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INTRODUCTION 

Let N be a countable transitive model of ZFC; we say N is a minimal 
model of “K: is countable” iff K: (the ordinal which L n N considers to be 
Ki) is a countable ordinal in N, and whenever K s N is a transitive model of 
ZFC that contains all the ordinals of N, if &$ is countable in K then K = N. 

The following theorem is due to Prikry (see [S]); we prove it in Section 1. 

THEOREM A. Let M be a countable transitive model of ZFC $ V = L. 
There exists a generic extension of M which is a minimal model of Lb,; is 
countable.” 

In the following M stands for a countable transitive model of 
ZFC+ V=L. 

In [JS, Sect. 41, Solovay constructs a generic extension M[a] where a s w 
is a non-constructible ni singleton in M[a]. In Section 5 there, Jensen 
strengthens Solovay’s construction and finds a E o such that a is a n: 
singleton in the generic extension M]a] and, moreover, all the constructible 
reals (i.e., reals in M) are recursive in a. 

In [Jl 1, Jensen finds a generic extension M[a] in which a E o is a non- 
constructible ni singleton and M[a] is a minimal model of ZFC + V# L. 
Our result in Section 2 is motivated by trying to find x in the following 
“equation” : 

[JS, Sect. 51 
[Jy ] = [JS, Sect. 4) ’ 

THEOREM B. Let M be a countable transitive model of ZFC + V = L. 
There exists a generic extension M[a], a s co, such that: 

1. M[a] is a minimal model of “,f is countable.” 

2. a is a ITi singleton in M[a] and all the constructible reals are 
recursive in a. 
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1. A MINIMAL MODEL OF “e Is COUNTABLE": 
PROOF OF THEOREM A’ 

1.1. We begin with some definitions. Let V be our universe of set theory. 
We work in V. Assume 2N1 = Kz in V. %B, is the set of all finite sequences of 
countable ordinals. The letters f, g, h, 1 denote elements of %, which are 
increasing sequences. n and k are members of CO. T E %o, is a tree iff T 
consists of increasing sequences, and f~ T and g of imply g E T. ] f ] is the 
length of the sequence f. T,, is the nth level of T. A successor (in T) off E T 
is a sequence of the form f 1 (cz) which is in T. 

Let P be the set of all trees T s %o, such that for some 1 E T (which we 
call s[ T]-the stem of T): 

1. For all fE T, f c 1 or I CJ 

2. IffE T and I c f then f has HI many successors in T. 

P is partially ordered by inclusion: T* < T means that T* G T (T* 
extends T). T* < T implies s(T*) I> s(T). It is clear that if j is a V-generic 
filter over P then s = U{s(T)\TEp} is an increasing function from w  
cofinal in CO,. Hence EC, is collapsed in V[ll’]. Actually V[s] = V[P] because 
if one sets H = {T E P 1 s is a branch of T} (s is a brunch of T means that 
srnETforalln(w),thenH=P. 

The cardinality of P is 2N1 = Hz, hence cardinals above EC2 are not 
collapsed by P. We have yet to show that KZ is not collapsed and then the 
minimality of the extension. 

1.2. Further definitions. For T E P and f E T we denote by T(f) the 
condition of the form {g E T] g is compatible with f }. T(f) < T. We say T* 
is a reduction of T iff T* < T and s(T*) = s(T). We say T* is a limited 
reduction of T iff T* is a reduction of T and for any f E T” all but coun- 
tably many successors off in T are in T*. Let us define for n < w, T* <, T 
iff T” is a reduction of T and T,* = T, for all k < n. 

1.3. LEMMA. If (T” ( n < o) is a sequence of conditions in P and 
*+ ’ <, T* for all n, then there exists T E P such that T <,, T” for all n. 

Lctually the sequence has a greatest lower bound in P.) 

Proof. Set T= UnCo Tz. 

1.4. COROLLARY. Let (D,] n < w) be a sequence of dense subsets of P. 
T E P. Then there exists a reduction T* of T such that for any f E T* and 
for each k < 1 f (, if some reduction of T*(f) is in D,, then T*(f) is in D,. 

‘The forcing notion P is a modification of Namba [N] and Bukovsky [B] or Laver [L] or 

Sacks [S]. 
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1.5. Conclusion. In V[$], KZ remains a cardinal (and becomes the first 
uncountable cardinal). 

Proof: Given a condition T that forces “e: No -+ pCz” we want to find 
T* < T and an ordinal y < KZ such that T IF “Range(e) E y.” Define D, to 
be the collection of all conditions in P that for some a < & force “e(n) = a.” 
D, is dense above T. Find a reduction T* of T as in the corollary, and let 
y = Sup{a( For some fE T* and n, T*(f) Ik“e(n) = a”}. As T* is of 
cardinality Ni, y < Kz, Now if T* * < T* and T* * IF “e(n) = a,” then by 
extending T* * further we can assume Is(T* *)I > n and so, denoting 
(ST* *) = g, we get (by the corollary) that T*(g) 11 “e(n) = a.” Hence a < y. 

1.6. The minimality of the extension. Remember s: K,, + KY is the generic 
function that collapses XI. Assume T It “t: go -+ pC, is cofinal.” We want to 
find T* < T such that T* I/- “s can be reconstructed from T* and t.” This 
will follow if T* has the following property: 

For every fE T* there are n, k < cu such that 1 f ] < k and: 

1. For each frh E Tt, T*(h) decides the value of t(n), (i.e., 
T*(h) IF “t(n) = a” for some a < 0.1~). 

2. For h # h’ extending fin Tf, the value of t(n) decided by T*(h) is 
different from the value decided by T*(h’). 

This is enough because if T* is as above then s can be recovered from t 
and T* in V[t]. We proceed to obtain such T*. 

1.7. DEFINITION. Let TE P. 

a. We say thatfE T splits n (with respect to t) iff there is an uncoun- 
table set S of successors off in T, and for each g E S there is a reduction Rg 
of T(g) such that: 

(1) Rg decides the value of t(n), and 

(2) if g # g’ E S then the value of t(n) decided by Rg is different 
from that decided by Rg’. 

b. For a tree T with f = s(T), n, k < w, say that p(t, T, n, k) holds iff 
k > 1 and there is a reduction R of T such that: 

For each h E R ,,, +k R(h) decides the value of t(n), and different such h’s 
decide different values for t(n). 

1.8. LEMMA. If for some n, k < w, k> 1, every gE T with 
1 gl = 1 s(T)1 + k - 1 splits n then p(t, T, n, k) holds. More generally, iffor 
uncountably many successors f of s(T) there are n, k < w  such that 
&t, T(f), n, k) holds, then for some n, k < w  q$t, T, n, k) holds. 
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The proof of the lemma is obvious, (use the fact that given any collection 
(Si\i ( or) of uncountable subsets of Kr, there are Sl c Si uncountable 
which are pairwise disjoint). 

Now it is clear that if for every T’ < T there is some n and k such that 
cp(t, T’, n, k) holds, then a reduction T” of T can be constructed to satisfy 
the requirement of 1.6. 

1.9. So assume that for some extension of T (which we again call T for 
convenience) for every n and k, qo(t, T, n, k) does not hold. 

We will get a contradiction. 

1.10. LEMMA. For all but countably many successors h of s(T) in T, for 
every n and k, q(t, T(h), n, k) does not hold. 

The proof is obvious by Lemma 1.8. 
Now, by repeating this lemma, we can find a limited reduction U of T 

such that for every h E U and every n, k, rp(t, T(h), n, k) does not hold. In 
fact, because U is a reduction of T, the following is true: 

For every h E U, n, k < LU, rp(t, U(h), n, k) does not hold. In particular for 
any n no h E U splits n. Hence for any h E U: 

1.11. The following set is countable. 

{a 1 For some n there is a reduction of U(h) that forces 
“t(n) = a”}. 

Also for any h E U the following set is countable: 

{a IFor some n and g E V, a successor of h, there is a reduction of 
U(g) which forces “t(n) = a”). 

Using this we can find a limited reduction U’ of U such that: 

1.12. For every h E U’ with h?s(U) and for any a < o, and 
n < o, if there is a successor g of h in U’ and a reduction of U(g) which 
forces “t(n) = a” then there are K1 many such successors of h. 

But, we claim: there is a reduction of U(g) which forces “t(n) = a” iff 
there is a reduction of U’(g) which forces “t(n) = a.” And the reason is the 
following simple lemma. 

1.13. LEMMA. If A, B, C E P, B is a reduction of A and C is a limited 
reduction of A, then B n C E P is a reduction of C and a limited reduction of 
B. 

From 1.12 and the claim we just proved follows: 

1.14. For any h E U’ with h 2 s(U) and for any a, n, if there is a 
successor g of h and a reduction of U’(g) which forces “t(n) = a,” then there 
are EC, many such successors in U’. 
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1.15. Conclusion. For any a, n, if there is an extension of U’ that forces 
“t(n) = a” then there is a reduction of U’ which forces “t(n) = a.” 

ProoJ: Let S ( U’ force “t(n) = a,” and set s = s(S). We prove by 
induction on Js 1 that a reduction of U’ exists which forces “t(n) = a.” If 
Is] = Is(U)] then S is a reduction of U’. If (s] > Is(V)] let h E U’ be such 
that s is a successor of h. As S is a reduction of U’(s), 1.14 implies that 
there are K, many successors si, i < K,, of h in U’ such that some reduction 
of U’(s,) forces “t(n) = a.” Hence we can find a reduction of U’(h) which 
forces “t(n) = a” and apply the induction hypothesis. 

But in 1.11 we proved that there are only countably many values of t(n) 
which a reduction of U’ can force. So U’ ]k “Range of t is countable,” a 
contradiction to 1.6. 

2. COLLAPSING K1 WITH A ni SINGLETON:PROOF OF THEOREM B 

In this section we let V= L be the ground model. A poset Q which 
satisfies the Kz-a.c. (&antichain condition) is defined. Q is a subposet of P 
of Section 1 and L [Q] will also be a minimal model of “EC; is countable,” 
but this time L@] =L[ ] f a or some a E w  which is a l7: singleton and such 
that all constructible reals are recursive in a. We follow Jensen’s 
construction [Jl 1. The main three points are: (1) Q satisfies the K2-a.c. and 
so to say that a filter G is L generic over Q is to say that G intersects all 
predense subsets of Q of cardinality Nf , and in L[G] this turns out to be a 
quantification over reals. (2) But we also must be sure that there is only one 
generic object in L[G] so that a will be a Zl: singleton. (3) Finally, Q must 
be rich enough so that the arguments of Section 1 can be carried on Q 
instead of P. (Parts (2) and (3) cannot be done in analogy with [Jl].) 

Let us begin by investigating when two conditions in P are compatible. 

2.1. DEFINITION. For T, T’ E P and f E Tn T’ define a two-player 
game G(T, T’,f). At first move, player I chooses a countable set of 
successors X, off and player II choosesf, E Tn T’ -X, a successor off, if 
he or she can. And so on, player I blocks <NO many successors and player 
II must move in Tf? T’. At the nth move, player I chooses a countable set 
X, of successors to f,_, and player II chooses f, a successor to f,-r in 
T fl T’ - X,. If player II cannot move at some finite stage he or she loses, 
otherwise he or she wins. Either player I or player II has a winning strategy 
in this game. See [Jech, 43.81. 

2.2. LEMMA AND DEFINITION. T and T’ are compatible iff for some 
f E Tn T’ player II has a winning strategy in G(T, T’J). In such case, let 
T A, T’ = { g 1 some h 2 g was chosen by II in some play played according to 

607/55/l 6 
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some winning strategy in G(T, T’, f )}. Then T I/~ T’ is a reduction of T(f) 
and of T’(f ), called the f-meet of T and T’. In fact, tf R is a reduction of 
T(f) and T’(f) then R is a reduction of T $T’. (But T ST’ might be 
incompatible with some extension of T(f) and T’(f).) 

Proof: If T and T’ are compatible, say, S < T, T’, then for f = s(S) an 
obvious strategy for II in G(T, T’, f) is to pick elements in S c T n T’; as 
there are always EC1 many successors in S it is possible to avoid those 
successors blocked by I. It is also clear that if II has a winning strategy in 
G(T, T’,f) then there are uncountably many successors h off for which II 
has a winning strategy in G(T, T’, h). Hence T A, T’ is a reduction of T(f) 
and T’(f). The rest of the lemma is clear. 

2.3 Remarks. The existence of a winning strategy for player I or player 
II is absolute (for models of ZF-, say) and so is the definition of T Af T’. 
Also, because of associativity, we can write T Af T’ A, T”. Finally, if 
fETA,T’,lfl>lsI,then (TA,T’)(f)=T(f)A,T’(f). 

2.4. DEFINITION. We say Q G P is closed iff a-d hold. 

a. Q is closed under restrictions: T E Q and f E T imply T(f) E Q. 

b. Q is closed under meets: T, T’ E Q and T(f), T’(f) have a 
common reduction imply T A, T’ E Q. 

c. Q is closed under limited reductions: T E Q and T’ is a limited 
reduction of T imply that T’ E Q. 

d. Q is closed under unions: If T E P and for some m for all 
hET,,T(h)EQ,then TEQ. 

We also define (and claim): 

The closure of Q under restrictions is the set {T(f)) f E T E Q}. 
The closure of Q under meets is the set {T’ Af T2 --- Af T” 1 T’ E Q}. 
The closure of Q under limited reductions is the set {T’ ) T’ is a limited 
reduction of some T E Q}. 
The closure of Q under unions is the set of all T E P such that every infinite 
branch of T has an initial segment h with T(h) E Q. 

It is easy to see that the closure of Q under restrictions, meets, limited 
reductions, and unions is indeed closed under these operations. 

2.5. LEMMA. a. If Q is closed under meets then Q is closed under 
restrictions too. 

b. If Q is closed under meets then the closure of Q under limited 
reductions is closed under meets. 

c. If Q is closed under restrictions (meets) (limited reductions) then 
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the closure of Q under unions is closed under restrictions (meets) (limited 
reductions), respectively. 

Proof. We prove b only. Let Q be the closure of Q under limited 
reductions, and we have to show that Q is closed under meets. Let S’, 
T’ E Q have a common reduction (in P) and f = s(T’) = s(S’). Pick 
S, T E Q such that S’ and T’ are limited reductions of S and T, respectively. 
It is enough to show that U’ = S’ A, T’ is a limited reduction of U = S A, T 
to conclude that U’ E Q. U’ E U of course. 

For any h E U’ we have to show that there are only countably many 
successors of h in U which are not in U’. Suppose that the number of these 
successors is uncountable, then there is a reduction R of U(h) which is 
incompatible with U’. But U(h) is a reduction of S(h) and so is R. S’(h) is a 
limited reduction of S(h). By 1.13 R f’s’(h) is a reduction of S’(h) and a 
limited reduction of R. Similarly R n S’(h) n T’(h) is a reduction of T’(h), 
hence a reduction of S’(h) A, T’(h) (which extends U’), a contradiction. 

Define the closure of Q as the closure under unions of the closure under 
limited reductions of the closure under meets of Q. 

2.6. DEFINITIONS. a. For D c KC P, k < w, define v,(D, T, k) iff there 
is a reduction T’ of T such that for any h E TL T’(h) E K and extends a 
member of D. (We do not ask T’ E K.) 

b. For D g K c P say that D is strongly dense in K iff for every 
T E K, I,Y~(D, T, k) holds for some k. 

2.7. LEMMA. a. Assume D E K c P and D is dense in K, then D is dense 
in the closure of K under unions. 

b. Assume D EKE P and this time D is strongly dense in K, then D is 
predense in the closure of K under limited reductions. 

Proof of b. Let i? be the closure of K under limited reductions. Given 
T’ E K we have to show T’ is compatible in E with some member of D. Pick 
T E K such that T’ is a limited reduction of T. For some k yl,(D, T, k) 
holds. This implies that there is h E T’, 1 h / = k, such that a reduction R E K 
of T(h) extends a member of D. But as h E T’, T’(h) is a limited reduction 
of T(h), Lemma 1.13 says R n T’(h) is a limited reduction of R, hence 
R n T’(h) E z shows that T’ is compatible with some tree in D. 

The other direction is also true: 

2.8. LEMMA. Assume that K c P is closed under limited reductions. Let 
D E K be dense. Then D is strongly dense in K. 

ProoJ Assume T E K and wk(D, T, k) never holds. Then the set 
X= {h E TI h is a successor of s(T) and, for some k, vk(D, T(h), k) holds} is 
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countable. So, for every successor of s(T) in T, h, out of X, t,~k(D, T(h), k) 
holds for no k. Repeating this step, one can obtain a limited reduction T’ of 
T such that for every h E T’ vK(D, T(h), k) never holds. Hence of course 
wK(D, T’(h), k) never holds, as T’(h) is a reduction of T(h). T’ E K by the 
assumption of the lemma. But D is dense in K, pick S < T’, S E D. h = s(S) 
shows that yK(D, T’(h), 1 h I) holds, a contradiction. 

2.9. We want to show now that some of the arguments that were 
made in Section 1 for the poset P can be adopted for any closed poset. Let 
K E P be a closed subposet and let t be a name in K forcing of a function 
No + Ki. Change the definition a little in 1.7 and say for S E K and n, k < w  
that pK(t, S, n, k) holds iff k > 1 and: 

(i) For every h E S with 1 h ( = Is(S) 1 + k, S(h) decides (in K forcing) 
the value of t r n. 

(ii) If h # h’ are as above then the value of t r n decided by S(h) 
differs from that decided by S(h’). 

2.10. LEMMA. Assume Slk” “t: +&, -+ K, is cofinal”. Then qK(t, S’, n, k) 
for some n, k, and S’ which is a reduction of S in K. 

The proof follows Lemmas 1.8, 1.10, and 1.15. We leave it to the reader 
to check where the assumption that K is closed is used. (We cannot claim, 
however, that the requirement of 1.6 is satisfied.) 

2.11. Properties of the poset Q. We shall define by induction on a < w2 
posets Q, E P of cardinality K1 such that a < fi- Q, c Q, and 
Q, = lJncS Q, for limit 6 < w2. Finally, we will set Q = U,,,, Q, as the 
desired poset. Also defined inductively is an increasing sequence of ordinals 
(y, < wzla < ~1)~) described now. Let d be the theory of ZF- (ZF without 
the power set axiom) + V = L + “all ordinals are of cardinality &EC, .” 

y, is the first ordinal of cofinality K1 such that L, is a model of d and 
K1 U {yili < a} EL,. 

This gives of course the diamond sequence of Jensen [J2]. The 
requirement that y, is of cofinality K, is made to assure that every countable 
subset of L ya is a member of L y.. Let us just state what it means that the ya’s 
give a diamond sequence: For all XC LWz there is a closed unbounded subset 
ofw,,C,suchthatfor6EC,XnL,EL,,a. 

The construction of the Q, is done in such a way that: 

a. Q, E L, and even (QiI i < a) is definable in L,. 
b. Q, is closed under restrictions and meets, and if a is successor then 

Q, is closed under limited reductions and unions in L,. 

c. If D C_ Q,, D E L, is strongly dense in Q,, then D is predense in 
Q a+l* 
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2.12. LEMMA. a. I f  D E L yn, D G Q, is strongly dense in Q, , a < 8, then 
D is predense in QO . 

b. Q satis-es the &a.c. 

Proof a. For p > a set D, = {T E Q, 1 T extends some tree in D}. Prove 
inductively that D, is strongly dense in Q, as follows. If D, is strongly dense 
in Q, then, by c, D,, , is dense in Q,, , . Q,, , is closed in L Yn+, under 
limited reductions, (by b), and as Lemma 2.8 holds in L, +, , D,, 1 is 
strongly dense in Q,, , . Now if p is a limit ordinal, Q6 = bic4 Qi and 
D, = lJicB Di, so that from the induction’s assumption follows that D, is 
strongly dense in Q,. 

b. To show the &-a.c. pick an arbitrary D 5 Q, dense. We will show 
that for some a < w2, D n Q, is predense in Q. As 1 Q, / = EC, this implies 
that every antichain in Q is of cardinality <EC,. Observe first that Q is closed 
(Definition 2.4), so if D c Q is dense, D is actually strongly dense (2.8). Pick 
a < w2 such that D n Q, is strongly dense in Q,, Q fl L, = Q, and 
Dr7L,EL,. So DnL,= DnQnL,=DnQ,EL, is strongly dense 
in Q,, and part a of the Lemma is used to conclude that D f-l Q, is predense 
in Q. 

2.13. DEFINITION OF THE Q,. Q, is the closure in L y. of the full tree in 
{%,} consisting of all increasing functions. If 6 is limit then Q, = ‘Ji<s Qi 
as already said. Q, E L, because of the uniform definition of the Q;s. Next, 
the definition of Q,, i depends on whether a is limit ordinal or successor. If 
a is limit, then Q,, i is simply the closure of Q, in Lye+,. Q, is already 
closed under restrictions and meets so in Lye+, the closure under unions of 
the closure under limited reductions of Q is closed in L yo+, (Lemma 2.5). 
And by Lemma 2.7, c of 2.11 holds true. 

Case a is a successor ordinal. We define first a poset C, E L, which is 
o-closed, then find in L ya +, an L y. generic filter over C,, C’, . Then a tree T* 
is defined from 6, and we let Q,, i be the closure of Q, U (T*} in L,+, . As 
a is successor, Q, is closed in L,. 

Choose some T” E Q, and some t, E L, which is a name in Q, forcing 
such that in L ya, T” [IQ” “t, : &, --t RI is cofinal.” Actually T” and t, are not 
chosen arbitrarily, but depend on a in a uniform way (so that a of 2.11 is 
satisfied) and such that for any T, t as above for some successor ordinal a, 
T” = T and t, = t. Observe that if TlkQ “t: EC0 + EC, is colinal,” then as Q 
satisfies the Kz-a.c., t can be taken to be hereditarily of cardinality <Eci, and 
from some a on TlkQu “t: EC0 + EE, is cofinal.” (Two conditions in Q, are 
compatible in Q, iff they are compatible.) 

2.14. DEFINITION. In L,, C, is the collection of all (F, E) such that 
E C_ T” is countable and F is a function with countable domain denoted by 
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D(F) such that: D(F) c T” is a subtree. The range of F is a subset of Q,. 
And 

1. D(F) n E = 0, s(T=) E D(F). 

2. F(f) is a reduction of P(f) forfE O(f). 

3. D(F)(f) E Fdf) forfE D(F) and iffG g E D(F) then F(g) E F(f). 
(See Definition 1.2 to understand D(F)(f).) 

4. For every fE D(F) there are n, k such that (~c,(f,, F(f), n, k). (See 
definition in 2.9.) 

The partial order of C, is defined by: (F’, E’) extends (F, E) iff F’ 2 F, 
E’ 2 E. The following lemma is clear. 

2.15. LEMMA. C, is o-closed. (In L or in L,--it does not matter.) 

As L, has cardinality K, in LL+, and all countable subsets of L, are 
members of L,, there is in L,+1 an L, generic filter over C,. Let 6, be the 
minimal such filter (in the constructible well-order). Set 
T* = U {D(F)1 (F, E) E 6, for some E}. 

2.16. LEMMA. T* E P is a reduction of T” and if (F, E) E 6, and 
fE D(F) then T*(f) is a reduction of Fdf). 

Proof: T* is a union of subtrees of T” and a simple density argument 
shows that it is a reduction of T”. Similarly the rest of the lemma is done, 
using 3 of 2.14. 

Now define K = K, = {S A, T* ) S E Q, has a common reduction with 
T*(h)} U Q,. K is closed under restrictions because (S A, T*)(f) = 
S(f) A, T*. K is closed under meets because (S A,, T*) A,(S’ A,, T*) = 
(S A, S’) A, T*, and Q, is closed under meets. 

2.17. LEMMA. If D E L,, D G Q, is strongly dense in Q, , then D is 
strongly dense in K. 

Proof. Let S A,, T” E K, and a strongly dense D G Q, be given. 
What follows is a density argument in L,. Let (F, E) E C, be such that 

(F, E) Ib “S and T*(h) h ave a common reduction” we wish to find k and an 
extension of (F, E) forcing vl,(D, S A,, T*, k). By extending (F, E), we can 
assume that h E D(F). (F, E) forces that S A, T* is a reduction of S and 
F(h), so by absoluteness, S and F(h) have a common reduction in L ,,, . And 
S A,, F(h) = WE Q, and s(W) = h. D is strongly dense, hence we,(D, W, k) 
holds for some k. We claim that (F, E) forces vK(D, S A\,T*, k). The reason 
follows. Because vPa(D, W, k), there is a reduction R of W such that for all 
gE&, Ng)E Q, extends a member of D. If we prove that (F, E) It 
“R A,, T* is a reduction of R,” then, as R is a reduction of S, 
(F, E) /k “R A, T* is a reduction of S A, T*,” and this clearly implies our 
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claim above. Now to prove indeed that (F, E) It “R A,, T* is a reduction of 
R” use the following lemma. 

2.18. LEMMA. If (F, E) E C,, f~ D(F), f 2 s(T*), and R E Q, is a 
reduction of F(f ), then (F, E) 11 “R A, T” is a reduction of R, and moreover, 
there are uncountably many successors g off in R such that T*(g) is a 
reduction of R ( g).” 

Proof. Assume to the contrary that only countably many such 
successors g exist. There is an extension of (F, E) (which we suppose to be 
(F, E) itself) and a countable set H E L, of successors off in R, such that 
(F, E Iv‘For no successor g @ H off is T*(g) a reduction of R(g).” Pick 
g E R a successor off, g & H U D(F) U E. Define a condition (F’, E) E C, 
extending (F, E) by setting D(F’) = D(F) U ( g} and F’(g) is defined such 
that (1) F’(g) is a reduction of R(g) (hence also of F(f)(g)); (2) 
rp,*(t,, F’( g), n,p) for some n,p. This is possible by Lemma 2.10. 
(F’, E) E C,. From Lemma 2.16 it follows that (F’, E)lt “T*( g) is a 
reduction of F’(g),” but F’(g) is a reduction of R(g), a contradiction, 
proving the lemma and 2.17. 

Finally, Q, + , is defined in LL+, to be the closure of K, under limited 
reductions and unions. Lemmas 2.17 and 2.7 imply that c of 2.11 holds. 

This ends the construction of the Q,‘s, but we want more information on 
T* constructed at stage o + 1, a a successor ordinal, before proving that Q 
is as required. 

Recall that T” IkQn “t a : No + Ef, is cofinal.” ta can naturally be regarded 
as a name in Q,,,. Because every dense subset of Q,in L, is strongly 
dense, every dense subset of Q, in L yu is predense in Q, + 1, and hence every 
maximal antichain of Q, in Lye is a maximal antichain in Q, + I too. This 
implies that T” IkQ*+l “t,: fcO+ K1 is cofinal.” Now look at T* < T”. For 
each f E T* define tfE $0, to be the maximal sequence such that for some n 
T*(f) JkQe+l “t, r n = t,.” Clearly f &f’ =S t,.G ty. The function f w  t,- is in 
some sense one to one, as the next lemma and lemma 2.20 say. 

2.19. LEMMA. For every g E T* there are m > I g I and n such that if h, 
h’ E T*(g), , h # h’, then t, r n and t,,, r n are incompatible. 

Proof. If g E T*, pick (F, E) E 6, such that g E D(F). By 4 in 2.14, 
cpQ,(ta, F(g), n, k) for some n, k. But as any maximal antichain of Q, in L ih 
remains maximal in Q,, , , one gets that qQa+,(ta, F(g), n, k) holds too. 
T*(g) is a reduction of F(g) (Lemma 2.16) hence pQ, + ,(t, , T*(g), n, k). 

2.20. LEMMA. For any infinite branch b of T* and any m, there is an 
initial segment g of b such that 1 t, I > m. 



86 URIABRAHAM 

Proof. This is a simple application of the previous lemma. Observe the 
absolute character of this lemma. Even if new branches to T* are added it is 
still true: (because what it says is that a certain subset of T* is conversely 
well founded). Another immediate application of 2.19 is: 

2.21. LEMMA. There is a set X = X( T*) E T* such that: 

1. s(T*) E X and for each h E X there is k > ] h] such that for all 
fETz ifflh thenfEX. 

2. If h, h’ E X are incompatible, then t, and t,, are incompatible. 

3. X is dense in T* (this follows from 1). 

4. IfgEX,hET*andt,?t,thenh&?g. 

Let Q be an L-generic filter over Q = U,,,, Q,. Let s = U(s(7’) T E Q}, 
then s is an o-sequence of colinal EC+. For any t: K. + Kt in L[Q] define 
G(t) = {T] t is a branch of T}, and say that t is generic iff G(t) is L-generic 
over Q. As G(s) = Q, s is of course generic. 

2.22. LEMMA. L[Q] is a minimal model of “$ is countable.” 

Proof Given T]kQ “t: &, + Eci is a colinal map,” we have to find 
T* IF “s E L [t].” Q satisfies the &-a.c. so t can be assumed to be of 
cardinality hereditarily <K, and so the pair (T, t) was considered at some 
successor stage a and T* E Q,, , was constructed then. But as the function 
h + t, is one to one on X(T*), it follows that s can be recovered from X(T*) 
and t. (X(T*) E Lye+,.) 

Now we come to the uniqueness of the generic filter. 

2.23. LEMMA. In L [Q], s is the only generic sequence. 

Proof: Let tE L[&] b e a generic sequence different from s. Pick p < w  
such that tr p # sr p. Choose T E Q such that: Is(T)1 >p, T decides the 
value of t r p and T]tQ “t r p # s r p and t is a generic sequence.” We will get 
a contradiction. Find a successor ordinal a such that t E L, (as a name), 
T E Q,, and (T, t) was considered at that stage. Look at T*, the “generic” 
tree that was constructed in Lye+,, and at the function h H t, defined on T*. 
Call B the tree obtained from the th’s, i.e., B = { g]g E t, for some h E T*}. 

In LYm+I define the following subset of K, . 
D = {S E K, I S n B is bounded} (S n B is bounded iff for some n for all 

f E S n B, If ( < n), D is clearly open. Set e = tscT*). 

2.24. LEMMA. D is strongly dense in K,. 

Before proving the lemma let us see how a contradiction is derived and 
thence the conclusion of Lemma 2.23. If D is indeed strongly dense in K,, 
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then D is predense in Q, + , and therefore in Q (by 2.1, 2.8, and 2.12a). Any 
generic sequence must be a branch in some tree in D. There exists, therefore, 
an extension T*’ of T* in Q and a tree S E D such that T*’ It “t is a 
branch of S.” Because S E D, S n B is contained in the first n, say, levels of 
S. Find f E S,, , and T* 2 < T* ’ forcing ‘f& t.” If we show f E B then the 
contradiction is clear. By Lemma 2.20, there is h E T*2 such that 
1 t, I> n + 1. But as T**(h) extends both T*(h) and T*2, it must be the case 
that t, ?f, hence f E B. 

Proof of Lemma 2.24. Let R E K, and es s(R) (w.1.o.g.). We must 
show yK,(D, R, k) holds for some k. R cannot be of the form S A,, T* 
because T* < T and e is incompatible with s(T). So R E Q,. Let f = s(R). 
Let e’, e E e’ &f be the largest sequence of the form t, for some g E X(T*) 
(see 2.21). It follows from 2.21-4 that if g’ E T* is incompatible with g then 
t9, 3 t,. Now we turn to L,. Let (F, E) E C, be any condition forcing the 
above information, such that g E D(F). There are k > 1 and it such that 
vQ,(t, F(g), n, k) (by 2.14-4). 

Claim. F, E)ll- wK, @AR, n>- 

Proof. Assume not, and without loss of generality assume 
(F, E)l/-, yK,(D, R, n). Then (F, E) forces that there is f' ?f, f' E R,-, 
and there is a countable set Y such that for h E R, - Y a successor off ', 
there is no reduction of R(h) in D. So we can find an extension of (F, E), 
which again we assume to be (F, E) itself, and f ‘, Y as above, such that 
(F, E) 11 “No reduction of R(h) is in D if h E R, - Y is a successor off ‘.” 
For every successor off’ h E R, - Y there is one and only one g’ E F(g) 
such that g’ I> g, / g’ I= I g I + k and P( g)( g’) jt-Qu “t 2 h.” And the reason is 
this: the uniqueness is a result of cpQ,(t, F(g), n, k). And if h E R, - Y a 
successor off’ is given, then (I;, E)Jt- “No reduction of R(h) is in D,” so 
some extension of (F, E) forces that h g t,, for some g’ E T*. By a previous 
remark g’ must be compatible with g, and so if g” E F(g),,, +k is compatible 
with g’ then F(g)(g”) must force, in Q,, that tl’ IZ = h. Now, as there are 
uncountably many successors off’ in R, we can pick such a successor 
h E R, - Y such that the only g’ E 8’(g) as above is not in D(F). Put 
E’ = E U {g’), then (F, E’) extends (F,E) and (F, E’)IkCu “h 67G B.” So, 
(F, E’)(f-- “R(h) E D,” a contradiction. 

2.25. Now that we have seen that L [Q] is a minimal collapse of Kt, 
via an &a.c. Q in which Q is the unique generic filter, we have to define the 
set of integers a that will prove Theorem B. 

Given any x 5 w, a sequence of sets x,,, xi,... is defined by 
xi = {n I (i, n) E x). Conversely any such sequence can be coded by one set x. 
We write for short: x = (xi1 i < o). Let (x, ,..., a,,... be the generic sequence of 
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ordinals provided by Q. For each i > 1 let ai c_ w  be a natural coding of a 
well-ordering of w  of order type ai which is the minimal such coding in L. 
Set a, = (b, c) where b is a well-ordering of w  of order type wf which is 
defined uniquely and naturally from (ai1 1 < i < w), and c = (c,ln < w) 
where c, is the 5th constructible real (in the L well-order) where r is the 
place of n in the well-order provided by b. Finally, a = (uil i ( w) is as 
required. 

To show that a is a Z7: singleton we have to describe an appropriate Z7: 
formula q(x). In the next paragraph we describe what that formula says, and 
in the one after it we argue that this can be said in a L7: manner. 

(D(X) is equivalent to: x = (xi1 i < w) and for i > 1 xi codes a well-ordering 
of w  such that if ai is the order type of that well-order then the sequence ai, 
i > 1, is L-generic over Q. Moreover xi, i > 1, is constructible and no 
constructible subset of w  which precedes xi in the constructibility well-order 
can code a well-order of order type a,. x,, = (y, z) where y naturally encodes 
sup{aiJ 1 < i < w} and z = (zil i < w) is such that zi is the 5th constructible 
subset of w  where < is the order type of i in the y ordering. 

It is clear that p(u) and that o(d) + u = d. All that remains is to show 
o(x) can be put to be LL:. Let K’ be the theory K of 2.11 strengthened by 
the sentence which says that for cofinally many ordinals a, L, is a model of 
K. To say that xi, i > 1, codes a well-order is L7:. To say that y encodes the 
supremum of ai is simpler. Now the following is Z7:. For any H c w  which 
encodes a structure and for any H’ c w  which encodes a truth assignment 
for the structure H which shows that H is a model of K’. Either H is not 
well founded, or the ordinals in H can be embedded into y, or there is 
G: w  -+ w  such that for each 1 < i < w  G(i) is seen by H as a subset of the 
natural numbers and is equal to xi and it is said (by H’) about G(i) that (it 
is constructible and) no preceding subset of natural numbers can encode the 
order type encoded by G(i). And if we construct Q in H then it turns out that 
{G(i)li< i < 1 w  is an H generic sequence over Q (i.e., for every successor a 
and D E L, which is dense in Q, there is a tree in D for which the G(i)% 
form a branch.) And z = (zil i < w) is a sequence of subsets of w  which 
enumerate all the Kf constructible reals in the order given by y. 
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