMOX a continuous 

and increasing chain of countable elementary substructures of K ( r1, P,7, a E MO) As 

in 2.3, find i E ZI such that M = M(Si) is isomorphic to Mi, ST: Mi M is the 

collapsing function, qT(SI) = i, and Si also points to P,7 = 7r(P,7) and to (g-, 0) where 

g-O = (gO). (In the notation of 2.1, aiM-7T(Pt7) and biM= (g-0 0).) Let G be the 

first constructible M-generic filter over Q(P,7) containing (g-, 0 ). 

G={qT-l(g)lgEG} 

is an Mi-generic filter over Q(P,7) containing ( gO, 0 ). In 1.15 a condition g E P71 and 

a function H were constructed with Mi and G as parameters. The next lemma clearly 

shows that Mi is the required model and g is the required condition. 

2.7. LEMMA. If ( f, F) E G then ( f, F) s (g, F). 

PROOF. We show by induction on D E Mi that for any ( f, F) E G 

(2.8) (frtFrt)<(grtFrt). 

For D = 0 or limit ordinal there is no problem. So say D = y + 1. It is enough to 

show gr M 1 ( f(,u), F(,u)) < (g(y), F(,u)), for any ( f, F) E G. 
The inductive assumption (2.8) and 1.12 and Lemma 1.14 imply that gr y is an 

Mi-generic condition over P. 
The argument proceeds in terms of actual generic extensions; let Pp be an 

L-generic filter over Pp with g r M c P. We intend to show that for any ( f, F) C G 

the interpretation of g(y) (which is denoted g(M)P) is a subtree of f(,u)Py, and both 

trees have the same intersection with F(Z)2. 
Let A c X l be the canonical encoding of the generic sequence of reals provided by 

* * 

. 

_ 

P. Pp is Mi-generic over Pp, hence qT"(Pp n Mi) is M-genenc over qT(P) = P. ST can 

be extended to collapse Mi[P] (s H(83)L[P]) onto N = M[vr"P]. A C Mi[P] and 

qT(A)-A n i encodes (sDl; C ii) the M-generic sequence of generic reals given 

by qT(P). qT(R(y)) = Ri(y) = Ri. It follows that (1)-(3) of 2.1 hold and N = 

M(Si)[A n i] 
Recall how H(y) is defined in L[P] (1.15): All (f, F) C G such that fr y c P, 

were collected but by induction these are all ( f, F) C G, since gR y C Pp then 

H(y)PZ is formed by the pairs ( f(,u)PZ, F(,u)) thus obtained. g(y)PZ in turn, is the tree 

derived from H(y)PZ if that tree is in R(y) and is 82 otherwise. We will show in 
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the following paragraph that the first possibility occurs, this obviously implies 

( f(y) 11, F(y)) s ( g(y) , F(y)) 

whenever ( f, F) C G (Lemma 1.16, and the display prior to Lemma 1.2.) 
The induction hypothesis and Lemma 1.16 give that H(y)PA is Mi[P]-generic over 

Q(R(y)). Since X is the identity on the hereditarily countable sets, sr"H(y)Py = 
H(y)P. Hence H(y)Py is N-generic over Q(Ri). 

But ST"H(y)Py = {( y(y)N, F(y)) | ( f, F) C G} follows from the elementarity of , 
and this set, called H(y) in 2.5, is the N-generic filter Qi used to construct Ri+ 1. This 
is why the tree derived from H(y)PZ is in Ri+l C R(y). 

3. The degrees of constructibility have order-type @2. Let Pi,2 be an L-generic filter 
over P,,2, and for a < @2 let Pa be the projection of P,2 in Pa (i.e., Pa = { f r °t It C 

P@2 }) 

For every real r c X in L[P>,2] let r1(r) < @2 be the least ordinal r1 such that 
r E L[P,7]. The headline of this section is consequence of the next lemma. 

3.1. LEMMA. For r and r' reals in L[Pi,2] 

r' E L[r] if and only if r1(r') < rl(r). 

PROOF. The nontrivial direction is the right to left implication. So assume 
(r') s rl(r) and let us prove that r' E L[r]. 

Put 71 = 77(r) and 71' = 71(r') Let r and r' be names of r and r' in P71. Pick go E Pn 
such that gO iF (vd E r7)r 2 L[P]. 

Lemma 2.6 has the form "for any gO E P,7 and a E H(83) there is g E P7R, gO < g, 
and M such that. . .". This form indicates that the set of all such g's is dense in P77. 
Hence there is in L a countable M < H(S 3 ) such that gO, r, r', 71, r7' E M, and there 
is g E P71, gO s g, such that 
(3.2) {( f, F) E PrB n M | ( f, F) < (g, F) } is an M-generic filter over Q(P,7). 

g is an M-generic condition over P,7 (Lemma 1 14), hence P,} is an M-generic filter 
over P,7. Let M be the collapse of M, then M[P77] is collapsed to N = M[qT(P,7)] (vT 
denotes the Mostowski collapsing isomorphism). Let (ri | i E 71) be the sequence of * . 
generic reals obtained from Pz7. (riliE>EM[P77]; put (SlliX(71)=71) 

=sr((rili E77>) EN. 
The proof that r' E L[r] consists of two parts: 
(1) showing that r' E L[(si | i E n )] and then, 
(2) (sili E ri>E L[r]. 
(1) is evident, as r' E M[P71] and 

( ) [s7(P71)] = M[(siliE a1)], and MEL 

(2) Or actually (ri | i E n n M) E L[r] is concluded below. For each y E 71 n M 
and n E X define in L a subset D(y, n) of Q(P77) as follows. 

( f, F) E D(u, n) iff ( f, F) E Q(P) is incompatible with (g0, 0) 
or ( f, F) is determined y E dom(F) and n < F(y) and there is a 
collection of pairwise disjoint basic open sets {Ca I (J consistent with 
(f, F)} such that for each such a, fl AIFPNr E CO. 
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Remark that the function which associates to each (f, F) E D(,u, n) compatible 
with (go 0 ) the correspondence a < Ca, is constructible. 

Lemmas 1.9 and 1.11 imply that D(,u, n) is dense in Q(P). In fact D(y, n) E M. 
Hence, by (3.2) there is (f, F) E D(,u, n) such that (f, F) s (gS F). 

Let (f, F) be any member of D(,u, n) such that (f, F) s (g F). Since (go 0) 6; 

(g, 0) it follows that (go 0) and (t, F) are compatible in Q(P,7) (by (g, F)). 
Hence, (t, F) is determined and there are disjoint basic sets Ca, for a consistent 
with (f, F), such thatfl a 1F r E Ca. But a is consistent with (f, F) iff a is consistent 
with ( g F ) and in that case f l ff < g | ff (see Leas 1 .6b and 1.9.) Hence g t ff 1 r E 

Ca, for each such a. It follows that for each such a 

gllPnr E Ca s = (riP F(i)li E dom(F)). 

But g E P,7, so 

r E Ca a = (rlr F(i)li E Dom(F)). 

This holds for any luE7lnM and nEx and (f,F)ED(,a,n) with (f,F)< 
(g7 F). The sequence (D(,a, n)ly E a1 n M, n E ) is in L. So (rili E 71 n M)E 

L[r]: To know what is rM r n, pick any (t, F) E D(,u, n) with (t, F) s (g, F), then 
find the only a consistent with (f, F) such that r E Ca we have rHr n = o(,u)t n. 

4. Proof of the theorem: minimality of the extension. Let W be a transitive model 
of set theory included in L[P,2] and including L. Suppose that the negation of the 
continuum hypothesis holds in W; we have to prove W = L[P,,2]. Since W contains 
8 2 many reals, and since the degrees of constructibility are well ordered of 
order-type @2 W contains all the reals of L[P,,2]. The desired property of W follows 
once we show <ri | i E @2> E W. This is an easy inductive consequence of Lemma 
2.4 rj must be in the jth degree of constructibility and it is the only real in that 
equivalence class which is L[< ri | i < j )]-genenc over Rt j). 
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