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Spring 2009

Homework problems are due in class one week from the day assigned
(which is in parentheses).

Theorem (Ehrenfeucht-Fräisse 1960 [8]). If M and N are L-structures and
M ≡n N , then M and N model the same L-sentences of quantifier depth
≤ n.

Problem 1. (1-21 W)
For structures M and N in the language of pure equality, prove that

M ≡n N iff ||M || = ||N || or (||M || ≥ n and ||N || ≥ n).

Problem 2. (1-21 W)
Let M be an equivalence relation with exactly one equivalence class of

size n for each positive integer n and no infinite classes. Let N be the same,
except in addition it has one infinite equivalence class. Use Ehrenfeucht
games to prove that M ≡ N .

Theorem (Ehrenfeucht-Fräisse 1960). If L is a finite language which con-
tains only predicate symbols and constant symbols, then for every n ∈ ω there
exist a finite set Fn of L-sentences each with quantifier depth ≤ n such that
for any two L-structures M and N , if (M |= θ iff N |= θ) for every θ in Fn,
then M ≡n N .

Problem 3. (1-26 M)
Let Ln be a linear order of size n and L∞ = ω + ω∗ where ω∗ is the order
type of the negative integers.

(a) Prove that for every n < ω there is an N < ω such that Lk ≡n L∞
for all k > N .

(b) Use the part (a) to prove that the linear orders ω and ω+ω∗+ω = ω+Z
are elementarily equivalent.

(c) Use part (b) to prove that (ω, S) and (ω + Z, S) are elementarily
equivalent where S is the successor operation, S(x) = x + 1.

Theorem (Cantor 1880) If M and N are countable L-structures, then M '
N iff M ≡∞ N .

Problem 4. (1-26 M)
Let T be a L-theory such that T has no finite models and L is countable.

Prove that the following are equivalent:
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1. T is ω-categorical

2. M ≡∞ N for every pair of models M and N of T .

Hint: You may use without proof a consequence of the Ryll-Nardzewski
Theorem, namely if M is a model of T and a1, . . . , an a tuple from |M |, then

Th(M, a1, . . . , an)

is ω-categorical. You may also use the Downward-Lowenheim-Skolem-Tarski
Theorem.

Theorem (Carol Karp 1965). Given L-structures M and N the following
are equivalent:

1. M and N satisfy the same L∞,ω sentences

2. M ≡∞ N

Problem 5. (1-28 W)
Let K be a class of L-structures.

Prove that K is EC iff both K and K are EC∆.

Theorem ( Los-Tarski 1955) A first-order theory T is ∀-axiomatizable iff the
models of T are closed under taking substructures.

Corollary The class of models of a sentence θ is closed under taking sub-
structures iff θ is logically equivalent to a ∀-sentence.

Corollary The class of models of a sentence θ is closed under taking super-
structures iff θ is logically equivalent to a ∃-sentence.

Problem 6. (2-02 M)
Show that if a first-order theory T is preserved by taking superstructures,

then it can be axiomatized by existential sentences, i.e. ∃-sentences.
Hint: Suppose M |= (∃−sent)∩T . Prove that Th∀(M)∪T is consistent.

Theorem (Elementary Chain Lemma Tarski-Vaught 1957) If

M0 � M1 � M2 � M3 � · · ·
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is a chain of elementary substructures and

N =
⋃
n<ω

Mn

then Mk � N for all k < ω.

Theorem (Chang- Los-Suszko 1959) A first-order theory T is axiomatizable
by ∀∃-sentences iff the models of T are closed under chains of substructures.

Problem 7. (2-04 W)
(Directed Unions) Suppose D is a directed set of L-structures and M∞ =⋃
D. Prove:
(a) Every ∀∃-sentence which is true in every M ∈ D, is true in M∞.
(b) If for every M ⊆ N in D we have M � N , then M � M∞ for every

M ∈ D.

Problem 8. (2-04 W)
(Direct Limits). Let P = (P,≤) be a poset (partially ordered set), (Mp :

p ∈ P) a family of L-structures, and jpq : Mp → Mq be maps for each p ≤ q in
P. State the appropriate conditions on P, these structures, and these maps,
so as to naturally generalize problem above (a) and (b).

Problem 9. (2-06 F)
Show that T = Th(Q,≤, S) where S is the successor function is finitely

axiomatizable. Warning: it is not categorical in any power.

Theorem (Lowenheim 1915) If T is a theory in countable language and has
a model, then it has a countable model.

Theorem (Lowenheim-Skolem) If T is an L-theory which has an infinite
model, then T has models of all cardinality κ ≥ |L|+ ω.

Theorem (Upward-Downward Lowenheim-Skolem-Tarski 1950s) See
http: // www. math. wisc. edu/ ∼miller/ old/ m776-97/ preq. pdf

Theorem( Los-Vaught Test 1954) If T is an L-theory which has no finite
models and is κ-categorical for some κ ≥ |L|+ ω, then T is complete.

http://www.math.wisc.edu/~miller/old/m776-97/preq.pdf
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Theorem (McKinsey 1943) A first-order theory T is axiomatizable by uni-
versal Horn sentences iff the class of models of T is closed under substructure
and products.

Problem 10. (2-09 M)
Prove that the class of well-orderings is not PC∆ but its complement is.

Theorem (Keisler Sandwich 1960) An L-theory T is ∃∀-axiomatizable iff
for any L-structures M1 ⊆ M2 ⊆ M3 with M1 � M3, if M1 |= T , then
M2 |= T .

Problem 11. (2-11 W)
Let M1 and M2 be L-structures. Prove that M1 ≡ M2 iff there are L-

structures N1 and N2 such that M1 � N1, M2 � N2, and N1 ' N2.

Theorem (Lyndon 1959) A first-order theory T is axiomatizable by positive
sentences iff the class of models of T is closed under homomorphic images.
Key Lemma. Suppose B |= ThPOS(A) then

(a) there exists B′ � B and f : A → B′ such that

(B, f(a))a∈|A| |= ThPOS(A, a)a∈|A|

(b) there exists A′ � A and g : B → A′ such that

(B, b)b∈|B| |= ThPOS(A′, g(b))b∈|B|

Problem 12. (2-13 F)
(a) Prove that

B |= ThPOS(A) iff A |= Th¬POS(B)

(b) Find A and B such that B |= ThPOS(A) but A 6|= ThPOS(B).

Problem 13. (2-13 F)
Prove Key Lemma part (b).

Theorem (Craig’s Interpolation Lemma 1957) Suppose θ1 is an L1-sentence,
θ2 is an L2-sentence, and ` θ1 → θ2. Then there exists ρ an L1∩L2-sentence
such that ` θ1 → ρ and ` ρ → θ2.
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Problem 14. (2-16 M)
(Prove) Suppose T0 is a complete L0-theory, T1 is a complete L1-theory,

and L = L0 ∩ L1. Then:
T0 ∪ T1 is consistent iff (T0 ∩ (L− sent))∪ (T1 ∩ (L− sent)) is consistent.

Problem 15. (2-16 M)
(Millar) (Disprove) Suppose Ti (for i = 1, 2, 3) is a complete consistent

Li-theory. Then:
T1 ∪ T2 ∪ T3 is consistent iff Ti ∪ Tj is consistent for all i and j.

Problem 16. (2-18 W)
Suppose that M is an infinite L-structure, ≤ is a binary relation symbol

in L, and ≤M is a linear order with no greatest element. Prove there exists
N � M with ||N || ≤ ω1 + |L|+ ||M || and the cofinality of ≤N is ω1.

Theorem (Beth Definability) With respect to theories, implicitely definable
implies explicitely definable.

Theorem (Addison 1960 [1]) Let L be a language containing at least one
constant symbol. Suppose θ0 is a universal L-sentence and θ1 an existential
L-sentence such that ` θ0 → θ1. Then there exists a quantifier free L-
sentence ρ such that ` θ0 → ρ and ` ρ → θ1.

Problem 17. (2-20 F)
Suppose L is language containing at least one relation or operation symbol

but no constant symbols. Show there exists θ0 a universal L-sentence and θ1

an existential L-sentence such that

1. θ0 → θ1 is a logical validity,

2. θ1 is not a logical validity, and

3. ¬θ0 is not a logical validity.

Show that there is no such pair of sentences in the language of pure equality.

Theorem (Shoenfield 1960 in [2], [16] p. 97) Suppose θ0 is a ∀∃-L-sentence
and θ1 is an ∃∀-L-sentence such that ` θ0 → θ1. Then there exists an
L-sentence ρ which is a boolean combination of existential and universal sen-
tences such that ` θ0 → ρ and ` ρ → θ1. (Similar result holds for higher
prenex classes.)
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Problem 18. (2-23 M)
Let R be a binary relation symbol. Note that

∃x∀y R(x, y) → ∀y∃x R(x, y)

Prove that there does not exist a sentence ρ which is a boolean combination
of existential and universal sentences and interpolates between them.

Hint: Consider R-structures in which every finite R-structure embedds.

Theorem (Rabin 1959 [15], [6] p. 136.) There is a complete theory T in
a language of size continuum, which is categorical in power ω and has no
model of size κ with ω < κ < |2ω|.

Problem 19. (2-25 W)
Give an example of a theory T with arbitrarily large finite models but no

model of cardinality κ with ω ≤ κ < |2ω|.

Problem 20. (2-25 W)
Suppose that the continuum |2ω| is larger than ℵω. Prove that for every

A ⊆ ω there is a first order theory TA such that for every n < ω
TA has a model of cardinality ωn iff n ∈ A.

Open Question. Can we find TA which is complete?

Theorem ( Los 1955) For any f1, . . . , fn ∈
∏

i Ai and formula θ∏
i Ai/U |= θ([f1], . . . , [fn]) iff {i ∈ I : Ai |= θ(f1(i), . . . , fn(i))} ∈ U .

Problem 21. (2-27 F)
Prove  Los’s Theorem for ultraproducts

∏
n∈ω An/U and the language

L(Qc+) where Qc+x is the quantifier which means “There are more than
continuum many x such that”.

Theorem (Keisler unpublished see [7] p.472) If T is a first-order theory with
a model of size κ ≥ ω, then for every λ ≥ κω T has a model of size λ.

Theorem (Keisler 1959) (CH) If A ≡ B are countable and U is a nonprin-
cipal ultrafilter on ω, then Aω/U ' Bω/U .

Theorem (Morley, Vaught 1962) If A and B are κ-saturated models of size
κ, then A ' B.
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Problem 22. (3-04 W)
Suppose A is an L structure and ≤ is a binary relation symbol in L such

that A reducted to ≤ is a linear order of uncountable cofinality. Prove:
(a) There exists a proper elementary extension B � A such that |A| is

cofinal in |B|, i.e., no new elements come at the end.
(b) There exists elementary extensions B � A of arbitrarily large cardi-

nality such that |A| is cofinal in |B|.

Theorem (Hausdorf 1936 see [12]) There are 2c many ultrafilters on ω.

Problem 23. (3-06 F)
Prove there exists fα : ω → ω for α < c = |2ω| such that for any F ∈ [c]<ω

and s : F → ω there exists n < ω such that fα(n) = s(α) for all α ∈ F .

Problem 24. (3-06 F)
Prove that for any infinite cardinal κ there are 22κ

ultrafilters on κ.

Theorem (Morley-Vaught 1962) If κ ≥ |L|+ω and A an L-structure of car-
dinality 2κ, then there exists B � A of cardinality 2κ which is κ+-saturated.

Theorem (Vaught) Let T be theory in a countable language. Then the fol-
lowing are equivalent:

1. T has a countable ω-saturated model

2. T has a countable weakly-saturated model

3. Sn(T ) is countable for all n

Theorem (Vaught) A structure A is ω-saturated iff it is weakly saturated
and ω-homogenous.

Theorem (Vaught) If L is countable and A is a countable L-structure, then
there exists a countable ω-homogeneous B � A.

Problem 25. (3-11 W)
Suppose T is a consistent L-theory with only infinite models. Suppose ≤

is a binary relation symbol in L such that T `“≤ is a linear order”. Prove
that every ω1-saturated model has cardinality at least continuum.
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Theorem (Vaught’s Two Cardinal) If a theory T in a countable language
with a distinguished predicate U admits (κ, κ+), then it admits (ω, ω1).

Theorem (Henkin-Orey 1954) If T is a consistent theory in a countable
language and (Σn : n < ω) are nowhere dense partial types, then T has a
model omitting all Σn.

Problem 26. (3-13 F)
Suppose that T is an L-theory and Sn(T ) is countable. Prove there exists

a countable L0 ⊆ L such that every L-formula θ(x1, . . . , xn) = θ(x) there
exists an L0-formula θ0(x) such that T ` ∀x (θ(x) ↔ θ0(x)).

Theorem (Henkin-Orey 1954) If T is an ω-complete consistent theory, then
T has an ω-model. If T is complete and has an ω-model, then T is ω-
complete.

Problem 27. (3-23 M)
Prove or Disprove. Suppose T is an L-theory where L is countable and

Σn for n < ω are partial types. Suppose for every N < ω that T has a model
omitting (Σn : n < N). Then T has a model omitting (Σn : n < ω).

Theorem (Keisler [18]) Suppose A is a countable L-structure, L countable,
and ≤ is a binary relation symbol in L with the properties:

1. ≤A is a linear order without a greatest element and

2. for any θ(x, y) with parameters from A and a ∈ A if

A |= ∀x < a ∃y θ(x, y),

then there is a b ∈ A such that

A |= ∀x < a ∃y < b θ(x, y).

Then A has a proper elementary end extension.

Problem 28. (3-25 W)
Prove the converse to this theorem. If A has a proper elementary end

extension, then (1) and (2) must hold.

Theorem (Keisler) Two cardinal theorem for sentences of Lω1,ω.
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Theorem (MacDowell-Specker 1961) Every model of Peano Arithmetic, has
a proper elementary end extension. (proof for countable models only)

Theorem (Vaught) The set of logical validities for L(Q) is computably enu-
merable.

Theorem (Fuhrken) L(Q) is countably compact.

Problem 29. (3-27 F)
(a) Prove that for L countable that for any uncountable A L-structure,

there is B of cardinality ω1 with

B �L(Q) A.

Here Qx means “there are uncountably many x such that”.
(b) Prove that for any countable family F of Lω1,ω-formulas, each with

only finitely many free variables, for any L-structure A there is a countable
B with

B �F A.

Theorem (Ryll-Nardzewski 1959) Suppose T is a countable,complete, con-
sistent L-theory without finite models. Then the following are equivalent:

1. T is ω-categorical

2. Sn(T ) is finite for all n < ω

3. every p ∈ Sn(T ) is principal for all n < ω.

Problem 30. (3-30 M)
Suppose T2 is a countable, complete, consistent L2-theory without finite

models, L1 ⊆ L2 and T1 = T2 ∩ (L1-sentences).
(a) (Prove) T2 ω-categorical implies T1 ω-categorical.
(b) (Disprove) T1 ω-categorical implies T2 ω-categorical.
(c) (Prove) T1 ω-categorical implies T2 ω-categorical, if L2 = L1 ∪ {c}.

Theorem Suppose T is a countable, complete, consistent L-theory without
finite models. Any two prime models of T are isomorphic. If A is the prime
model of T , then A elementarily embedds in every model of T . Conversely,
if A embedds into model of T , then A is the prime model of T .
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Theorem (Vaught 1961) Suppose T is a countable,complete, consistent L-
theory without finite models. Then T has a prime model iff the principal
types in Sn(T ) are dense for for all n < ω.

Theorem (Vaught Never Two) Suppose T is a countable, complete, consis-
tent L-theory without finite models. Then I(ω, T ) 6= 2.

Example (Ehrenfeucht) For each n with 3 ≤ n < ω there is a countable,
complete theory T with I(ω, T ) = n.

Problem 31. (4-01 W)
Suppose T is a countable, complete, consistent L-theory without finite

models. Suppose that every countable model of T is ω-homogeneous. Prove
that I(ω, T ) = 1 or I(ω, T ) ≥ ω.

Example (Kunen unpublished) There is a pseudo elementary class with ex-
actly ω1 countable models up to isomorphism. (Homogeneous linear orders).

Theorem Ramsey’s Theorem, finite version of Ramsey’s Theorem.

Theorem (Ehrenfeucht-Mostowski) Suppose T is a first-order theory with
an infinite model and (I,≤) is a linear-order. Then T has a model A with
I ⊆ |A| order-indiscernibles.

Problem 32. (4-06 M)
Let L = {R} where R is a binary relation symbol. Prove there are

finitely many infinite L-structures Mi for i < N such that for every universal
L theory T with an infinite model some Mi |= T . Extra credit: prove the
same for R 3-ary and find the smallest N .

Theorem (Ehrenfeucht-Mostowski) Suppose T is a countable first-order the-
ory with an infinite model. Then for any κ ≥ ω T has a model of size κ which
realizes only countably many types and has 2κ automorphisms.

Problem 33. (4-13 M)
Suppose T is a countable first-order theory with an infinite model. Prove

that for every κ > ω that T has a model A of size κ such that for every
countable X ⊆ |A|, the structure (A, c)c∈X realizes only countably many
types.
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Theorem (Erdos-Rado) i+
n (κ) → (κ+)n+1

κ .

Example (Sierpinski) 2ω 6→ (3)2
ω 2ω 6→ (ω1)

2
2.

Problem 34. (4-15 W)
Suppose T is a countable first-order theory with an infinite model. Prove

that there exists countable models of T , A(X) for X ⊆ ω, such that for any
X, Y ⊆ ω

X ⊆ Y iff A(X) � A(Y ).

Theorem (Vaught’s two cardinals far apart) Suppose T is a countable theory
with distinguished predicate U . Suppose for every n there is a κ ≥ ω such
that T has a model of type (in(κ), κ). Then for every γ ≥ κ ≥ ω, T has a
model of type (γ, κ).

Theorem (Morley) The Hanf Number of Lω1,ω is iω1.

Theorem (Silver, Erdos, Rowbottom) Let κ0 be the least κ such that

κ → (ω)<ω
2

Assume κ0 exists, then

1. κ0 is strongly inaccessible.

2. The Hanf Number of Lω1,ω1 is at least κ0.

3. There are unboundedly many weakly compact cardinals less than κ0,
however κ0 is not weakly compact.

Problem 35. (4-22 W)
Let κ1 be least such that κ1 → (ω + 1)<ω

2 . Prove κ1 > κ0. Extra credit:
prove it is strongly inaccessible.

Theorem (Morley) If a countable first-order theory is categorical in some
uncountable power, then it is categorical in all uncountable powers.

Problem 36. (4-27 M)
Let Tn = Th(ωω, Ps)s∈ω≤n where Ps is the unary predicate

Ps = {x ∈ ωω : s ⊆ x}.



A.Miller Model Theory M776 May 7, 2009 12

Prove that
(a) rankTn(x = x) = n + 1.
(b) Give an example of a T such that rankT (x = x) = ω.

Theorem (Shelah) Suppose T is a countable theory.
(a) If there exists κ ≥ ω such that T is κ-stable, then T is κ-stable for

every κ such that κω = κ.
(b) T is unstable iff T has the order property.
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