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Lecture notes on set theory without choice

Arnold W. Miller 1

Abstract

The first part of the course will discuss various consequences of
AD, the Axiom of Determinacy. AD is inconsistent with AC. On
the other hand, it implies many good properties hold for sets o
real numbers. For example, AD implies LM (every set of reals is
Lebesgue measurable), BP (every set of reals has the property of
Baire), and P (every uncountable set of reals contains a home-
omorphic copy of the Cantor set). In addition, it is connected
with the theory of large cardinals, e.g., AD implies that the first
uncountable cardinal, omega-one, is a measurable cardinal. For
the second part of the course, we will cover Solovay’s model of
LM+BP+P. For the last part, we will present some models of set
theory in which the axiom of choice fails as badly as we can con-
ceive possible. For example, the Feferman-Levy model in which
the real line is the countable union of countable sets.
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1 Open determinacy

For X a set define
Xω = {x : x : ω → X}

where ω = {0, 1, 2, . . . , }. Let

X<ω =
⋃
n<ω

Xn

be the finite sequences in X. X is given the discrete topology, i.e., every
subset of X is open and Xω the product topology. A clopen basis for this
topology consists of the sets:

[s] = {x ∈ Xω : s ⊆ x} where s ∈ X<ω.

Open sets are arbitrary unions of basic clopen sets. Equivalently, A ⊆ Xω is
open iff for any x ∈ A there is an n < ω such that [x � n] ⊆ A.

The most popular choices for X are X = ω or X = 2 = {0, 1}.
Given A ⊆ Xω define the following infinite two person game G(A). There

are two players I and II which alternate writing down an element of Xω:

I x(0) x(2)
II x(1) . . .

Player I wins the play of the game x iff x ∈ A.
A strategy for a game such as this is a map σ : X<ω → X. Given two

strategies σ and τ then we can define

σ ∗ τ = x ∈ Xω
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as the result of playing the strategy σ for player I against the strategy τ for
player II as follows:

x(0) = σ(〈〉),

x(2n) = σ(〈x(1), x(3), . . . , x(2n− 1)〉)

and
x(2n + 1) = τ(〈x(0), x(2), . . . , x(2n)〉).

We say that the game G(A) is determined iff either Player I has a winning
strategy or Player II has a winning strategy:

(∃σ∀τ σ ∗ τ ∈ A) or (∃τ∀σ σ ∗ τ ∈ Xω \ A).

Theorem 1.1 (Gale, Stewart [7]) If A ⊆ Xω is open, then G(A) is deter-
mined.

Proof
Suppose the open player (Player I) has no winning strategy. Then the closed
player plays so as to never reach a position in the game in which the open
player has a winning strategy.
QED

Corollary 1.2 Closed games are determined.

Remark. Theorem 1.1 implies the axiom of choice. To see this, suppose
we are given a family of nonempty sets Q. Let X be transitive set containing
Q. Consider the game on Xω in which Player II wins iff (x(1) ∈ x(0) or
x(0) /∈ Q). This game is clopen, Player I cannot have a winning strategy,
and a strategy for Player II gives a choice function for Q.

Definition 1.3 For T ⊆ X<ω a tree, i.e, s ⊆ t ∈ T → s ∈ T , and

A ⊆ [T ] =def {x ∈ Xω : ∀n < ω x � n ∈ T}

define the game G(A, T ) to be the game in which the players are required to
stay on the tree T .
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Lemma 1.4 Suppose T ⊆ X<ω is a tree and U ⊆ [T ] is relatively open.
Then the game G(T, U) is determined.2

Definition 1.5 A Gδ set is a set which can be written as a countable inter-
section of open sets.

Theorem 1.6 (P.Wolfe [19]) If A ⊆ Xω is a Gδ set, then G(A) is deter-
mined.

Proof
Suppose Player II has no winning strategy. Let T be the set of all s ∈ X<ω

such that every r ⊆ s is not lost for Player I, i.e., Player II has no winning
strategy in the game G(A) starting from the position r.

Let A =
⋂

n Un where the Un are open.

Claim. For any s ∈ T and n < ω Player I has a winning strategy in the
game G(Un, T ) starting at s.

Otherwise by the Lemma Player II has a winning strategy τ for G(Un, T )
starting at s. But then Player II has a winning strategy starting at s in the
game G(A). He3 just plays τ unless Player I leaves the tree T , but leaving
T means that Player II has a winning strategy from the position.

The winning strategy for Player I in G(A) is to first play his winning
strategy for G(T, U0) starting at s0 = 〈〉 until a position s1 is reached with
[s1] ⊆ U0. Then he plays his winning strategy for G(T, U1) starting at s1 until

2A good way to visualize this Lemma is to draw the tree T . Color a node of T green if
it has the property that all infinite branches thru it are in U . Color the other nodes red.
The object of the open set player is go thru a green node. The desire of his opponent is
stay on the red nodes.

I really enjoy using colored chalk in a lecture. If I had to write one of those “Statement of
Teaching Philosophies” that all our job candidates seem to have, I would definitely devote
several paragraphs to how using colored chalk has enhanced my enjoyment of giving a
lecture.

3The politically correct thing is to refer to the players as “she”. For example, see the
last problem in Komjáth and Totik [11]. Perhaps even more distracting is to sometimes
call a random player “he” and other times call him “she”. This will guarantee to cause
any reader to stop thinking about the math and start contemplating the oppressed role of
women in our society.

Perhaps to confirm more closely to reality, we should adopt the rule that the player with
a winning strategy is refered to as ‘he’ and the player that he beats is refered to as ‘she’.
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he reaches a position s2 with [s2) ⊆ U1, etc. Note that T has the property
that Player II cannot be the first to leave T .
QED

2 The perfect set game

Definition 2.1 Given A ⊆ 2ω define the game Gp(A) as follows:

I s0 ∈ 2<ω s1 ∈ 2<ω s2 ∈ 2<ω . . .
II i0 ∈ {0, 1} i1 ∈ {0, 1} i2 ∈ {0, 1} . . .

Player I wins iff x ∈ A where x = s0ˆ〈i0〉ˆs1ˆ〈i0〉 · · ·

Definition 2.2 A tree T ⊆ 2<ω is perfect iff for any s ∈ T there exists t ⊇ s
such that both tˆ〈0〉 and tˆ〈1〉 are in T . A set P ⊆ 2ω is perfect iff there
exists a perfect tree T such that P = [T ].

Note that perfect sets are those sets which are homeomorphic to 2ω.

Theorem 2.3 (M.Davis [6]) For any A ⊆ 2ω:

1. Player I has a winning strategy in Gp(A) iff A contains a perfect set.

2. Player II has a winning strategy in Gp(A) iff A is countable.

Proof

(1)(←)
Player I’s strategy is to play along the perfect tree to nodes t with both tˆ〈0〉
and tˆ〈1〉 in T .

(1)(→)
Let σ be a winning strategy for Player I. Take the tree generated by positions
consistent with σ.

(2)(←)
On his nth move of the game Player II avoids the nth element of A.
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(2)(→)
Let τ be a winning strategy for Player II. Let p = 〈s0, ii, s1, . . . , sn, in〉 be
any position in the game consistent with playing τ ( this means that ik =
τ(s0, . . . , sk) for every k ≤ n ).

We think of xp ∈ 2ω as the element of 2ω which τ is trying to avoid. It is
defined as follows. Let

p̂ = s0ˆ〈i0〉ˆs1ˆ〈i1〉 · · · snˆ〈in〉

and let l = |p̂| be the length of p̂ and put

1. xp � l = p̂,

2. xp(l) = 1− τ(s0, . . . , sn, 〈〉), and

3. xp(k) = 1− τ(s0, . . . , sn, t) where t = xp � [l, k).

That is, xp goes in the opposite direction to what the strategy says.

Claim. A ⊆ B = {xp : p is a position consistent with τ}.

It is enough to prove that if x /∈ B then there exists s0, i0, s1, i1, . . .
consistent with τ such that x = s0ˆ〈i0〉ˆs1ˆ〈i1〉 · · ·. Since τ is a winning
strategy for Player II we have that x /∈ A.

Suppose we have already constructed p = 〈s0, ii, s1, . . . , sn, in〉 consistent
with τ and p̂ ⊆ x. Then since xp 6= x there must be some k ≥ l = |p̂| such
that xp � k = x � k and xp(k) 6= x(k). Take sn+1 = x � [l, k). By construction
of xp we have that x(k) = τ(s0, . . . , sn+1).

This proves the Claim and since B is countable, A is countable.
QED

3 Axiom of determinacy

Definition 3.1 AD, axiom of determinacy, is the statement that for every
A ⊆ ωω the game G(A) is determined.

This axiom was first proposed by Mycielski and Steinhaus [14] in 1962.

Corollary 3.2 AD → P where P stands for the perfect set property: for all
A ⊆ 2ω either A is countable or A contains a perfect subset.
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Corollary 3.3 P → ¬AC, i.e., the axiom of choice fails. In fact AD,
implies we cannot have an ω1 sequence 〈xα ∈ 2ω : α < ω1〉 of distinct
elements. Hence AD is inconsistent with the axiom of choice.

Proposition 3.4 (Mycielski [15]) AD → WCC, the weak countable choice
axiom, i.e., any countable family of nonempty subsets of ωω has a choice
function.

Proposition 3.5 (Levy [12]) P + WCC implies that ω1 is a strongly inac-
cessible cardinal of L.

Proof
WCC implies that ω1 is regular. It must be a limit cardinal in L, otherwise
we would have for some cardinal κ of L that (κ+)L = ω1. But then there
exists x ∈ 2ω such that ω1 = (ω1)

L[x] and since L[x] is a model of choice there
would be an ω1 sequence in 2ω.
QED

Proposition 3.6 (Mycielski [15]) The axiom of determinacy is inconsistent
for games on ωω

1 . It is also inconsistent for games of length ω1, i.e., payoff
sets which are subsets of 2ω1.

Proof
Cook up games which if they are determined give an ω1 distinct sequence in
2ω.
QED

Since (even clopen) determinacy for games on (P(2ω))ω would give a
choice function which would well-order 2ω, we see that AD for games on
(P(2ω))ω is inconsistent.

Definition 3.7 ADR is the statement that all games on Xω are determined
for any set X with |X| ≤ |R|.

Proposition 3.8 (Mycielski [15]) The axiom of determinacy for games on
2ω is equivalent to the axiom of determinacy for games on ωω
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4 The Banach-Mazur Game

Definition 4.1 Given A ⊆ ωω define the Banach-Mazur Game, GBM(A) as
follows:

I s0 ∈ ω<ω s2 ∈ 2<ω s4 ∈ 2<ω . . .
II s1 ∈ ω<ω s3 ∈ ω<ω s5 ∈ ω<ω . . .

With the rule that sn ⊆ sn+1 be proper extension, i.e., sn 6= sn+1. Player II
wins iff x ∈ A where x = s0ˆs1ˆs2ˆs3 · · ·.

This game was invented by Mazur in 1935. He asked when is it determined
(see Mauldin [13] problem 43).

Definition 4.2 A set N ⊆ ωω is nowhere dense iff its closure has no inte-
rior. Equivalently, ∀s ∈ ω<ω ∃t ∈ ω<ω (s ⊆ t and [t] ∩N = ∅).

Since [t] ∩ N = ∅ implies [t] ∩ cl(N) = ∅, it follows that the closure of
nowhere dense set (nwd) is closed nowhere dense (cnwd). The complement
of a cnwd set is an open dense set.

Definition 4.3 A set M ⊆ ωω is meager iff it is the countable union of
nowhere dense sets, equivalently M is contained in the countable union of
closed nowhere dense sets.

Definition 4.4 A set is comeager iff it is the complement of a meager set,
equivalently it contains the countable intersection of open dense sets.

Theorem 4.5 (Banach, see Oxtoby [18]) For any A ⊆ ωω

1. Player II has a winning strategy in GBM(A) iff A is comeager.

2. Player I has a winning strategy in GBM(A) iff A ∩ [s] is meager for
some s ∈ ω<ω.

Proof

(1)→
If A is comeager, then there exists 〈Un : n < ω〉 open dense sets with⋂

n<ω Un ⊆ A. Player II just plays so that [s2n+1] ⊆ Un.

(1)←
Let τ be a winning strategy for Player II. Inductively construct sets Σn

such that
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1. If ~s ∈ Σn, then ~s = 〈s0, s1, . . . , s2n+1〉 is a position in the game consis-
tent with τ .

For ~s ∈ Σn, let last(~s) = s2n+1.

2. {last(~s) : ~s ∈ Σn} is a maximal antichain in ω<ω.

3. The map ~s 7→ last(~s) is one-to-one on Σn.

4. Σn = {~s � 2n + 1 : ~s ∈ Σn+1}.

To construct these sets, suppose that ~s = 〈s0, s1, . . . , s2n+1〉 ∈ Σn. Then
note that

D = {t : ∃r τ(s0, s2, . . . , s2n+1, r) = t}
is dense below s2n+1. Hence it contains an antichain maximal beneath s2n+1.
Union up all the sets you obtain and you get Σn+1 as required.

Now define
Un =

⋃
{ [ last(~s) ] : ~s ∈ Σn}

and note that it is a dense open set. But note that for any x ∈
⋂

n<ω Un

there is a unique sequence 〈sn : n < ω〉 such that

x =
⋃
n<ω

sn and (〈s0, s1, . . . , s2n+1〉 ∈ Σn for every n).

It follows that x is an outcome of the game consistent with the winning
strategy τ and hence in the payoff set A. It follows that A contains

⋂
n<ω Un

and is therefore comeager.

The proof for (2) is completely analogous.
QED

Corollary 4.6 AD implies that
∀A ⊆ ωω the game GBM(A) is determined

and this is equivalent to
∀A ⊆ ωω either A is comeager or ∃s ∈ ω<ω such that A ∩ [s] is meager

Definition 4.7 A set B in a topological space X has the property of Baire iff
there exists an open set U such that B4U is meager. The symbol 4 stands
for the symmetric difference: P4Q = (P \Q)∪ (Q \P ). Sets with the Baire
property are also refered to as ‘almost open’.
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Corollary 4.8 AD → BP where BP is the statement that every subset of
ωω has the property of Baire.

5 Dependent Choice DC

Definition 5.1 The axiom of dependent choice (DC) stands for the propo-
sition that for every set X and R ⊆ X2 a binary relation on X:

(∀a ∈ X ∃b ∈ X aRb)→ (∃〈an : n < ω〉 ∈ Xω ∀n < ω anRan+1).

Definition 5.2 The axiom of countable choice (CC) stands for the state-
ment that every countable family of nonempty sets has a choice function.

Proposition 5.3 DC → CC

Proof
Given (An : n < ω) nonempty sets let X and R be:

X =
⋃
n<ω

∏
k≤n

Ak and R = {〈s, t〉 ∈ X2 : s ( t}

QED

Proposition 5.4 (Blair [1]) The following are equivalent (in ZF):

1. DC

2. The Baire category theorem for complete metric spaces, i.e., comeager
sets are dense.

3. A partial order P is well-founded iff there does not exists a descending
sequence, 〈pn : n < ω〉 ∈ Pω such that pn+1 < pn for every n.

Proof

(1)→ (2)
Given Un for n < ω open dense sets and an arbitrary nonempty open set

V0, construct nonempty open sets Vn+1 such that

1. Vn+1 ⊆ cl(Vn+1) ⊆ Un ∩ Vn and
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2. the diameter of Vn+1 is less than 1
n+1

.

Then choose pn ∈ Vn. The sequence is Cauchy, hence converges to some
p ∈ X. Since tails of the sequence are in the closed set cl(Vn) we have that
p ∈

⋂
n Un.

(1)→ (3)
Given poset P and nonempty subset X ⊆ P with no minimal element

define R ⊆ X2 by aRb iff b < a.

(3)→ (1)
Let P = X<ω ordered by p ≤ q iff q ⊆ p. Then the subset A ⊆ P defined

by:
A = {(ai : i < n) : n < ω, and ∀i < n− 1 aiRai+1}

has no minimal element.

(2)→ (1)
Given X and R the space Xω where X has the discrete topology has the

complete metric d defined by:

d(x, y) =

{
0 if x = y

1
n+1

if x � n = y � n and x(n) 6= y(n)

Let
Un = {x ∈ Xω : ∃m x(n) R x(m)}.

Then Un is open dense. If x ∈
⋂

n<ω Un, then ∀n ∃m x(n) R x(m). Since the
range of x is well-ordered we can construct a sequence as required without
using choice.
QED

Kechris [10] has shown that Con(ZF + AD) → Con(ZF + AD + DC).
Hence if we could derive a contradiction by using AD+DC we could already
get one from AD alone.

6 Superperfect sets

Definition 6.1 A tree T ⊆ ω<ω is superperfect iff for every s ∈ T there
exists t ⊇ s such ∃∞n tˆ〈n〉 ∈ T . A set P ⊆ ωω is superperfect iff there
exists a superperfect tree T such that P = [T ].
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Proposition 6.2 A set P ⊆ ωω is superperfect iff it is closed and homeo-
morphic to ωω.

Definition 6.3 For f, g ∈ ωω

f ≤∗ g iff ∀∞n ∈ ω f(n) ≤ g(n).

Proposition 6.4 For any f ∈ ωω the set

{g ∈ ωω : g ≤∗ f}

is σ-compact, ie. the countable union of compact sets. Also if F ⊆ ωω is
σ-compact, then there exists f such that g ≤∗ f for all g ∈ F .

Definition 6.5 Given A ⊆ ωω the superperfect game Gsup(A) is defined as
follows:

I s0 ∈ ω<ω s1 ∈ ω<ω s2 ∈ ω<ω . . .
s1(0) > n0 s2(0) > n1

II n0 ∈ ω n1 ∈ ω n2 ∈ ω . . .

Player I wins iff x ∈ A where x = s0ˆs1ˆs2 · · ·.

Theorem 6.6 (Kechris [9]) Suppose A ⊆ ωω then

1. Player I has a winning strategy in Gsup(A) iff A contains a superperfect
set.

2. Player II has a winning strategy in Gsup(A) iff there exists f ∈ ωω such
that g ≤∗ f for every g ∈ A.

Proof
The proof of (1) and (2)← are left to the reader.

(2)→
Let τ be a winning strategy for Player II. Let p = 〈s0, s1, . . . , sn〉 be a

position in the game consistent with τ . (This simply means that sk+1(0) >
τ(s0, . . . , sk) for every k < n.)
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Define a map fp : ω<ω → ω as follows:

fp(t) = τ(s0, s1, . . . , sn, s)

if (s0, s1, . . . , sn, s) is consistent with τ and t = s0ˆs1 . . . ˆsnˆs. Otherwise
fp(t) = 0.

Since there are only countably many p there exists a h : ω<ω → ω such
that

∀∞s ∈ ω<ω fp(s) < h(s)

for every position p consistent with τ .

Claim. A ⊆ {g ∈ ωω : ∀∞n g(n) ≤ h(g � n)}.

Suppose
∃∞n g(n) > h(g � n).

Then we will construct an infinite sequence s0, s1, . . . which is consistent with
τ such that g = s0ˆs1ˆs2 · · ·. But since τ is a winning strategy this implies
g /∈ A.

Suppose we have already constructed p = (s0, s1, . . . , sn) consistent with
τ so that

1. s0ˆs1ˆs2 · · · ˆsn ⊆ g and

2. g(l) > τ(s0, s1, . . . , sn) where l is the lenght of s0ˆs1ˆs2 · · · ˆsn.

Then

(∀∞m h(g � m) > fp(g � m)) and (∃∞m g(m) > h(g � m)).

Hence we can find m > l with g(m) > fp(g � m) and take sn+1 = g � [l,m)
as required.
QED

7 Measurability and AD

Lebesgue measure µ is a countably additive measure on the Borel subsets of
the real line. It satisfies
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• µ : Borel(R)→ [0,∞],

• µ([a, b]) = b− a for every interval [a, b], and

• it is countably additive, meaning if (Bn : n < ω) are pairwise disjoint
Borel sets, then

µ(
⋃
n<ω

Bn) =
∑
n<ω

µ(Bn).

The outer measure µ∗ is defined by

µ∗(X) = inf{
∞∑

n=0

µ(In) : In are intervals such that X ⊆
⋃
n<ω

In}.

For Borel sets µ and µ∗ agree. A set X has measure zero iff µ∗(X) = 0. A
set X is measurable iff there is a Borel set B such that B4X has measure
zero.

Proposition 7.1 If X ⊆ R is not measurable, then there exists a Borel set
B ⊆ X such that if Y = X \ B, then Y has inner meaure zero, i.e, any
measurable Z ⊆ Y has measure zero but the outer measure of Y is positive,
µ∗(Y ) > 0.

Theorem 7.2 (Mycielski-Świerczkowski [16]) Let LM stands for the propo-
sition that every set of reals is Lebesgue measurable. Then AD → LM .

Before proving this theorem we will need two technical lemmas.

Lemma 7.3 Suppose X ⊆ R has measure zero and we are given (εn > 0 :
n < ω). Then there exists (Cn : n < ω) such that

1. each Cn is a finite union of closed intervals,

2. µ(Cn) ≤ εn for each n, and

3. X ⊆
⋃

n<ω Cn.

Proof
Without loss we may assume that

∑
n<ω εn <∞. Since X has measure zero

we may find closed intervals In such that

X ⊆
⋃
n<ω

In and
∑
n<ω

µ(In) =
∑
n<ω

εn.
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Actually we might first get ≤ above but we could always expand I0 to make
it an equality. Now define δn = µ(In). We can break up the In using the
following algorithm: Find n so that

δ0 + · · ·+ δn−1 < ε0 ≤ δ0 + · · ·+ δn−1 + δn.

Break up δn = δ0
n + δ1

n into nonnegative reals so that

δ0 + · · ·+ δn−1 + δ0
n = ε0.

Break In into the overlapping closed intervals I0
n and I1

n where I0
n is lefthand

piece of In of length δ0
n and I1

n is righthand piece of In of length δ1
n. Set

C0 = I0 ∪ I1 ∪ I2 ∪ . . . In−1 ∪ I0
n.

Then proceed with the intervals I1
n, In+1, . . . and the equal sums

δ1
n + δn+1 + δn+2 + · · · = ε1 + ε2 + · · ·

and use the same procedure to find C1, etc.
QED

Lemma 7.4 Suppose X ⊆ R has measure zero and we are given (εn > 0 :
n < ω). Then there exists (Cn : n < ω) such that

1. each Cn is a finite union of open intervals with rational endpoints,

2. µ(Cn) < εn for each n, and

3. X ⊆
⋃

n<ω Cn.

Proof
This is an immediate corollary of the preceeding lemma. Apply it to the
sequence ( εn

2
: n < ω). Then fattening up each closed interval by just a little

bit.
QED

Lemma 7.5 If f : ωω → A ⊆ R is onto and continuous, then A is measur-
able.
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Proof
This will be proved latter. It follows from the fact that analytic sets are
measurable.
QED

Now we are ready to prove the Theorem. By the proposition if LM is
false then we can find a set of reals X such that the inner measure of X is
zero, but the outer measure of X is positive. Without loss of generality we
may assume that X ⊆ [0, 1]. Choose (εn > 0 : n < ω) so that∑

n<ω

2nεn <
1

2
µ∗(X).

And define Cn to be the set of C such that C is a finite union of open intervals
with rational endpoints and µ(C) < εn.

Consider the following game Gmeas:

I I0 I1 I2 . . .
II C0 C1 C2 . . .

We require that Cn ∈ Cn and In = [ k
2n , k+1

2n ] for some integer k,
Player II wins iff

(X ∩
⋂
n<ω

In) ⊆
⋃
n<ω

Cn.

Claim. Player I cannot have a winning strategy in Gmeas.
Proof
Suppose σ were such a winning strategy. Clearly the intervals played by σ
must be nested. Then σ determines a continuous mapping

f :
∏
n<ω

Cn → [0, 1]

by the rule that f(Cn : n < ω) = x iff {x} =
⋂

n<ω In where σ(Cn : n <
m) = Im. But the image A of f is measurable by Lemma 7.5 and since we
are assuming σ is a winning strategy A ⊆ X. Since X has inner measure
zero, A has measure zero. But by Lemma 7.4, A can be covered by (Cn : n <
ω) ∈

∏
n<ω Cn. But if Player II plays this sequence then σ losses this play of

the game.
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QED

Hence, if the game Gmeas is determined, then Player II has a winning
strategy τ . But note that there are only 2n possible plays of In for Player I.
This means that we can find Dn ⊆ Cn of size 2n which includes all possible
nth plays of τ . Since Player I can squeeze down on any x ∈ X it follows that

X ⊆
⋃
n<ω

∪Dn and µ(
⋃
n<ω

∪Dn) ≤
∑
n<ω

2nεn ≤ (
1

2
)µ∗(X)

which is a contradiction.
QED

8 Souslin Operation

Definition 8.1 The Souslin operation is defined as follows: Given a family
of sets (As : s ∈ ω<ω) define the set A as

A =
⋃

f∈ωω

⋂
n<ω

Af�n.

This operation is also known as “Operation A”.

Definition 8.2 Given a topological space X define A(X) to be all sets of the
form

⋃
f∈ωω

⋂
n<ω Cf�n for Cs’s closed in X.

Proposition 8.3 The family A(X) is closed under countable unions and
countable intersections.

Proof
Given

Am =
⋃

f∈ωω

⋂
n<ω

Cm
f�n

then ⋃
m<ω

Am =
⋃

g∈ωω

⋂
n<ω

Dg�n

where
Dg�n = C

g(0)
g�(0,n).
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For intersection note that

∀n < ω ∃f ∈ ωω P (n, f) iff ∃(fn ∈ ωω : n < ω) ∀n < ω P (n, fn)

by weak countable choice, WCC. Hence⋂
m<ω

Am =
⋃

g∈ωω×ω

⋂
n<ω

Dg�(n×n)

where
Dg�(n×n) =

⋂
{Ck

gk�n : k < n}

where gk ∈ ωω is defined by gk(i) = g(k, i). To make this look more like the
Souslin operation, let {pn : n < ω} be a listing of ω × ω which satisfies the
property 4 that for every n < ω:

{pi : i < n2} = n× n.

Then ⋂
m<ω

Am =
⋃

g∈ωω×ω

⋂
n<ω

Dg�{pi:i<n}

where we put Dg�{pi:i<k} = X for any k with n2 < k < (n + 1)2.
QED

Corollary 8.4 If X is a metric space, then A(X) contains all Borel subsets
of X.

Proof
Clearly all closed sets are in A(X) and since in a metric space open sets are
the countable union of closed sets, the result follows.
QED

Examples of spaces in which not every open set is in A(X) would be
X = ω1 or X = ω1 + 1 with the order topology.

4We pause to here to let the reader verify that it is possible to have such a listing of
the pairs · · · · · · · · · This morning I had biscuits and gravy for breakfast. The Saw-Mill
gravy was made by browning flour in the drippings of Jimmy Dean’s hot sausage and then
adding milk. It was poured over hot freshly baked Pillsbury Grande biscuits. Manna from
Heaven! · · · · · · · · · OK lets go on.
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Proposition 8.5 For any topological space X and A ⊆ X the following are
equivalent:

1. A ∈ A(X)

2. there exist a closed set C ⊆ ωω ×X such that

A = projX(C) =def {x ∈ X : ∃f ∈ ωω (f, x) ∈ C}.

Proof
(1)→ (2)

Suppose

A =
⋃

f∈ωω

⋂
n<ω

Cf�n

where the Cs’s are closed. Define

C =
⋂
n<ω

⋃
s∈ωn

([s]× Cs).

Then C is closed in ωω ×X.
Suppose x ∈ projX(C). Then for some f we have (f, x) ∈ C. But then

it is easy to check that x ∈
⋂

n<ω Cf�n. Suppose x ∈ A. Then there exists
f ∈ ωω such that x ∈ Cf�n for every n. But then (f, x) ∈ [f � n] × Cf�n so
(f, x) ∈ C and x ∈ projX(C).

(2)→ (1)

Suppose A = projX(C) for C ⊆ ωω ×X closed. For s ∈ ω<ω define

Qs = {x ∈ X : ([s]× {x}) ∩ C 6= ∅} and Cs = cl(Qs).

Suppose x ∈ projX(C). Then there exist f ∈ ωω such that (x, f) ∈ C.
But then it follows that x ∈ Qf�n ⊆ Cf�n for every n. For the opposite
inclusion suppose that

x ∈
⋃

f∈ωω

⋂
n<ω

Cf�n

and choose f so that x ∈ Cf�n for every n. Suppose for contradiction that
(f, x) /∈ C. Since C is closed there exists an open U and an n < ω with
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x ∈ U and U × [f � n] disjoint from C. But this means that U is disjoint
from Qf�n and hence x /∈ Cf�n. Hence x ∈ projX(C).
QED

Another proof that the family of sets A(X) is closed under countable
intersections:

Given Am = projX(Cm) for m < ω let

C = {(f, x) ∈ ωω×ω ×X : ∀m < ω (fm, x) ∈ Cm}.

Then ⋂
m<ω

Am = projX(C).

Corollary 8.6 For X a metric space, if B ⊆ ωω × X is Borel, then A =
projX(B) is in A(X).

Proof
Since B is in A(ωω ×X) there exists a closed set C ⊆ ωω × (ωω ×X) with
B = projωω×X(C). But then A = projX(C).
QED

Definition 8.7 The class of Σ1
1 sets are those sets A which are in A(X)

for some Polish space X, i.e., X is a separable completely metrizable space.
These sets are also known as analytic sets.

Corollary 8.8 A set A ⊆ ωω is Σ1
1 iff there exists a tree T ⊆ ω<ω × ω<ω

such that

A = p[T ] =def {x : ∃y ∈ ωω ∀n (x � n, y � n) ∈ T}.

Proof
Given a closed set C ⊆ ωω × ωω whose projection onto the first coordinate
gives A define T by

T = {(s, t) : ([s]× [t]) ∩ C 6= ∅}.

QED



February 15, 2008 21

9 Analytic sets and the perfect set property

Theorem 9.1 (Souslin 1917) Suppose A ⊆ 2ω is Σ1
1. Then either A is

countable or A contains a perfect subset.

Proof
Suppose T ⊆ 2<ω × ω<ω is a tree such that A = p[T ]. Suppose that A is
uncountable and define

T̂ = {(s, t) ∈ T : p[T(s,t)] is uncountable }

where T(s,t) is the subtree of T of nodes comparable to (s, t).

Lemma 9.2 For any (s, t) ∈ T̂ there exists n < ω such that (s, tˆ〈n〉) ∈ T̂ .

Proof
Note that

p[T(s,t)] = {x ∈ [s] : ∃y ∈ [t] (x, y) ∈ [T ]} =
⋃
n<ω

p[T(s,tˆ〈n〉)].

QED

Lemma 9.3 For any (s, t) ∈ T̂ there exists r with s ⊆ r ∈ 2<ω such that
both (rˆ〈0〉, t) and (rˆ〈1〉, t) are in T̂ .

Proof
Let

Q = {r ∈ 2<ω : s ⊆ r and (r, t) ∈ T̂}.

If the lemma is false then all of the elements of Q would have to lie along a
single branch x ∈ 2ω. But then

p[T(s,t)] ⊆ {x} ∪
⋃
{p[T(r,t)] : s ⊆ r and r /∈ Q}

and this is a countable union of countable sets.
QED

Using the two lemmas we can now construct our perfect set and prove
Theorem 9.1. Inductively choose (sσ, tσ) for σ ∈ 2<ω so that:
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1. (sσ, tσ) ∈ T̂ ,

2. |sσ| = |tσ|,

3. sσˆ〈0〉 and sσˆ〈1〉 are incomparble, and

4. sσ ⊆ sσˆ〈i〉 and tσ ⊆ tσˆ〈i〉 for i = 0, 1.

This is easy to do since given (sσ, tσ) we first apply Lemma 9.3 to find sσˆ〈0〉
and sσˆ〈1〉 and then use Lemma 9.2 repeatedly to find tσˆ〈i〉 of the same length
as sσˆ〈i〉. The maps f : 2ω → 2ω and g : 2ω → ωω defined by

f(x) =
⋃
n<ω

sx�n and g(x) =
⋃
n<ω

tx�n

are continuous and f is one-to-one. Since (f(x), g(x)) ∈ [T ] for every x it
follows that the range of f is a perfect subset of A.
QED

Souslin’s Theorem is true for every Σ1
1 set, i.e., it holds for any Polish

space in place of 2ω.

Theorem 9.4 (Kechris) Suppose A ⊆ ωω is Σ1
1. Then either A contains a

superperfect set or ∃g ∈ ωω ∀f ∈ A f ≤∗ g.

Proof

10 Miscellania

Does a game with a computable payoff set always have a computable winning
strategy?

Example 10.1 (Galvin) There exists a computable set A ⊆ ω3 such that the
three move game below has no computable winning strategy:

I x ∈ ω s ∈ ω
II y ∈ ω

Player I wins iff (x, y, s) ∈ A.
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Proof
Let B be a simple set with computable enumeration

⋃
s Bs. Put

(x, y, s) ∈ A iff y ≤ x or y ∈ As.

Player II has a winning strategy, he just plays an element of the complement
of A bigger than x. But he cannot have a computable winning strategy since
A is simple.
QED

Example 10.2 (Kleene) There is a computable closed set C ⊆ ωω for which
there is no hyperarithmetic winning strategy.

Proof
By computable closed set we mean Π0

1 class, equivalently there exists a com-
putable tree T ⊆ ω<ω such that C = [T ]. Kleene has shown that there
exists a nonempty Π0

1 class B which contains no hyperarithmetic reals. If
C = B × ωω, then clearly Player I has a winning strategy, just play an el-
ement of B and ignore Player II. But he cannot have an hyperarithmetic
winning strategy, since the play against the constant zero function would
give an hyperarithmetic element of B.
QED

For an interesting paradoxical game, see Zwicker [21]. Zwicker calls a
game G almost finite iff it always eventually ends. In the Hypergame Player
I plays an almost finite game G, then Player II plays the first move in G
and then they continue in G until it ends. Is the Hypergame itself an almost
finite game?

Proposition 10.3 The Hypergame is almost finite.

Proof
After the play of the almost finite game G the players play the game G which
since it is almost finite, must end after finitely many more plays.
QED

Proposition 10.4 The Hypergame is not almost finite.
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Proof
If the Hypergame H is almost finite, then player I can play it on the first
move. Since they are now playing the Hypergame, Player II can play it as
his first move, etc. Hence the following infinite play is legal:

I H H H . . .
II H H H . . .

QED
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