
Lecture notes in Recursion Theory A. Miller December 3, 2008 1

Lecture notes in Recursion Theory
Arnold W. Miller

These are lecture notes from Math 773. There were mostly written in
2004 but with some additions in 2007.

DESCRIPTION: Abstract theory of computation. Turing degree and jump,
arithmetic hierarchy, index sets, simple and (hyper)hypersimple sets, Kleene-
Post results in Turing degrees, finite injury priority arguments: Friedberg-
Muchnik Theorem, Sacks Splitting Theorem, existence of a maximal set.
Infinite injury priority arguments: Lachlan minimal pair, Sacks density the-
orem, Shoenfield incomplete high degrees. Recursive ordinals and the hyper-
arithmetical hierarchy.

Some general references in this area are:
Hartley Rogers, Theory of recursive functions, 1967
Robert Soare, Recursively enumerable sets and degrees, 1987
Piergiorgio Odifreddi, Classical recursion theory, vol 1,2 1989,1999
Barry Cooper, Computability theory, 2004
Robert Soare, Computability theory and applications, 2008

Contents

1 UR-Basic programming 3

2 Primitive recursive functions 6

3 Primitive recursive functions are UR-Basic computable 11

4 UR-BASIC computable functions are recursive 12

5 Church-Turing Thesis 16

6 Universal partial recursive function 18

7 The recursively enumerable sets 19

8 Separation and reduction 23

Lecture notes in Recursion Theory A. Miller December 3, 2008 2

9 Many-one reducibility 24

10 Rice’s index Theorem 26

11 Myhill’s recursive permutation Theorem 27

12 Roger’s adequate listing Theorem 30

13 Kleene’s Recursion Theorem 31

14 Myhill’s characterization of creative set 33

15 Simple sets 36

16 Oracles 37

17 Dekker deficiency set 37

18 Turing degrees and jumps 38

19 Kleene-Post: incomparable degrees 39

20 The join 41

21 Meets 42

22 Spector: exact pairs 44

23 Friedberg: jump inversion 46

24 Spector: minimal degree 48

25 Sacks: minimal upper bounds 50

26 Friedberg-Muchnik Theorem 51

27 Embedding in the r.e. degrees 54

28 Limit Lemma and Ramsey Theory 56

29 A low simple set 58

Lecture notes in Recursion Theory A. Miller December 3, 2008 3

30 Friedberg splitting Theorem 60

31 Sacks splitting Theorem 62

32 Lachlan and Yates: minimal pair 68

33 Friedberg: A one-one enumeration of the r.e. sets 74

34 Hypersimple sets 79

35 Hyperhypersimple sets 85

36 Maximal sets 88

37 The lattice of r.e. sets 91

38 Arithmetic hierarchy 99

39 Post: ∆0
2 same as recursive in 0′ 101

40 EMP, TOT, FIN, and REC 104

41 Domination and high degrees 109

42 High degrees using the Psuedojump 112

43 First-order theories 117

44 Analytic sets 120

Appendix

45 Turing machines 130

46 Trees, Konig’s Lemma, Low basis 136

1 UR-Basic programming

We begin by giving a formal definitions of computability, a toy programming
language: UR-BASIC.

Lecture notes in Recursion Theory A. Miller December 3, 2008 4

Variables are any string of letters or numerals, A-Za-z0-9.
Statements are of the form

Let X = X + 1
Let X = X−̇1
If X ≤ Y then goto k

where X and Y are any variables and k is a nonnegative integer, i.e. k ∈ ω,
which is a line number.

A UR-Basic program is a sequence S0, S1, S2, . . ., Sn of statements.
Variables only take on nonnegative integer values. The symbol −̇ means
subtraction unless the result is negative and then it yields zero. The program
halts if we “goto” to a line k > n.

A function f : ω → ω is UR-Basic computable iff there exists a program
P , designated input variable X and output variable Y such that for any
n ∈ ω if we put X = n and all other variables zero and start with the first
statement of P , then P eventually halts with f(n) in variable Y . There is a
similar definition for f : ωm → ω to be UR-Basic computable.

Next we indicate how to simulate more complex statements using these
three kinds of statements. When substituting multiline statements for a
single statement, the “goto” numbers must be adjusted.

Basic: UR-Basic:
Go to k If X ≤ X then goto k
Continue Let Donothing=Donothing+1

Let Y=X 1 If X ≤ Y then go to 4
2 Let Y=Y+1
3 Go to 1
4 If Y ≤ X then go to 7
5 Let Y = Y −̇1
6 Go to 4
7 Continue

Constants
0 this is a variable - we agree never to change it
1 let 1 = 1 + 1

2 Let 2 = 2 + 1
Let 2 = 2 + 1

Lecture notes in Recursion Theory A. Miller December 3, 2008 5

If X < Y then goto k Let tempX = X
Let tempX = tempX + 1
if tempX ≤ Y then goto k

If X = Y then goto k 1 If X < Y then goto 4
2 If Y < X then goto 4
3 Go to k
4 continue

For i = 1 to n 1 If n = 0 then goto 7
S1 2 Let i = 1
. . . 3 S1

Sk . . .
Next i 4 Sk

5 Let i = i+ 1
6 If i ≤ n then goto 3
7 continue

Example 1.1 The pair of functions remainder and quotient are UR-Basic
computable i.e., input n,m then output q, r with n = qm+ r and 0 ≤ r < m.

Proof
n = qm+ r:

1 Let q = 0
2 Let r = n
3 If r < m then goto 7
4 Let r = r−̇m
5 Let q = q + 1
6 go to 3
7 continue

QED

Example 1.2 The functions Z = X + Y , Z = XY , Z = XY , and X−̇Y
are UR-Basic computable.

Lecture notes in Recursion Theory A. Miller December 3, 2008 6

Proof
Z = X + Y :

Let Z = X
For i = 1 to Y

Let Z = Z + 1
Next i

Z = XY :
Let Z = 0
For i = 1 to Y

Let Z = Z +X
Next i

Z = XY :
Let Z = 1
For i = 1 to Y

Let Z = ZX
Next i

Z = X−̇Y :
Let Z = X
For i = 1 to Y

Let Z = Z−̇1
Next i

QED

Exercise 1.3. Prove that the greatest common divisor function d =
gcd(n,m) is UR-Basic computable. Or if you prefer the function f(n) =
the nth prime. Or you can prove that your favorite function is UR-Basic
computable.

2 Primitive recursive functions

The class of primitive recursive functions is the smallest set of functions
f : ωm → ω of arbitrary arity m which contain

1. the constant zero function, Z : ω → ω, Z(n) = 0 all n,

Lecture notes in Recursion Theory A. Miller December 3, 2008 7

2. the successor function, S : ω → ω with S(n) = n + 1 all n (which we
usually write n+ 1), and

3. the projections πnm(x1, . . . , xn) = xm for 1 ≤ m ≤ n < ω

and is closed under

• composition: h is primitive recursive, if

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

where f is n-ary and each gi is m-ary are primitive recursive, and

• primitive recursion: h is primitive recursive, if

h(0, x1, . . . , xm) = g(x1, . . . , xm)

h(y + 1, x1, . . . , xm) = f(y, x1, . . . , xm, h(y, x1, . . . , xm))

where g is m-ary and f is (m+ 2)-ary primitive recursive.

Note that by using the projections and compositions we may swap vari-
ables around and introduce dummy variables, e.g.

h(x, y, z) = f(g(x, y), z, k(z, x)) = f(g1(x, y, z), g2(x, y, z), g3(x, y, z))

where

g1(x, y, z) = g(π3
1(x, y, z), π

3
2(x, y, z))

g2(x, y, z) = π3
3(x, y, z)

g3(x, y, z) = k(π3
3(x, y, z), π

3
2(x, y, z))

A predicate P ⊆ ωn is primitive recursive iff its characteristic function
χP (~x) is where

χP (~x) =

{
1 if P (~x)
0 if ¬P (~x)

Constant functions of any arity are primitive recursive. E.g., the function
f(x, y, z) = 2 for all x, y, z is defined by

f(x, y, z) = S(S(Z(π3
1(x, y, z))))

Define z = x+ y:

Lecture notes in Recursion Theory A. Miller December 3, 2008 8

x+ 0 = x
x+ (y + 1) = (x+ y) + 1

Define z = xy:
x0 = 0
x(y + 1) = xy + x

Define z = xy:
x0 = 1
xy+1 = xyx

Define z = x(y) = xx
x.x

:
x(0) = x
x(y+1) = xx

(y)

Define z = x!:
0! = 1
(x+ 1)! = (x+ 1)x!

Define z = x−̇1:
0−̇1 = 0
(x+ 1)−̇1 = x

Define z = y−̇x:
y−̇0 = y
y−̇(x+ 1) = (y−̇x)−̇1

Define

sign(x) =

{
1 if x > 0
0 if x = 0

by sign(x) = 1−̇(1−̇x).

Proposition 2.1 The predicates x ≤ y, x = y, x < y are primitive recur-
sive. If P and Q are primitive recursive predicates, then so is P ∨Q and ¬P .
If P (~x, y) is a primitive recursive predicate and f(~x) a primitive recursive
function, then Q(~x) ≡ P (~x, f(~x)) is a primitive recursive predicate.

Lecture notes in Recursion Theory A. Miller December 3, 2008 9

Proof
χ≤(x, y) = 1−̇(x−̇y)
χP∨Q = sign(χP + χQ)
χ¬P = 1−̇χP
x = y iff x ≤ y and y ≤ x
x < y iff ¬y ≤ x
χQ(~x) = χP (~x, f(~x))

QED

Proposition 2.2 If P (~x, y) is a primitive recursive predicate and f(~x) a
primitive recursive function, then

∃y ≤ f(~x) P (~x, y) and ∀y ≤ f(~x) P (~x, y)

are both primitive recursive predicates.

Proof
Let

Q(~x, z) ≡ ∃y ≤ z P (~x, y)

Then χQ has the recursive definition:
χQ(~x, 0) = χP (~x, 0)
χQ(~x, z + 1) = sign(χQ(~x, z) + χP (~x, z + 1))

Note that
Q(~x, h(~x) ≡ ∃y ≤ h(~x) P (~x, y)

and

∀y ≤ h(~x) P (~x, y) ≡ ¬∃y ≤ h(~x) ¬P (~x, y)

QED
For example,

x divides y iff ∃z ≤ y y = xz.
x is a Prime iff x > 1 and ∀y ≤ x if y divides x, then y = 1 or y = x.

are primitive recursive predicates.

Bounded search: define f(~x, z) = µy ≤ z P (~x, y) where f is the least y ≤ z
which satisfies P (~x, y) and f = 0 if no y ≤ z can be found.

Lecture notes in Recursion Theory A. Miller December 3, 2008 10

Proposition 2.3 Suppose Q is a primitive recursive predicate and h a prim-
itive recursive function. Then

g(~x) = µy ≤ h(~x) P (~x, y)

is primitive recursive.

Proof
Let

Q(~x, y) ≡ P (~x, y) ∧ ∀u < y ¬P (~x, u).

Then if we define
f(~x, z) = µy ≤ z P (~x, y)

then

f(~x, z) =
z∑
y=0

y · χQ(~x, y)

which has the following primitive recursive definition:
f(~x, 0) = 0
f(~x, z + 1) = f(~x, z) + (z + 1)χQ(~x, z + 1)

Hence
g(~x) = f(~x, h(~x)) = µy ≤ h(~x) P (~x, y).

QED

Proposition 2.4 If f : ω → ω is primitive recursive, the graph(f) is a prim-
itive recursive predicate. If graph(f) is a primitive recursive predicate and
there is a primitive recursive function g which bounds f , then f is primitive
recursive.

Proof
Graph(f) has characteristic function χ=(f(~x), y). If f is bounded by g then

f(~x) = µy ≤ g(~x) (~x, y) is in the graph of f.

QED
Examples:

z=max(x,y) iff (x = z and x ≥ y) or (y = z and y ≥ x)
has primitive recursive graph and is bounded by x + y, so it is a primitive
recursive function.

Lecture notes in Recursion Theory A. Miller December 3, 2008 11

Division,Quotient: input n,m > 0 output q, r with n = qm+r and r < m.
q = quotient(n,m) and r = remainder(n,m) both have primitive recursive
graphs bounded by n+m so they are primitive recursive.

Exercise 2.5. Let r(n) = nth digit of
√

2 = 1.4142136 . . ., so r(0) = 1,
r(1) = 4, and so on. Prove that r is primitive recursive. If you prefer you
may use e = 2.7182818 . . . instead of

√
2. Does every naturally occurring

constant in analysis have this property?

Exercise 2.6. Define n is square-free iff n ≥ 2 and no m2 divides n for
m ≥ 2. Let S(n) be the sum of the first n square-free numbers. Prove S is
a Primitive recursive function.

3 Primitive recursive functions are UR-Basic

computable

Theorem 3.1 Every primitive recursive function is UR-Basic computable.

Proof
The empty program with input x and output y, computes the constant zero
function. Similarly for the projections. The successor function is computed
by the one-line program “Let x=x+1”, with input and output variable x.

For closure under composition: z = f(g1(~x), . . . , gn(~x)) use the basic
program:

Let z1 = g1(~x)
Let z2 = g2(~x)
· · ·
Let zn = gn(~x)
Let y = f(z1, . . . , zn)

where appropriate substitution of UR-Basic code has been done.

The basic code for a primitive recursive definition
f(~x, 0) = g(~x)
f(~x, n+ 1) = h(n, f(~x, n), ~x)

looks like
input ~x, n
Let y = g(~x)

Lecture notes in Recursion Theory A. Miller December 3, 2008 12

For i = 1 to n
Let y = h(i−̇1, y, ~x)

next i
output y = f(~x, n)

QED

4 UR-BASIC computable functions are re-

cursive

Definition 4.1 The partial recursive functions are the smallest class of func-
tions containing the primitive recursive functions and closed under composi-
tion, primitive recursion, and unbounded search µ:

f(~x) = µy P (~x, y)

where P is a recursive predicate,i.e., its characteristic function is recursive.

Theorem 4.2 (Kleene) There exists a primitive recursive predicate Q and
primitive recursive g such that for every partial UR-Basic computable f :
ω → ω there exists an e such that

∀x f(x) = g(µz Q(e, x, z)).

Proof
An informal description of g and Q are as follows. Q(e, x, z) says that the
program coded by e with input x does the computation coded by z. g(z) is
the value of the output variable at the final step of the computation coded
by z.

In order to more formally define Q we begin by describing a method of
coding pairs and finite sequences using primitive recursive functions.
Coding pairs. the mapping x, y 7→ 〈x, y〉 defined by

〈x, y〉 = 2x(2y + 1)− 1

is a primitive recursive bijection between ω2 and ω. Both unpairing functions
are primitive recursive since if x = 〈x0, x1〉, then x0, x1 ≤ x. So define the
head and tail functions h and t as follows:

h(〈x, y〉) = x and t(〈x, y〉) = y

Lecture notes in Recursion Theory A. Miller December 3, 2008 13

Triples can be coded by 〈x, y, z〉 = 〈x, 〈y, z〉〉 and similarly by induction for
n-tuples:

〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉.
Note that, for example,

h(t(t(〈x, y, z, w〉))) = z

so the “coordinate function” 〈x, y, z, w〉 7→ z is primitive recursive.
To code finite sequences of arbitrary length define the function

c(y, k) = h(t(k)(y))

where t(k) stands for the composition of t with itself k times. It has a primitive
recursive definition f(k, x) = t(k)(x):

f(x, 0) = x

f(x, k + 1) = t(f(x, k))

It is easy to check that c has the property that for any n and for any finite
sequence y0, y1, . . . , yn there exists y such that c(y, k) = yk for all k ≤ n. We
often use yi to denote c(y, i)

We can assume that the UR-Basic program only uses the variable vi for
i < ω and that the input variable is v0 and output variable v1.

1. S = 〈0, i〉 ∈ ω codes the statement “Let vi = vi + 1”.
2. S = 〈1, i〉 ∈ ω codes the statement “Let vi = vi−̇1”.
3. S = 〈n, i, j, k〉 for n ≥ 2 codes the statement “If vi ≤ vj then goto k”.

For e ∈ ω let e = 〈n, S〉 and let S0, S1, . . . , Sn−1 be the program statements
with Si coded by c(S, i).

Next we define three primitive recursive predicates:
In the tuple (e, x, y), e codes the program, x is the input value and y is

pair 〈k, V 〉 coding the line k in the program which is being executed and V
coding the values of the variables.

Init(e, x, y) ≡
∃V < y y = 〈0, V 〉 and c(V, 0) = x and ∀i < e (i > 0→ c(V, i) = 0)

Since this is the start we want to start with Statement 0, i.e., y = (0, V)
and v0 = x and vi = 0 for all i with 0 < i < e. Note that we can bound this
by e since e cannot refer to any variables with index higher than e.

Lecture notes in Recursion Theory A. Miller December 3, 2008 14

Halt(e, y) ≡

∃n, S < e ∃k, V < y y = 〈k, V 〉 and e = 〈n, S〉 and k ≥ n

All this says is we halt when we try to execute a line number greater than
the length of the program.

Onestep(e, y, y′) ≡

(This says we take one step from y to y′.)

∃k, V, k′, V ′ < y + y′ and ∃n, S < e such that all of the following are true:

1. y = 〈k, V 〉, y′ = 〈k′, V ′〉, and e = 〈n, S〉

2. k < n (we don’t take a step if program has halted)

3. If c(S, k) codes “Let vi = vi + 1” then

c(V ′, i) = c(V, i) + 1,

c(V ′, j) = c(V, j) for all j < e with j 6= i, and

k′ = k + 1,

4. If c(S, k) codes “Let vi = vi−̇1” then

c(V ′, i) = c(V, i)−̇1,

c(V ′, j) = c(V, j) for all j < e with j 6= i, and

k′ = k + 1.

5. If c(S, k) codes “If vi ≤ vj then goto l” then

V = V ′ and

if c(V, i) ≤ c(V, j) then k′ = l else k′ = k + 1.

Next we define the predicate Q(e, x, z). Informally, it says that z codes a
computation using program e and input x.

Q(e, x, z) ≡

∃N, y < z z = 〈N, y〉 and Init(e, x, c(y, 0)) and Halt(e, c(y,N)) and

∀i < N Onestep(e, c(y, i), c(y, i+ 1))

Lecture notes in Recursion Theory A. Miller December 3, 2008 15

Finally we define the function g. It simply extracts the value of v1 the
output variable from the computation coded by z. Since g(z) ≤ z it is enough
to see that its graph is primitive recursive:

g(z) = v iff

∃N, y, V, k < z 〈N, y〉 = z and c(y,N) = 〈k, V 〉 and c(V, 1) = v

QED

Corollary 4.3 The family of (partial) UR-Basic computable functions is the
same as the family of (partial) recursive functions.

Proof
The family of UR-Basic computable functions is closed under unbounded
search µ, i.e.,

To compute the function f(~x) = µy P (~x, y) use code:

1 Let y = 0
2 If P (~x, y) then goto 5
3 Let y = y + 1
4 Goto 2
5 continue

Hence every partial recursive function is partial UR-Basic computable.
The Theorem supplies the other inclusion.
QED

The Theorem shows that only one unbounded search is needed to get
every partial recursive function. Something that is not immediately evident
from the definition of recursive function.

Exercise 4.4. Another way to code finite sequences of arbitrary length is
to use prime factorization.

(a) Define: nextprime(x) = y to be the smallest prime y > x. Prove that
nextprime(x) is primitive recursive.

(b) Define: p0 = 2 and pn is the nth odd prime. Prove that the function
n 7→ pn is primitive recursive.

(c) Define c(x, i) = k iff k is the least integer such that pk+1
i does not

divide x. Prove that c is primitive recursive and for any finite sequence
x0, x1, . . . , xn there exists x such that c(x, k) = xk for all k ≤ n.

Lecture notes in Recursion Theory A. Miller December 3, 2008 16

Exercise 4.5. Suppose that f : ω → ω is UR-Basic computable by a
program P and there exists a primitive recursive function s : ω → ω such
that for every x the program P computes f(x) in ≤ s(x) steps. Prove that
f is primitive recursive.

Exercise 4.6. The programming language P-Basic has only four kinds of
statements

(a) Let X = X + 1
(b) Let X = X−̇1
(c) Let X = Y

where X, Y are any variables
(d) for-next loops, e.g.

For i = 1 to n
S1
...
Sk

Next i

The loop variable i and n must be distinct and in the body of the loop
(S1, . . . , Sk) the variables i and n are not allowed to be changed, i.e.,

For n= 1 to . . .
For i= 1 to . . .
Let n = . . .
Let i = . . .

are not allowed. Prove that the P-Basic computable functions are the same
as the primitive recursive functions.

Exercise 4.7 Another popular pairing function p : ω2 → ω is described by
Figure 1. Show that p is a polynomial. Hint: the point (m,n) is on the
diagonal of the square of area (m+ n)2.

5 Church-Turing Thesis

Church-Turing Thesis:

Every intuitively computable function is recursive.

Lecture notes in Recursion Theory A. Miller December 3, 2008 17

6

-r r r r
r r r
r r
r

@
@@I

@
@@I

@
@@I

@
@@I

@
@@I

@
@@I

0 1 3 6

2

5

9

4 7

8 = p(1, 3)

Figure 1: Pairing function p(n,m), see exercise 4.7.

Good evidence for Church’s thesis is the fact that all other ways people
have come up with to formalize the notion of effectively computable func-
tion (e.g. RAM machines, register machines, generalized recursive functions,
neural nets, etc) can be shown to define the same set of functions. Church’s
original formal definition was using the lambda calculus. However it is not
easy to see that even the elementary arithmetic functions such as successor
or addition are representable in the lambda calculus. It took his student,
Kleene, several weeks to prove this. Similarly, it is also true that all com-
putable functions can be represented in John Conway’s Game of Life. But
this is difficult to see and so does not really give convincing evidence that
the informal notion of effectively calculable has been captured.

In section 45 we define the notion of Turing computable function and
include Turing’s analysis of why every effectively calculable function should
be Turing computable.

Proposition 5.1 There exists a recursive function f : ω → ω which is not
primitive recursive.

Proof
Make an effective list fn : ωkn → ω of all the primitive recursive functions.
Define f(n) = fn(n) + 1 if fn is a 1-ary function, otherwise put f(n) = 0.
Since the listing is effective by the Church-Turing Thesis the function f is
recursive. But by the usual diagonal argument f is not on the list.

Lecture notes in Recursion Theory A. Miller December 3, 2008 18

QED

Exercise 5.2. Prove that there exists a (total) h : ω → ω whose graph
is a primitive recursive predicate but h is not a primitive recursive function.
Hint: consider h(x) = µz Q(e, x, z).

Exercise 5.3. Prove there exists a primitive recursive bijection p : ω → ω
such that p−1 is not primitive recursive.

6 Universal partial recursive function

Proposition 6.1 (Turing) There exists a universal partial recursive func-
tion

ψ : ω → ω

i.e. if we define ψe(x) = ψ(〈e, x〉) then {ψe : e ∈ ω} is a uniformly
computable listing of all partial recursive functions.

Proof
ψ(〈e, x〉) = g(µz Q(e, x, z)).
QED

Note that for any n ≥ 2 if f(x1, . . . , xn) is a partial recursive function
then there will be e such that

∀x1, . . . , xn ψ(〈e, 〈x1, . . . , xn〉〉) = f(x1, . . . , xn).

So ψ is universal for partial recursive functions of any arity.

Proposition 6.2 (Padding Lemma) There exists a 1-1 recursive function p
such that ψe = ψp(e,n) for every e, n.

Proof
To pad the program S0, S1, . . . , Sm coded by e just add the statement

Sm+1 = LetDonothing〈e, n〉 = Donothing〈e, n〉+ 1

and let p(e, n) code this new program.
QED

Proposition 6.3 (S-n-m Theorem). There exists a recursive function S
such that ψe(〈x, y〉) = ψS(e,x)(y) for all e, x, y.

Lecture notes in Recursion Theory A. Miller December 3, 2008 19

Proof
Given P the program coded by e and input x make-up a new program coded
by S(e, x) which puts x into P ’s first input variable and then pops into
program P .
QED

The name S-n-m comes from the obvious generalization to n-tuple ~x and
m-tuple ~y

ψe(〈~x, ~y〉) = ψSn,m(e,~x)(~y)

so what we are stating is the S-1-1 Theorem.
These propositions can be combined as follows:

Proposition 6.4 Suppose θ(x, y) is a partial recursive function. Then there
is a one-to-one recursive function f : ω → ω such that

∀x, y ψf(x)(y) = θ(x, y).

Proof
Suppose θ = ψe0 . Then

θ(x, y) = ψp(S(e0,x),x)(y)

and so f(x) = p(S(e0, x), x) works.
QED

We call this the 1-1-S-1-1 Theorem.

7 The recursively enumerable sets

Definition 7.1 For A ⊆ ω define:

1. A is recursively enumerable iff either A is empty or A is the range of a
recursive function, i.e., A = {a0, a1, a2, . . .} where the function n 7→ an
is recursive. This is abbreviated r.e.

2. A is Σ0
1 iff there exists a recursive predicate R ⊆ ω2 such that

A = {n : ∃m R(n,m)}.

Definition 7.2 W = {〈e, x〉 : ψ(〈e, x〉) ↓}. Then {We : e ∈ ω} where
We = {x : 〈e, x〉 ∈W} is a uniform listing of the r.e. sets.

Lecture notes in Recursion Theory A. Miller December 3, 2008 20

Proposition 7.3 For A ⊆ ω the following are equivalent:
(1) A is recursively enumerable.
(2) A is the domain of a partial recursive function.
(3) A is Σ0

1.
(4) A is finite or A has a one-to-one recursive enumeration.
(5) There exists e such that A = We.

Proof
(1) → (2): Given a recursive enumerable listing an describe a partial

recursive function f by:

• input x

• look for x on the list: a0, a1, a2, . . .

• halt if you find it, otherwise continue looking forever.

(2)→ (1): Define ψe,s(x) ↓= y to mean that

e, x, y < s ∧ ∃z < s (Q(e, x, z) ∧ g(z) = y).

See Theorem 4.2. The predicate

P (e, x, y, s) ≡ ψe,s(x) ↓= y

is primitive recursive. It roughly says that the algorithm coded by e with
input x terminates in fewer than s steps and outputs y. (Actually z is a
sequence coding the values of the variables and the line number at each
step.) If A is the domain of ψe, then either A is empty or let x0 ∈ A be
arbitrary and define a recursive enumeration of A by

an =

{
x if n = 〈x, y, s〉 and ψe,s(x) ↓= y
x0 otherwise.

(1) → (3): Let f : ω → ω be recursive and have range A. Let R be the
graph of f , then y ∈ A iff ∃x R(x, y).

(3) → (2): Suppose x ∈ A iff ∃y R(x, y). Then f(x) = µy R(x, y) is
partial recursive with domain A.

(1) → (4): Given {an : n < ω} a recursive enumeration of A, define a
recursive enumeration {bn : n < ω} by:

bn+1 = am where m is the least such that am /∈ {bi : i ≤ n}.
(2)↔ (5): by definition.

QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 21

Definition 7.4 For A ⊆ ω, define:

1. A is recursive iff its characteristic function χA is recursive.

2. A = ω \ A the complement of A,

3. A is Π0
1 iff A is Σ0

1, and

4. ∆0
1 = Σ0

1 ∩ Π0
1.

Proposition 7.5 For A ⊆ ω the following are equivalent:
(1) A is recursive.
(2) A and A are both recursively enumerable.
(3) A is ∆0

1.
(4) A is finite or A has a strictly increasing recursive enumeration.

Proof
(1)→ (2): It is easy to see that recursive implies recursively enumerable

and that the complement of a recursive set is recursive.
(2)→ (1): Input x. Effectively list A and A simultaneously until x shows

up.
(2) iff (3): Trivial.
(1)→ (4): Take an to be the nth element of A.
(4)→ (1): Let {an : n < ω} be a strictly increasing recursive enumer-

ation of A. The following algorithm computes the characteristic function of
A:

• Input x.

• Find n such that an > x.

• Then x ∈ A iff x ∈ {ai : i < n}.

QED

Example 7.6 There exists an r.e. set K which is not recursive.

Proof
K = {e : ψe(e) ↓}

If K is the domain of ψe, then e ∈ K iff e /∈ K.
QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 22

Proposition 7.7 Every infinite r.e. set contains an infinite recursive set.

Proof
Given {an : n < ω} a recursive enumeration of A, define a strictly increas-
ing recursive enumeration {bn : n < ω} by:

b0 = a0 and
bn+1 = am where m is the least such that am > bn.

QED

Proposition 7.8 If A and B are r.e. sets, then A ∩B is r.e. and A ∪B is
r.e. If A and B are recursive sets, then A∩B, A∪B, and A are all recursive
sets.

Proof
Domain of f + g is the intersection of domain f and domain g. Enumerate
A ∪B by x2n = an and x2n+1 = bn.
QED

Exercise 7.9. Suppose that V ⊆ ω is r.e. For each n define Vn = {x :
〈n, x〉 ∈ V }. Prove that ∪nVn is r.e.

Exercise 7.10. Prove that every nonempty recursively enumerable set A
is the range of a primitive recursive function. Extra Credit: prove that not
every infinite recursively enumerable set is the range of a one-to-one primitive
recursive function.

Exercise 7.11. (a) For a partial function f : ω → ω prove that f is partial
recursive iff its graph is recursively enumerable.

(b) For a partial recursive h prove there is a partial recursive g with
dom(g) ⊇ range(h) such that

∀y ∈ range(h) h(g(y)) = y.

(c) Give an example for (b) for which g cannot be total.

Exercise 7.12. Consider a partial function f : ω → ω and the three set:

1. dom(f) ⊆ ω

2. graph(f) ⊆ ω × ω

Lecture notes in Recursion Theory A. Miller December 3, 2008 23

3. range(f) ⊆ ω.

For each of the sets (1), (2), (3) could be:
(a) recursive or
(b) recursively enumerable but not recursive.

For each of the 8 possibilities, either give an example of such an f or prove
there is no such f . Extra credit: consider the third possibility (c) not recur-
sively enumerable.

Exercise 7.13. If f : ω → ω, then fn denotes f applied n times; e.g.,
f 3(0) = f(f(f(0))). Give an example of a (total) recursive f such that
{fn(0) : n ∈ ω} is not recursive.

Exercise 7.14. Define Ve = {x : 〈e, x〉 ∈ V }. Prove or disprove:

1. ∃V recursively enumerable such that {Ve : e ∈ ω} is the set of all
recursive sets.

2. ∃V recursive such that {Ve : e ∈ ω} is the set of all recursive sets.

3. ∃V r.e. such {Ve : e ∈ ω} is the set of all nonempty r.e. sets.

4. ∃f a recursive function such that for all e We 6= ∅ implies f(e) ∈ We.

5. ∃f partial recursive such that for all e We 6= ∅ implies f(e) ↓∈ We.

Exercise 7.15 Prove there exists a recursive function f : ω → ω such that
for every e

We infinite → (ψf(e) : ω → We is total, one-to-one, and onto).

For the definition of We see Definition 7.2.

8 Separation and reduction

Example 8.1 There exists disjoint r.e. sets K0 and K1 which are recursively
inseparable, i.e., there is not exists a recursive set R ⊆ ω with K0 ⊆ R and
K1 ⊆ R.

Lecture notes in Recursion Theory A. Miller December 3, 2008 24

Proof
K0 = {e : ψe(e) ↓= 0} and K1 = {e : ψe(e) ↓= 1}

QED

Definition 8.2 For any Γ ⊆ P (ω) define Γ̃ to be the set of all A for A ∈ Γ

and define ∆ = Γ ∩ Γ̃. Sep(Γ) is the property that for every A,B ∈ Γ
disjoint there exists C ∈ ∆ with A ⊆ C and B ⊆ C. Red(Γ) (the reduction
principle) is the property that for every A,B ∈ Γ there exists disjoint A′ ⊆ A
and B′ ⊆ B with A′, B′ ∈ Γ and A ∪B = A′ ∪B′.

Proposition 8.3 Red(Γ) implies Sep(Γ̃).

Proof
Apply reduction to the complements.
QED

Proposition 8.4 Red(Σ0
1) and hence Sep(Π0

1).

Proof
A = {x : ∃u R(u, x)} and B = {x : ∃v S(v, x)}. Put

x ∈ A′ ↔ ∃u R(u, x) and ∀v ≤ u¬S(v, x)

x ∈ B′ ↔ ∃v S(v, x) and ∀u < v¬R(u, x)

QED
In example 8.1 it follows that K0 and K1 cannot be separated by disjoint

Π0
1 sets B0 and B1 because such a B0 and B1 could be recursively separated.

Exercise 8.5. Prove Sep(Γ) for Γ = {A ∪B : A ∈ Σ0
1, B ∈ Π0

1}.

9 Many-one reducibility

Definition 9.1 For A,B ⊆ ω define:

1. A ≤m B iff there exists a recursive function f such that

∀x ∈ ω x ∈ A↔ f(x) ∈ B.

Equivalently, f−1(B) = A. Also equivalently f(A) ⊆ B and f(A) ⊆ B.

Lecture notes in Recursion Theory A. Miller December 3, 2008 25

2. A ≤1 B iff the f in the definition of ≤m can be taken to be one-to-one.

Proposition 9.2 1. A ≤1 B implies A ≤m B.

2. A ≤m B iff A ≤m B and similarly for ≤1.

3. ≤m and ≤1 are transitive and reflexive.

4. A ≤m B and B is recursive, then A is recursive.

5. A ≤m B and B is recursively enumerable, then A is recursively enu-
merable.

Proof
Most of these are trivial. Note that f reduces A to B then it also reduces A
to B. Transitivity follows by composition.

For (4) if f witnesses A ≤m B, i.e.,

∀n n ∈ A iff f(n) ∈ B,

then χA(n) = χB(f(n)).
For (5) suppose that

n ∈ B iff ∃m R(n,m)

and
∀n n ∈ A iff f(n) ∈ B.

Then
∀n n ∈ A iff ∃m R(f(n),m).

QED

Definition 9.3 1. A ≡m B iff A ≤m B and B ≤m A.

2. m− deg(A) = {B : A ≡m B}, the many-one degree of A.

3. A ≡1 B iff A ≤1 B and B ≤1 A.

4. 1− deg(A) = {B : A ≡1 B}, the one degree of A.

Exercise 9.4 Suppose A and B are infinite r.e. sets and A ≤1 B. Show
there is a computable one-to-one reduction of A to B which maps A onto B.

Lecture notes in Recursion Theory A. Miller December 3, 2008 26

10 Rice’s index Theorem

Recall that {We : e ∈ ω} is the standard listing of all r.e. sets (7.2).

Example 10.1 Empty = {e : We = ∅} is not recursive.

Proof
Define

θ(e, x) =

{
↓= 0 if e ∈ K
↑ otherwise

By the S-n-m theorem there exists f recursive such that

∀e, x ψf(e)(x) = θ(e, x)

But then e ∈ K iff Wf(e) 6= ∅ iff f(e) /∈ E so K ≤m E and therefore E not
recursive.
QED

Proposition 10.2 (Rice) If A is a nontrivial index set, then A is not recur-
sive.

Proof
This is like the proof for Empty. Without loss of generality assume the index
of the empty function is in A and the index e0 of some nonempty partial
computable function is not in A. Define

θ(e, x) =

{
ψe0(x) if e ∈ K
↑ otherwise

By the S-n-m theorem there exists f recursive such that

∀e, x ψf(e)(x) = θ(e, x)

But then
e ∈ K iff f(e) /∈ A

and therefore A is not recursive.
QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 27

11 Myhill’s recursive permutation Theorem

Theorem 11.1 (Myhill) A ≤1 B and B ≤1 A iff there exists a recursive
bijection π : ω → ω with π(A) = B.

Proof
The Schroeder-Bernstein Theorem says: if there exists a 1-1 f : A→ B and
1-1 g : B → A, then there exists a bijection h : A → B. One way to prove
this is to assume A and B are disjoint and define a bipartite graph on the
vertices A ∪ B. Put a ∈ A connected to b iff either f(a) = b or g(b) = a.
As f and g are 1-1 the order of every vertex is either 1 or 2. The connected
components of this graph come in 4 types, see figure 2. Note that in Type 1
the point a ∈ A is not in the range of g and in Type 2 the point b ∈ B is not
in the range of f . Type 4 components are infinite in both ‘directions’ while
Type 3 is the only finite component.

To get h simply define h = f on any component of type 1,3, or 4 and
h = g−1 on components of type 2.

The proof of Myhill’s theorem is similar except we may never know exactly
which type of component we are looking at.

Suppose f and g are 1-1 recursive functions reducing A to B and B to A.
Effectively construct a sequence πs of bijections with

1. πs : Ds → Es is a bijection.

2. Ds and Es are finite subsets of ω.

3. πs ⊆ πs+1.

4. n ∈ D2n and n ∈ E2n+1.

5. if πs(n) = m, then either m = fgfg · · · fn or n = gfgf · · · gm.

In the condition 5 we have dropped the parentheses to make it more
readable.

If we then take π = ∪sπs, then π is a recursive bijection since we effectively
constructed the sequence. It takes A to B, because suppose π(n) = m. Then
if m = fgfg · · · fn

n ∈ A iff fn ∈ B iff gfn ∈ A iff fgfn ∈ B iff · · · iff m = fgfg · · · fn ∈ B

Lecture notes in Recursion Theory A. Miller December 3, 2008 28

A B

a H
H

H
H

H
HHj

b
f

�
�

�
�

�
���

b
g

H
H

H
H

H
HHj

b
f

�
���

����

b
g

b
HHHH

HHHj...

Type 1

A B

b�
�

�
�

�
���

b
g

H
H

H
H

H
HHj

b
f

�
�

�
�

�
���

b
g

H
HHH

HHHj

b
f

����
����

b
...

Type 2

A B

-b f
����

����

b
g

-b f
��

������

b
g

-b f
����

����

b
g

-b f J
J

J
J

J
J

J
J

J
J]

bg

Type 3

A B
...

����
����

b
g

-b f
��

������

b
g

-b f
����

����

b
g

-b f

...

Type 4

Figure 2: Schroeder-Bernstein connected components

Lecture notes in Recursion Theory A. Miller December 3, 2008 29

-c f
�

�
�

�
�

�
���

c
g

-c f
�

�
�

�
�

�
���

c
g

-c f
�

�
�

�
�

�
���

c
g

-c f J
J

J
J

J
J

J
J

J
J

JJ]

cg

n0

n1

n2

n3

m0

m1

m2

m3

Figure 3: Myhill back and forth

similarly if n = gfgf · · · gm

m ∈ B iff gm ∈ A iff fgm ∈ B iff gfgm ∈ A iff · · · iff n = gfgf · · · gm ∈ A

either way n ∈ A iff m ∈ B.
At stage s=0 we take π0 to be the empty function.
At stage s+1 suppose we are given πs : Ds → Es. If s = 2n we try

to extend πs to include n ∈ Ds+1. If its already there we let πs+1 = πs.
Otherwise consider the following sequences:

Let n = n0, fn0 = m0 and in general f(nk) = mk and g(mk) = nk+1, see
figure 3.

Case 1. For some k we have that mk /∈ Es.
In this case we put πs+1 = πs ∪ {〈n0,mk〉}.

Case 2. Not case 1.

In this case the connected component of the graph (see Figure 2) must be
of Type 3, i.e., a finite closed loop. Suppose g(mk) = n0. But by condition 5 if
all the mk are in Es, then they must map via π−1

s to the set {n0, n1, . . . , nk}
(although not in any particular order). But this is a contradiction, since
n = n0 /∈ Ds. Hence Case 2 cannot happen.

The construction at stage s+1 where s = 2n + 1 is entirely analogous
except we make sure n ∈ Es+1.

Lecture notes in Recursion Theory A. Miller December 3, 2008 30

QED

Exercise 11.2. Define

Q = {〈e1, e2〉 : e1 ∈ We2 , e2 ∈ We1 , and e1 6= e2}.

Prove that Q is creative.

12 Roger’s adequate listing Theorem

Theorem 12.1 (Rogers) Suppose ρ : ω → ω is partial recursive and we
define ρe(x) = ρ(e, x). Suppose

1. ρ is universal, i.e., {ρe : e ∈ ω} includes all partial recursive functions.

2. ρ satisfies padding, i.e., there exists one-to-one recursive p : ω×ω → ω
such that

∀e, n ρe = ρp(e,n)

3. ρ satisfies S-1-1, i.e., there exists a recursive S : ω × ω → ω such that

∀e1, e2, x ρe1(〈e2, x〉) = ρS(e1,e2)(x)

Then there exists a recursive bijection π : ω → ω such that

∀e ψe = ρπ(e)

Proof
Let ψ = ρe0 . Using padding and S-1-1 for ρ we can find a 1-1 recursive
function f(e) = p(S(e0, e)) such that

∀e ψe = ρS(e0,e) = ρf(e)

similarly there is a 1-1 recursive function g such that

∀e ρe = ψg(e).

By the proof of Theorem 11.1 there is a recursive bijection π : ω → ω
with the property that whenever π(n) = m then either m = fgfg · · · fn or
n = gfgf · · · gm. But

ψn = ρfn = ψgfn = . . . = ρfgfg···fn = ρm

Lecture notes in Recursion Theory A. Miller December 3, 2008 31

and
ρm = ψgm = ρfgm = . . . = ψgfgf ···gm = ψn

so in either case ψn = ρπ(n).
QED

Exercise 12.2. Find an example of a partial recursive ρ which is universal
but fails to satisfy padding. Find an example which is universal, satisfies
padding but fails to satisfy S-1-1. (S-1-1 implies padding see Soare p.25-26.)

13 Kleene’s Recursion Theorem

Theorem 13.1 (Kleene - Recursion Theorem) For any recursive function f
there exists an e with ψe = ψf(e).

Proof
Define a partial recursive function θ by

θ(u, x) = ψψu(u)(x) = ψ(〈ψ(〈u, u〉), x〉)

By padding-S-1-1 we can find a (one-to-one) recursive function d : ω → ω
such that

∀u ψd(u)(x) = θ(u, x)

Let v be an index for f ◦ d, i.e.,

∀x ψv(x) = f(d(x))

Put e = d(v) then

ψe(x) = ψd(v)(x) = θ(v, x) = ψψv(v)(x) = ψf◦d(v)(x) = ψf(e)(x)

QED
From the proof we can get an infinite recursive set of fixed points e, since

we can take any v′ such that ψv′ = f ◦d and set e′ = d(v′). Also note that our
fixed point e is obtained effectively from an index for f , so given a recursive
f : ω × ω → ω if we let fn : ω → ω be defined by fn(x) = f(n, x) then we
get a fixed points en

ψen = ψfn(en)

and the function h(n) = en is recursive. This is called the recursion theorem
with parameters:

Lecture notes in Recursion Theory A. Miller December 3, 2008 32

Theorem 13.2 For any recursive function f : ω2 → ω there exists a 1-1
recursive function h : ω → ω such that ψh(x) = ψf(x,h(x)) for all x.

Example 13.3 There are infinitely many e such that ψe(0) = e. There are
infinitely many e such that We = {e}.

Proof
Define θ(e, x) = e for all e. By the S-n-m Theorem there exists a recursive f
such that

∀e, x ψf(e) = θ(e, x)

By the Recursion Theorem there are infinitely many fixed points for f , i.e.,

ψe = ψf(e)

and for each of these ψe is the constant function e.
Define a partial recursive function θ by

θ(e, x) =

{
↓= 0 if e = x
↑ otherwise

By S-n-m theorem there is a recursive function g with ψg(e)(x) = θ(x). By
the definition of θ we see that for every e:

Wg(e) = {e}

By the Recursion Theorem there are infinitely many fixed points for g and
for any of them

We = Wg(e) = {e}.

Exercise 13.4. Prove:
(a) for every f, g recursive functions, there exists e1 and e2 such that

ψf(e1) = ψe2 and ψg(e2) = ψe1
(b) ∃e1 6= e2 We1 = {e2}, We2 = {e1}
(c) ∃e1 > e2 > e3 We1 = {e2}, We2 = {e3}, We3 = {e1}

Exercise 13.5. Suppose V ⊆ ω is recursively enumerable. Show there
exists infinitely many e such that We = Ve where Ve = {n : 〈e, n〉 ∈ V }.

Exercise 13.6. Prove there is a strictly increasing recursive function f :
ω → ω such that Wf(n) = {n+ f(n)} for all n.

Lecture notes in Recursion Theory A. Miller December 3, 2008 33

Example 13.7 (Smullyan) For any recursive functions f(x, y) and g(x, y)
there exists a, b ∈ ω such that

ψf(a,b) = ψa and ψg(a,b) = ψb

Proof
By the recursion theorem

∀x ∃y ψg(x,y) = ψy

but since the fixed point y is obtained effectively from x and an index for g
there exists a recursive function h such that

∀x ψg(x,h(x)) = ψh(x)

Apply the fixed point theorem to f(x, h(x)) there exists a ∈ ω such that

ψf(a,h(a)) = ψa

Letting b = h(a) does the job.
QED

Exercise 13.8. Prove
(a) ∃e1 < e2 < e3 We1 = {e2}, We2 = {e3}, We3 = {e1}
(b) ∃e1 6= e2 We1 = {e1, e2} = We2

(c) ∃e1 < e2 < e3 We1 = {e2, e3}, We2 = {e1, e3}, We3 = {e1, e2}

14 Myhill’s characterization of creative set

Definition 14.1 A r.e. set A is m-complete iff B ≤m A for every r.e. B.
Similarly 1-complete.

Definition 14.2 An r.e. set C is creative iff there exists a recursive function
q ∈ ωω such that for every e

We ∩ C = ∅ → q(e) /∈ C ∪We.

Theorem 14.3 (Myhill) For C ⊆ ω r.e. the following are equivalent:

1. C is creative

Lecture notes in Recursion Theory A. Miller December 3, 2008 34

2. C ≡1 K

3. C is 1-complete

4. C is m-complete

Proof
(2) → (3): It is enough to see that K is 1-complete, since then for any B
r.e. we would have B ≤1 K ≤1 A. Define a partial recursive function ρ as
follows:

ρ(e, x) =

{
↓= 0 if e ∈ B
↑ otherwise

ρ is partial recursive because we enumerate B looking to see if e ever turns
up, if not the computation never halts. Using the 1-1-S-1-1 Theorem there
exists a 1-1 recursive function f such that

∀e, x ψf(e)(x) = ρ(e, x) =

{
↓= 0 if e ∈ B
↑ otherwise

Then e ∈ B iff ψf(e)(f(e)) ↓ iff f(e) ∈ K.
(3)→ (4): Trivial
(4)→ (1): The creativity of K is witnessed by the identity function, i.e.,

We ∩K = ∅ → e /∈ We ∪K.

SupposeK ≤m A is witnessed by the function f . Then there exists a recursive
function q such that

for all e Wq(e) = f−1(We)

(Use S-1-1 to get ψq(e) = ψe ◦ f .) Then

We ∩ A = ∅ →

f−1(We) ∩K = ∅ →

Wq(e) ∩K = ∅ →

q(e) /∈ f−1(We) ∪K →

f(q(e)) /∈ We ∪ A

so f ◦ q witnesses the creativity of A.

Lecture notes in Recursion Theory A. Miller December 3, 2008 35

(1)→ (2):
Claim The creativity function for A can be taken to be 1-1.
Proof
Given any creativity function d for A. Construct a recursive function f such
that

∀x Wf(x) = Wx ∪ {d(x)}.

To do this use

∀x, y ψf(x)(y) = ρ(x, y) =

{
↓= 0 if y ∈ Wx or y = d(x)
↑ otherwise

Now we get a strictly increasing creativity function d̂ recursively as follows:
Input e put e = e0 and effectively generate the sequence es+1 where Wes+1 =
Wes ∪ {d(es)}, i.e. put es+1 = f(es).

Search for the least s such that either

1. d(es) > d̂(e− 1) or

2. d(es) = d(et) for some t < s.

If the first happens put d̂(e) = d(es). If the second happens, then we know it
is not the case that We ⊆ A, because then Wes are all subsets of A and the
d(es) are all distinct. So in this case we may put d̂(e) to anything we like:
e.g. put d̂(e) = d̂(e− 1) + 1.

This proves the Claim.
QED

Now we show that K ≤1 A. Define a partial recursive function θ as
follows:

ψf(n,x(y) = θ(n, x, y) =

{
↓= 0 if n ∈ K and y = d̂(x)
↑ otherwise

It follows that

Wf(n,x) =

{
{d̂(x)} if n ∈ K
∅ otherwise

By the uniform proof of the recursion theorem and by padding we get a 1-1
recursive sequence n 7→ en of fixed points so that

∀n Wf(n,en) = Wen =

{
{d̂(en)} if n ∈ K
∅ otherwise

Lecture notes in Recursion Theory A. Miller December 3, 2008 36

But then n ∈ K iff d̂(en) ∈ A. So K ≤1 A.
QED

Most naturally occurring nonrecursive r.e. sets are m-complete.

Exercise 14.4. Prove or disprove: there exists a creative set A and a
recursive function q : ω → ω such that for every e

We ∩ A finite → q(e) /∈ We ∪ A.

Exercise 14.5. Prove that a r.e. set A is creative iff there exists a com-
putable f such that for every e

1. We ∩ A = ∅ → f(e) /∈ We ∪ A and

2. We ∩ A 6= ∅ → f(e) ∈ We ∩ A.

15 Simple sets

Definition 15.1 A is simple iff A is r.e. , A is infinite, and A does not
contain an infinite r.e. set.

Theorem 15.2 (Post) There exists a simple set.

Proof
Define a recursive sequence As ⊆ s of increasing finite sets as follows. A0 = ∅.
At stage s + 1 find the least e < s (if any) such that We,s ∩ As = ∅ and
∃x > 2e x ∈ We,s. Put As+1 = As ∪ {x} for the least e and x for which this
is true. If this happens we say that e has acted at stage s + 1. If there no
such e, then put As+1 = As.

The set A = ∪sAs is simple. Note that each e can act at most once.
Hence if We is infinite and We ∩ A = ∅, eventually there will come a stage s
where ∃x > 2e x ∈ We,s and all smaller e’s which will ever act have already
acted at a previous stage. But then e will act, which is a contradiction.

Also we see that A is infinite because for all e |A∩ 2e| ≤ e since the only
e′ which can put an x into A with x ≤ 2e are those e′ with e′ < e.
QED

Exercise 15.3. Are there always recursive Skolem functions? Prove or
disprove:

Lecture notes in Recursion Theory A. Miller December 3, 2008 37

(a) Given a recursive R ⊆ ω2 such that ∀x∃y R(x, y) there exists a
recursive f such that ∀x R(x, f(x))

(b) Given a recursive R ⊆ ω3 such that ∀x∃y∀z R(x, y, z) there exists a
recursive f such that ∀x∀z R(x, f(x), z)

Hint: Think ”Simple”.

Exercise 15.4. Suppose A is a simple set and A = {an : n ∈ ω} is a 1-1
recursive enumeration of A. Prove there exists infinitely many n such that
Wan = {am : m > n}. (Hint: it is easier to show there exists e ∈ A such
that We = {e}.)

Exercise 15.5 Show that

(a) If A ≤1 B and B is simple, then A is simple or A is finite.

(b) If A and B are simple, then A ∪B is simple.

(c) If A is simple, b ∈ A, and B = A ∪ {b}, then B <1 A and if B ≤1

C ≤1 A then C ≡1 B or C ≡1 A.

16 Oracles

Definition 16.1 A ≤T B or A is Turing reducible to B. Add to the UR-
Basic programming language statements of the form:

Let y = χB(x)

for any variables x, y. This programming language is called Oracle UR-Basic.
Then A ≤T B iff there is an Oracle UR-Basic program with Oracle for B
which computes the characteristic function χA of A.

17 Dekker deficiency set

Proposition 17.1 (Dekker Deficiency Set) For every r.e. set A which is
not recursive there exists a simple set B with B ≡T A.

Proof
Let {an : n ∈ ω} be a 1-1 recursive enumeration of A. Define

B = {n : ∃m > n am < an}

Lecture notes in Recursion Theory A. Miller December 3, 2008 38

It is easy to see that B is r.e.
B is infinite: Otherwise there would be an N such that an+1 > an for all

n > N and then A would be recursive.
A ≤T B: Input x. Find n ∈ B such that an > x. Then x ∈ A iff

x ∈ {ai : i < n}.
B does not contain an infinite recursive set: Suppose R ⊆ B is an infinite

recursive set. But then the argument we just gave for A ≤T B shows that
A ≤T R which would make A recursive.

B ≤T A: Input n. Using an Oracle for A check if

{ai : ai < an and i < n} = A ∩ {x : x < an}

if they are equal, then n /∈ B, otherwise n ∈ B.
QED

Exercise 17.2. (From Cooper) Define B ⊆ ω is intro-reducible iff B ≤T C
for every infinite C ⊆ B. Prove that for every A there exists B ≡T A intro-
reducible.

18 Turing degrees and jumps

Definition 18.1 For A ⊆ ω define the Turing degree of A to be

a = deg(A) = {B : B ≡T A}.

Let D = {deg(A) : A ⊆ ω} be the Turing Degrees. (D,≤) is the partial
order where a ≤ b iff A ≤T B.

Definition 18.2 For σ ∈ 2<ω and e, x, y, s ∈ ω we write

{e}σs (x) ↓= y

to mean that the eth oracle machine with input x and using σ to answer Oracle
questions, converges in less than s steps and outputs y. We also require that
e, x, y < s and that in this computation the oracle is not asked about any n
such that n /∈ dom(σ) or n ≥ s.

Proposition 18.3 The predicate O(σ, e, x, y, s) defined by

O(σ, e, x, y, s) iff {e}σs (x) ↓= y

is primitive recursive.

Lecture notes in Recursion Theory A. Miller December 3, 2008 39

Definition 18.4 For A ⊆ ω the jump of A is defined by

A′ = {e : ∃s eA�s
s (e) ↓}

Proposition 18.5 (1) A ≤T B implies A′ ≤1 B
′.

(2) A <T A
′

Proof
(1) Define

θ(e, x) =

{
↓= 0 if eA(e) ↓
↑ otherwise

Then θ is partial recursive in A and since A ≤T B we have that θ is partial
recursive in B. By the 1-1-S-1-1 Theorem relativized to B there exists a 1-1
recursive function f such that

∀e, x {f(e)}B(x) = θ(e, x).

But then e ∈ A′ iff {e}A(e) ↓ iff {f(e)}B(f(e)) ↓ iff f(e) ∈ B′.
(2) To see A ≤1 A

′ construct a 1-1 recursive function f so that {f(n)}A(?)
has the same computation on any input and it converges iff n ∈ A. Then
n ∈ A iff f(n) ∈ A′. To see that A′ 6≤T A, suppose that it is. Define
f = 1 − χA′ . Then since f ≤T A′ ≤T A there is an e0 with {e0}A = f . But
then e0 ∈ A′ iff e0 /∈ A′.
QED

Corollary 18.6 If A ≡T B, then A′ ≡T B′. Hence, letting a′ ∈ D be the
Turing degree of A′ is well-defined and a < a′ for every a ∈ D.

Similarly, a′′ is the jump of the jump of a, and a(n) is n jumps of a.

19 Kleene-Post: incomparable degrees

Definition 19.1 a|b iff not a ≤ b and not b ≤ a. I.e. the degrees a and b
are Turing incomparable.

Proposition 19.2 (Kleene-Post) There exists a, b ∈ D with a|b.

Lecture notes in Recursion Theory A. Miller December 3, 2008 40

Proof
Construct sequences (σs ∈ 2<ω : s ∈ ω), (τs ∈ 2<ω : s ∈ ω) with the

property that σs ⊆ σs+1 and τs ⊆ τs+1 for each s. For s = 0 take τs and σs
to be the empty sequence.

At stage s+ 1 we are given τs and σs and we do as follows:

Case s = 2e:
Let n = |τs|.
Case a. There exists σ ⊇ σs such that {e}σ(n) ↓. In this case put σs+1 = σ

and put τs+1 = τsi where i = 0, 1 whichever is different from {e}σ(n).
Case b. No such σ. Put σs+1 = σs and τs+1 = τs0.

Case s = 2e+ 1:
Let n = |σs| and proceed similarly to s = 2e with the roles of σs and τs

reversed.
This ends the construction. We put A = ∪s∈ωσs and B = ∪s∈ωτs.

QED
It is easy to see that the entire construction is recursive in o′ and hence

there are incomparable Turing degrees beneath o′.

Proposition 19.3 (Kleene-Post) For every a ∈ D \ {o} there exists b ∈ D
with a|b.

Let deg(A) = a. Construct (τs ∈ 2<ω : s ∈ ω) as follows. τ0 = 〈〉.
At stage s+ 1 we are given τs.

Case s = 2e. Let n = |τs|. Take i = 0 or i = 1 so that i 6= {e}A(n). Put
τs+1 = τsi.

Case s = 2e+ 1.
Case a. There exists n < ω, ρ1, ρ2 with τs ⊆ ρi and

{e}ρ1(n) ↓6= {e}ρ2(n) ↓

In this case we put τs+1 = ρ1 or τs+1 = ρ2 which ever that case is that

{e}τs+1(n) 6= A(n).

Case b. There is no such n and ρi. Put τs+1 = τs0.

Lecture notes in Recursion Theory A. Miller December 3, 2008 41

This ends the construction. Now we check that B = ∪sτs is Turing
incomparable to A. The cases 2e easily show that B 6≤T A. Suppose A ≤T B
and choose e so that {e}B = A and consider stage s+1 where s = 2e+1. In
case (a) we get that {e}B(n) 6= A(n) so that it is impossible. Now we show
that case (b) cannot happen. Define

f(n) = i iff ∃τ ⊇ τs{e}τ (n) ↓= i

Note that f is well-defined because we are in case (b) and f is total because
we are assume that {e}B is the characteristic function of A. Hence f which is
recursive is the characteristic function of A, which contradicts the assumption
that A is not recursive.
QED

Exercise 19.4. Prove that for every countable A ⊆ D \ {0} there exists
b ∈ D such that a|b for all a ∈ A.

20 The join

Definition 20.1 A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}.

Exercise 20.2. Prove
(a) A ≤T A⊕B and B ≤T A⊕B
(b) A⊕B ≡T B ⊕ A
(c) (A⊕B)⊕ C ≡T A⊕ (B ⊕ C)
(d) if A ≤T C and B ≤T C, then A⊕B ≤T C
(e) if A ≤T Â and B ≤T B̂, then A⊕B ≤T Â⊕ B̂

Definition 20.3 a ∨ b = deg(A ⊕ B) is the join or least upper bound of a
and b.

Exercise 20.4 Show that if A and B are simple, then A⊕B is simple.

Exercise 20.5. (Young) Suppose A and B are simple and are ≤1 incom-
parable. Prove that they have no join with respect to ≤1. That is, there is
no C such

Lecture notes in Recursion Theory A. Miller December 3, 2008 42

1. A ≤1 C and B ≤1 C and

2. for all D if A ≤1 D and B ≤1 D, then C ≤1 D.

Note that A ⊕ B does not work and nothing else does either. Hint: Use
exercises 20.4, 15.5, and 9.4.

21 Meets

Meets, a ∧ b, in the Turing degrees may or may not exist.

Proposition 21.1 (Kleene-Post) There exists a, b ∈ D \ {o} with a ∧ b = 0
i.e., for all c if c ≤ a and c ≤ b then c = o.

Proof
As before construct sequences (σs ∈ 2<ω : s ∈ ω), (τs ∈ 2<ω : s ∈ ω) with the
property that σs ⊆ σs+1 and τs ⊆ τs+1 for each s. For s = 0 take τs and σs
to be the empty sequence.

At stage s+ 1 we are given τs and σs and we do as follows:

Case s = 3e. Let n = |σs|. Let i = 0 or i = 1 so that ψe(n) 6= i. Put
σs+1 = σsi.

Case s = 3e+ 1. Similar to 3e but for τs+1.

Case s = 3〈e1, e2〉+ 2.
Case a. There exists n < ω, σ ⊇ σs, and τ ⊇ τs such that

{e1}σ(n) ↓6= {e2}τ (n) ↓

put σs+1 = σ and τs+1 = τ .
Case b. Not case a. Put τs+1 = τs and σs+1 = σs.

This ends the construction. We put A = ∪sσs and B = ∪sτs. The stages
3e, 3e + 1 guarantee that neither A nor B is recursive. Now suppose that
C ≤T A and C ≤T B. This will be witnessed by a pair e1 and e2. At stage
s = 3〈e1, e2〉+ 2 it must have been that Case a. failed since we assume that

{e1}A = {e2}B = C.

Lecture notes in Recursion Theory A. Miller December 3, 2008 43

But then we may define a total recursive function f by

f(n) = i iff ∃σ ⊇ σs {e1}σ(n) ↓= i

and f must be the characteristic function of C and hence C is recursive.
QED

Proposition 21.2 (Kleene-Post) For every c ∈ D there exists a, b ∈ D with
a ∧ b = c and a|b, i.e., a > c, b > c, and for all d if d ≤ a and d ≤ b then
d ≤ c.

Proof
This is a relativization of the above argument. Construct A0 and B0 so that
for every e

{e}C 6= A0 ⊕ C and {e}C 6= B0 ⊕ C

and
{e1}A0⊕C = {e2}B0⊕C = D → D ≤T C

Then take A = A0 ⊕ C and B = B0 ⊕ C.
QED

Exercise 21.3. Find a minimal triple, i.e., a, b, c ∈ D \ {0} such that

∀d (d ≤ a and d ≤ b and d ≤ c)→ d = 0

but no 2 are a minimal pair.
Hint: Construct X, Y, Z non recursive so that

({e0}X⊕Y = {e1}Y⊕Z = {e2}X⊕Z = D)→ D ≤T 0.

Exercise 21.4. Prove:
(a) There exists A ⊆ ω such that An 6≤T Ân for every n where

An = {x : 〈n, x〉 ∈ A} and Ân = {〈m,x〉 : m 6= n and 〈m,x〉 ∈ A}.

(b) There exists Turing degrees ar for r ∈ Q such that for all r, s ∈ Q
(r < s iff ar < as). Hint: use part (a).

(c)* Same as part (b) but also ar < 0′ for all r.

Lecture notes in Recursion Theory A. Miller December 3, 2008 44

Exercise 21.5. Prove that for every b ∈ D with b > o there exists a ∈ D
with a > o and a ∧ b = 0.

Exercise 21.6. Prove that for every c ∈ D with c ≥ o′ that there exists
incomparable degrees a and b with a ∧ b = 0, and a ∨ b = c.

Hint: one way to code a set C into A⊕B is to use boot-strapping. Define

x2n = µx > x2n−1 A(x) = 1

x2n+1 = µx > x2n B(x) = 1

n ∈ C iff xn is even.

22 Spector: exact pairs

Proposition 22.1 (Spector) Given (an : n < ω) in D with an < an+1 for
all n there exists b, c ∈ D with

(1) an ≤ b and an ≤ c for all n and
(2) for all d ∈ D if d ≤ b and d ≤ c then there exists n with d ≤ an.

Proof
Let deg(An) = an and set A = {〈n, x〉 : n < ω, x ∈ An}. The key to this
construction is to make B and C have the property that for each n

Bn =∗ An =∗ Cn

where Bn = {x : 〈n, x〉 ∈ B} and Cn = {x : 〈n, x〉 ∈ C}. The symbol
X =∗ Y means “equal except for a finite set”.

As before construct sequences (σs ∈ 2<ω : s ∈ ω), (τs ∈ 2<ω : s ∈ ω) with
the property that σs ⊆ σs+1 and τs ⊆ τs+1 for each s. For s = 0 take τs and
σs to be the empty sequence.

At stage s + 1 we will extend σs and τs so as to agree with Ai for i < s
on new elements of their domain. Define

fs = σs ∪ {〈〈i, x〉, j〉 : 〈i, x〉 /∈ dom(σs), i < s, and Ai(x) = j}

gs = τs ∪ {〈〈i, x〉, j〉 : 〈i, x〉 /∈ dom(τs), i < s, and Ai(x) = j}
Note that fs is a partial function extending σs which agrees with the char-
acteristic function of each Ai for i < s except possible on the (finite) domain
of σs. Similarly gs.

Lecture notes in Recursion Theory A. Miller December 3, 2008 45

6

-

s

�
�

dom(σs)

dom(σ)

Figure 4: σ must agree with A on the shaded region.

Let s = 〈e1, e2〉.

Case a. There exists n < ω, σ ⊇ σs and τ ⊇ τs such that fs ∪ σ is a function
(i.e., they are compatible - see Figure 4) and gs ∪ τ is a function and

{e1}σ(n) ↓6= {e2}τ (n) ↓ .

Put σs+1 = σ and τs+1 = τ .

Case b. Not Case a. Put σs+1 = σs and τs+1 = τs.

This completes the construction, so put B = ∪sσs and C = ∪sτs.

Claim. For all n we have that An ≤T B and An ≤T C. To see this note
that in the construction that for all s > n that fs(〈n,m〉) = fn+1(〈n,m〉).
Furthermore, except for the finitely many element of the domain of σn+1 we
have that An(m) = fn+1(〈n,m〉). It follows that An =∗ Bn and so An ≤T
Bn ≤T B. Similarly for C.

Claim. Suppose that D ≤T B and D ≤T C. Then D ≤T An for some
n < ω. To see this suppose that

{e1}B = {e2}C = D

and s = 〈e1, e2〉. Since the characteristic functions of B and C extend σs+1

and τs+1 respectively it is evident that Case (a) could not have occurred. So

Lecture notes in Recursion Theory A. Miller December 3, 2008 46

we assume Case (b). Note that in this case it is impossible that there exists
n, ρ1, ρ2 with σs ⊆ ρ1 and σs ⊆ ρ2, and each of ρ1 and ρ2 compatible with fs
such that

{e1}ρ1(n) ↓6= {e1}ρ2(n) ↓ .
This is because {e2}C(n) ↓ and so then we would be in Case (a).

It follows easily as before that D = {e1}B ≤T fs. But

fs ≤T A0 ⊕ A1 ⊕ · ⊕ As−1 ≤t As−1

so D ≤T As−1.
QED

Exercise 22.2. Suppose a, b ∈ D and a ∧ b does not exist. Prove there
exists (cn ∈ D : n < ω) such that

1. cn ≤ a and cn ≤ b for all n,

2. cn < cn+1 for all n, and

3. for all d ∈ D if d ≤ a and d ≤ b, then d ≤ cn for some n.

23 Friedberg: jump inversion

Proposition 23.1 (Friedberg Jump Inversion) For every a ∈ D if a ≥ o′

then there exists b ∈ D with b′ = a.

Proof
We construct sequence (τs : s ∈ ω) recursive in A⊕ 0′ ≡T A as follows.

At stage s+ 1 we are given τs ∈ 2<ω

(a) We put τ = τsi where i = A(s).
(b) Let e = s. We ask 0′ if there exists σ ⊇ τ such that

{e}σ|σ|(e) ↓

If there is such a σ then we effectively find one and put τs+1 = σ.
More precisely, before the construction begins find a recursive function

f(e, τ) such that

1. for any e, τ
ψf(e,τ)(0) ↓ iff ∃σ ⊇ τ {e}σ|σ|(e) ↓

Lecture notes in Recursion Theory A. Miller December 3, 2008 47

2. when ψf(e,τ)(0) converges it outputs such a σ and

3. the algorithm ψf(e,τ)(?) ignores its input.

We put τs+1 = τ if f(e, τ) /∈ 0′, otherwise we put τs+1 = σ =def ψf(e,τ)(0).
This ends the construction. We let B = ∪s∈ωτs.

Claim.

1. (τs : s ∈ ω) ≤T A⊕ 0′ ≤T A

2. A ≤T (τs : s ∈ ω)

3. (τs : s ∈ ω) ≤T B ⊕ 0′

4. B′ ≤T (τs : s ∈ ω)

Proof
(1) The construction only requires oracles for 0′ and A. Also A ≥T 0′.
(2) We encoded the characteristic function of A at step (a). Hence

s ∈ A iff τs+1(|τs|) = 1.

(3) Recursively construct the sequence (τs : s ∈ ω) using oracles for 0′

and B. Given τs we use that τs+1 ⊆ B to figure out the first digit, i.e., τ of
step (a). To do step (b) we only used 0′ and the recursive function f .

(4) By our construction given any e let s = e, then we have that

e ∈ B′ iff {e}B(e) ↓ iff {e}τs+1

|τs+1|(e) ↓

This proves the Claim. But note that the Claim implies

B′ ≤T (τs : s ∈ ω) ≤T A ≤T (τs : s ∈ ω) ≤T B ⊕ 0′ ≤T B′

QED

Exercise 23.2. Prove that ∀a ∈ D a ≥ o′ → ∃b, c ∈ D b|c and
b′ = a = c′.

Lecture notes in Recursion Theory A. Miller December 3, 2008 48

24 Spector: minimal degree

Theorem 24.1 (Clifford Spector) There exists a minimal Turing degree,
i.e., ∃a ∈ D with o < a but no b ∈ D with o < b < a.

Proof
For any σ ∈ 2n, i.e., a finite sequence of zeros and ones, we can code σ by
the number

x = 2n +
∑
{2i : i < n and σ(i) = 1}.

The extra 2n is there to distinguish sequences ending in zeros from each other.
We suppress this coding and just talk about recursive subsets of 2<ω.

Definition 24.2 T ⊆ 2<ω is a perfect tree iff

1. T is nonempty,

2. σ ⊆ τ ∈ T implies σ ∈ T , and

3. ∀σ ∈ T ∃τ0, τ1 ∈ T with σ ⊆ τ0, σ ⊆ τ1, and τ0 and τ1 are incompara-
ble.

Definition 24.3 For T ⊆ 2<ω a tree we define:

1. σ ∈ T splits iff σ0, σ1 ∈ T

2. σ = stem(T) iff σ splits but no shorter node of T splits

3. [T] = {x ∈ 2ω : ∀n x�n ∈ T}

4. for σ ∈ T let
T (σ) = {τ ∈ T : τ ⊆ σ or σ ⊆ τ}

To prove the Theorem construct a sequence (Ts : s ∈ ω) of recursive
perfect trees as follows.

At stage s = 0 take T0 = 2<ω.

At stage s+ 1 where s = 2e let σ = stem(Ts) and n = |σ|. If ψe(n) ↓= 0
then put Ts+1 = Ts(σ1) otherwise put Ts+1 = Ts(σ0).

At stage s + 1 where s = 2e + 1 we obtain Ts+1 ⊆ Ts a perfect recursive
subtree as follows. We first ask the question:

Lecture notes in Recursion Theory A. Miller December 3, 2008 49

Does there exist σ ∈ Ts such that for all σ1, σ2 ∈ T (σ) and
n,m1,m2 < ω if {e}σ1(n) ↓= m1 and {e}σ2(n) ↓= m2, then
m1 = m2?

Case (a) If the answer is yes, we take Ts+1 = Ts(σ) for any such σ.
Case (b) If the answer is no, we construct recursive sequences
(σρ ∈ T : ρ ∈ 2<ω) and (nρ ∈ ω : ρ ∈ 2<ω)

such that

1. {e}σρ0(nρ) ↓6= {e}σρ1(nρ) ↓ and

2. σρ ⊆ σρ0 and σρ ⊆ σρ1.

Note that (1) implies that σρ0 is incomparable to σρ1. We put

Ts+1 = {σ : ∃ρ ∈ 2<ω σ ⊆ σρ}

then Ts+1 is a recursive perfect subtree of Ts.
This ends the construction of the sequence of trees. Note that Ts+1 ⊆ Ts.

Take A to be the subset of ω whose characteristic function is the unique
element of ∩s∈ω[Ts]. It is easy to see that stage 2e + 1 guarantees that A is
not recursive, so it is enough to see stage 2e+ 2 guarantees that if B = {e}A
then either B is recursive or A ≤T B.

Case (a) for all σ1, σ2 ∈ Ts+1 and n,m1,m2 < ω if {e}σ1(n) ↓= m1 and
{e}σ2(n) ↓= m2, then m1 = m2. In this case B is recursive, since A ∈ [Ts+1]
and B = {e}A means that all we have to do to compute B(n) is to search the
recursive tree Ts+1 for any σ for which {e}σ(n) ↓ and then B(n) = {e}σ(n).

Case (b) In this case we show that A ≤T B. We know A ∈ [Ts+1].
Suppose we know that σρ ⊆ A. To decide whether σρ0 ⊆ A or σρ1 ⊆ A, we
compute both of

{e}σρ0(nρ) and {e}σρ1(nρ).

Since these two computations are guaranteed to converge and to different
values at most one of them can agree with B(nρ). One of them must agree
and so using an oracle for B we can determine the unique i = 0, 1 so that
σρi ⊆ A.
QED

Exercise 24.4. Prove that there are uncountably many minimal degrees.

Lecture notes in Recursion Theory A. Miller December 3, 2008 50

Exercise 24.5. Prove there exists a perfect tree T ⊆ 2<ω such that for
every n and distinct y, x1, x2, . . . , xn ∈ [T]

y 6≤T x1 ⊕ x2 ⊕ · · · ⊕ xn.

25 Sacks: minimal upper bounds

Theorem 25.1 (Sacks) Minimal upper bounds exists. Given any sequence
of degrees (an ∈ D : n < ω) such that an < an+1 for all n there exists b ∈ D
with an < b all n but there is no c ∈ D with an < c < b for all n.

Proof
Here we use the notion of a recursively-pointed tree.

Definition 25.2 T ⊆ 2<ω is recursively-pointed iff T is a perfect tree and
T ≤T A for every A ∈ [T].

The new ingredient required in this construction is

Claim. Suppose T ⊆ 2<ω is recursively-pointed tree and T ≤T B. Then
there exists T ∗ ⊆ T a recursively-pointed tree such that T ∗ ≡T B.
Proof
There exists a natural bijection f : 2<ω → Split(T) where Split(T) are the
splitting nodes of T . Note that f and T are Turing equivalent. Given B ∈ 2ω

let
TB = {σ ∈ 2<ω : σ(2n) = B(n) whenever 2n < |σ|}.

Now take T ∗ to be the tree generated by f(TB).
QED

Construct (Ts : s ∈ ω) a sequence of recursively-pointed trees as follows.
Suppose Ts ≡T As and e = s. Relativizing Spector’s proof above to Ts

we can obtain T ◦ ⊆ Ts with T ◦ ≤T Ts a perfect subtree so that for every
B ∈ [T ◦]: if C = {e}B then either B ≤T (C ⊕ T ◦) or C ≤T T ◦.

Note that T ◦ is recursively-pointed and T ◦ ≤T As. Hence by applying the
Claim above we can obtain Ts+1 ⊆ T ◦ such that Ts+1 is recursively-pointed
and Ts+1 ≡T As+1.

This ends the construction. We let B be the unique element of ∩s∈ω[Ts].

First note that As ≤T B for each s, because B ∈ [Ts], Ts is recursively-
pointed and so As ≡T Ts ≤T B.

Lecture notes in Recursion Theory A. Miller December 3, 2008 51

Suppose that As ≤T C ≤T B for every s ∈ ω. Then at some stage s = e
we have that C = {e}B. Hence by construction either C ≤T T ◦ ≤T As or
B ≤T (C ⊕ T ◦). The first is impossible since As <T As+1 ≤T C and so it
must be that B ≤T (C ⊕ T ◦). But T ◦ ≤T As ≤T C so B ≤T C.
QED

Exercise 25.3. (a) Prove there exists a, b ∈ D with o < a < b and not
there exists c with either o < c < a or a < c < b.

(b) (Extra Credit) Prove there exists a, b ∈ D with o < a < b and
(c ≤ b iff c = 0 or c = a or c = b), for all c ∈ D.

Exercise 25.4. Show that the degree of

0(ω) = {〈n, x〉 : x ∈ 0(n)}

is not a minimal upper bound of the degrees of {0(n) : n ∈ ω}.
Hint: in Theorem 22.1 get B,C computable in 0(ω).

Show there is A ⊆ ω such that for all n

0(n) ≤T A <T A
′ ≤T 0(ω).

26 Friedberg-Muchnik Theorem

Definition 26.1 The use of an oracle computation {e}A(x) written

use({e}A(x))

is n+1 where n is the maximum number for which the oracle for A is queried.

Note that if u = use({e}A(x)) and B ∩ u = A ∩ u then {e}A(x) and
{e}B(x) are the same computation.

Theorem 26.2 (Friedberg-Muchnik) There exists r.e. sets A0 and A1 such
that A0 6≤T A1 and A1 6≤T A0.

Proof
Our requirements are:

R2e+i {e}Ai 6= A1−i
for each e ∈ ω and i = 0, 1.

Lecture notes in Recursion Theory A. Miller December 3, 2008 52

The strategy for meeting this requirement is to attach a follower x ∈ ω to
R2e+i and then wait until {e}Ai,s

s (x) ↓= 0. When this happens we put x into

A1−i and try to avoid injuring the computation {e}Ai,s
s (x). If we succeed then

{e}Ai(x) = 0 6= 1 = A1−i(x). If we wait forever, then x is never put into A1−i
and so A1−i(x) = 0 6= {e}Ai(x). In either case the requirement R2e+i is met.
There are two possible successful outcomes for this strategy, either we wait
forever or we act at some stage and then preserved the relevant computation.

Construction

Everything in the construction will be done effectively.
At each stage s of the construction we will have effectively constructed:

1. finite sets Ai,s for i = 0, 1,

2. a follower x = xq,s for each Rq with q < s, and

3. a function fs with domain s which is attempting to predicate the final
outcomes of our strategy for each Rq with q < s.

At stage s = 0 put Ai,0 = ∅ for i = 0, 1. Nobody has followers and fs is
the empty function.

At stage s+ 1 look for the least q = 2e+ i < s such that

1. fs(q) =‘waiting’ and

2. {e}Ai,s
s (x) ↓= 0 with use less than s where x = xq,s is the follower of

R2e+i.

If we find such a q then we take the following actions:

1. Put x into A1−i, i.e.,

A1−i,s+1 = A1−i,s ∪ {x}

2. Set fs+1(q) =‘acted’.

3. Reappoint followers for lower priority requirements, i.e. for each q′ > q
with q′ < s+ 1 put x = 〈q′, s+ 1〉 to be the follower of Rq′ .

4. Make all lower priority requirements start over, i.e., for each q′ > q put
fs+1(q

′) =‘waiting’.

Lecture notes in Recursion Theory A. Miller December 3, 2008 53

We say that Rq acted at stage s + 1. If there is no such q then we just
continue to wait. In either case assign x = (s, s+ 1) to be the follower of Rs

and put fs+1(s) =‘waiting’.
This ends the stage and the construction.
Note that the sequence

(As,0, As,1, fs, xq,s : s ∈ ω, q < s)

is recursive.
We put Ai = ∪s∈ωAi,s. These are r.e. sets since Ai,s ⊆ Ai,s+1.

Verification

Claim. For each q

1. Rq acquires a permanent follower, i.e., there exist some stage s0 such
that for all s > s0 the follower of Rq at stage s is that same as at stage
s0.

2. Rq is met, i.e, {e}Ai 6= A1−i

3. Rq acts at most finitely many times.

Proof
This is the main claim and it is proved by induction on q.

So suppose that (3) is true for all q′ < q. Then there is a stage s0 such that
some q′ < q acted and no such q′ < q acts after stage s0. Then the follower
xq of Rq appointed at stage s0 is the permanent follower of Rq. Furthermore
fs0(q) =‘waiting’.

Suppose q = 2e+ i. After stage s0 there are two possibilities:
(a) for some s > s0 we have that {e}Ai,s

s (xq) ↓= 0 with use less than s or
(b) not (a).

Suppose (a). In this case since no higher priority q′ acts after stage s0

then Rq will act. Hence xq is put into A1−i. Furthermore all other followers of
lower priority requirements appointed now or at future stages will be larger
than the use of the computation {e}Ai,s

s (xq) (we assume that s ≤ 〈q′, s〉).
Hence

{e}Ai(xq) ↓= 0 6= 1 = A1−i(xq)

Lecture notes in Recursion Theory A. Miller December 3, 2008 54

Suppose (b). In this case it must be that either

{e}Ai(xq) ↑ or {e}Ai(xq) ↓6= 0.

In either case xq is never put into A1−i - this is because the possible followers
of two distinct requirements are disjoint and no follower is used again for the
same requirement. So A1−i(xq) = 0 6= {e}Ai(xq) and thus Rq is met.

So as we see Rq will act at most one more time after stage s0 and so it
acts only finitely many times. This proves the Claim and the Theorem.
QED

We say that Rq is injured when it is made to appoint new followers and
start over. Hence, the terminology ‘finite injury priority argument’.

Corollary 26.3 There exists a set A which is r.e. and 0 <T A <T 0′.

Proof
Since 0 and 0′ are ≤T comparable to every r.e. set it must be that both Ai
from the Friedberg-Muchnik Theorem are strictly in between.
QED

Exercise 26.4. (Trachtenbrock)
Define A is auto-reducible iff there exists e such that for all x,

{e}A\{x}(x) ↓= A(x).

Prove
(a) For all B there exists A ≡m B such that A is auto-reducible.
(b) There exist an r.e. A which is not auto-reducible.
(c) There exist a low r.e. A which is not auto-reducible.
(d)* There exist a r.e. A ≡T K which is not auto-reducible?

27 Embedding in the r.e. degrees

We define
An = {x : 〈n, x〉 ∈ A}

and
⊕k 6=nAk = {〈k, x〉 ∈ A : k < ω and k 6= n}.

Lecture notes in Recursion Theory A. Miller December 3, 2008 55

Theorem 27.1 There exists an r.e. set A such that for every n

An 6≤T ⊕k 6=nAk

Proof
This is a minor modification of the Friedberg-Muchnic argument (Theorem
26.2).

Our requirements are:
R〈e,n〉 {e}⊕k 6=nAk 6= An
for e, n ∈ ω. And the construction is nearly the same:
At stage s+ 1 look for the least q = 〈e, n〉 < s such that

1. fs(q) =‘waiting’ and

2. {e}⊕k 6=nAk,s
s (x) ↓= 0 with use less than s where x = xq,s is the follower

of Rq.

If we find such a q then we take the following actions:

1. Put
As+1 = As ∪ {〈n, x〉}

2. Set fs+1(q) =‘acted’.

3. Reappoint followers for lower priority requirements, i.e. for each q′ > q
with q′ < s+ 1 put x = 〈q′, s+ 1〉 to be the follower of Rq′ .

4. Restart lower priority requirements, for each q′ > q put

fs+1(q
′) = ‘waiting’.

Finally, assign x = (s, s+ 1) to be the follower of Rs and fs+1(s) =‘waiting’.
The verification is virtually the same as in the Friedberg-Muchnic Theo-

rem.
QED

Corollary 27.2 Every recursive partially ordered set embeds into the r.e.
degrees R.

Lecture notes in Recursion Theory A. Miller December 3, 2008 56

Proof
Let P = (ω,�) be a partial order with � a recursive binary relation on ω.
Define J(p) = {〈q, x〉 ∈ A : q � p} and let j(p) = deg(J(p)). Then

j : P→ R

is an order preserving embedding.
QED

Exercise 27.3. Prove there exists a recursive partial order P0 = (ω,≤0)
such that every countable partial order P1 can be embedded into it, i.e., there
exists a 1-1 mapping j : P1 → P0 such that p ≤1 q iff j(p) ≤0 j(q).

Hint: Construct P0 so that for every pair of finite posets P1 ⊆ P2 and
embedding j1 : P1 → P0 there is an embedding j2 : P2 → P0 with j1 ⊆ j2.

It follows from this exercise that every countable partial order embeds
into the r.e. degrees.

Exercise 27.4. Prove that for every creative set A there exist a set
B which is r.e. and disjoint from A but cannot be separated from it by a
recursive set. Prove that there exists disjoint r.e. sets A0 and A1 which are
recursively inseparable but not creative. Hint: Construct A0 and A1 as in
Theorem 26.2 with the additional requirements:

Re ψe = D → D does not separate A0 and A1

28 Limit Lemma and Ramsey Theory

Lemma 28.1 (The Limit Lemma) Suppose g ∈ ωω, then
g ≤T 0′

iff
there exists f : ω × ω → ω recursive such that for all n

lim
s→∞

f(n, s) = g(n).

Proof
Suppose g = {e}0′

. Let (0′s : s ∈ ω) be a recursive enumeration of 0′, e.g.,
0′s = {e < s : {e}s(e) ↓}. Define

f(n, s) =

{
1 if {e}0

′
s
s (n) ↓

0 otherwise

Lecture notes in Recursion Theory A. Miller December 3, 2008 57

Then g(n) = lims→∞ f(n, s).
For the converse, suppose that g(n) = lims→∞ f(n, s) where f is recursive.

For each n using an oracle for 0′ we can compute s0 so that for every s > s0

we have that f(n, s) = f(n, s0).
(Try s0 = 0 and ask the oracle if the computation that searches for a

change in f ever terminates. If yes, try s0 = 1, etc. Continue incrementing
s0 until the oracle says that beyond this stage f does not change.)

It follows that g(n) = f(n, s0). Hence there is an algorithm with oracle
0′ which computes g.
QED

Definition 28.2 [X]n = {s ⊆ X : |X| = n}

Ramsey Theorem says that for every n, k < ω and f : [ω]n → k there is
H ∈ [ω]ω such that f�[H]n is constant. This H is called homogeneous for f .

Example 28.3 (Jockusch, Spector) There is a recursive f : [ω]3 → 2 such
that 0′ ≤T H for every infinite H which is homogeneous for f .

Proof
Define

f({e0 < s1 < s2}) =

{
0 if ∀e < e0 ({e}0

′
s1
s1 ↓ iff {e}0

′
s2
s2 ↓)

1 otherwise.

If H is an infinite homogeneous set for f , then f must map [H]3 to 1 since
every infinite set H contains a triple which f maps to 1.
QED

Example 28.4 (Jockusch) There is a recursive f : [ω]2 → 2 such that there
does not exist an infinite recursive H which is homogeneous for f .

Proof
Construct b ∈ 2ω with the properties:

1. b ≤T 0′ and

2. for every e if We is infinite then there are n,m ∈ We such that b(n) = 0
and b(m) = 1.

Lecture notes in Recursion Theory A. Miller December 3, 2008 58

By the limit Lemma there is a recursive g : ω2 → 2 such that

b(n) = lim
s→∞

f(n, s).

Then f cannot have an infinite recursive homogeneous set H. For suppose
H = {hk : k < ω} is a strictly increasing computable enumeration of H.
Then for k < l we would have to have that f(hk, hl) = b(hk) and so b will be
constant on H.
QED

See also Corollary 44.5 for another proof. Seetapun has shown that ev-
ery recursive f : [ω]2 → 2 has an infinite homogeneous set which does not
compute 0′.

29 A low simple set

Another way to prove that some r.e. degree is nontrivial is to construct a
low simple set A. Since a simple set is not recursive we have that 0 <T A.
Low means that A′ ≡T 0′ so A <T 0′ by Lemma 18.5.

Theorem 29.1 There exists a low simple set A, i.e. A′ ≡ 0′ and A is simple.

Proof
We make the degree of A low by a strategy that is suggested by the proof of
the limit lemma, namely we would like to use

f(e, s) =

{
1 if {e}As

s (e) ↓
0 otherwise

to show that A′ ≤T 0′. That is, A′(e) = lims→∞ f(e, s). If e ∈ A′ then it is
easy to see that f(e, s) = 1 for all sufficiently large s. The problem then is
to make sure that if f(e, s) = 1 for infinitely many s, then e ∈ A′.

So we make the following requirements:
Ne (∃∞s {e}As

s (e) ↓)→ {e}A(e) ↓
In order to make sure that the set A is simple we have the following

requirements:
Pe (We infinite) → We ∩ A 6= ∅
The strategy for Pe is the same as for the Post Simple Set construction

(Theorem 15.2), that is we wait for some x ∈ We,s with x > 2e and As∩We,s =
∅ and put x into As+1.

Lecture notes in Recursion Theory A. Miller December 3, 2008 59

The strategy for Ne is to wait until we see convergence and then try to
prevent the computation from changing by restraining numbers less than the
use of the computation from entering A.

The requirement Pe is positive since the strategy trys to put things into
A while the requirement Ne is negative since it tries to keep things out of A.

Construction

At each stage in the construction we will have As and r(e, s) for each e.
We will always have that r(e, s) = 0 for e ≥ s so the function r is really a
finite function.

Stage s+ 1. Look for the least e < s such that

1. We,s ∩ As = ∅

2. ∃x > 2e with x ∈ We,s and x > r(e′, s) for all e′ < e.

For the least such e choose the least x as above and put As+1 = As∪{x}.
We say in this case that Pe acted at stage s + 1. If there is no such e put
As+1 = As.

Next we compute r(e, s+ 1) for all e < s+ 1. If {e}As+1
s (e) ↓, then put

r(e, s+ 1) = use({e}As+1
s (e)

otherwise put r(e, s+ 1) = 0.
This is the end of the construction. We let A = ∪s∈ωAs which is r.e.

Verification.

Claim.

1. Pe is met.

2. Ne is met.

3. lims→∞ r(e, s) = r(e) <∞ exists.

Lecture notes in Recursion Theory A. Miller December 3, 2008 60

Proof
We prove this by induction on e. Note that each Pe can act at most once,
since after it acts We and A are no longer disjoint. Assume the claim is true
for every e′ < e.

(1) By induction we have some s0 such that for all s > s0 and e′ < e that
r(e′, s) = r(e′). Put

R = max{r(e′) : e′ < e}.

We can also choose s0 so large that no Pe′ for e′ < e acts after stage s0 since
each Pe′ acts at most once. Suppose that We is infinite. It follows that at
some stage s > s0 there will be a x ∈ We,s such that x > 2e + R. At stage
s+ 1 either As ∩We,s 6= ∅ or Pe will act. In either case Pe is met.

(2) Choose s0 so that no Pe′ for e′ ≤ e acts after stage s0. This means that
after stage s0 no positive requirement can ever injure a computation of Ne.

Hence if there is some s1 > s0 such that {e}As1
s1 (e) ↓ then no x < use{e}As1

s1 (e)
will ever enter A. It follows that this is the final computation and therefore
{e}A(e) ↓ with the same computation as at stage s.

(3) As above, either we never see convergence and then r(e, s) = 0 for all
s > s0 or we see convergence and then r(e, s) = r(e, s1) for all s > s1.

This finishes the proof of the Claim and the Theorem.
QED

Exercise 29.2. (From Soare) A set A is auto-reducible iff there exists e
such that for every x we have

{e}A\{x}(x) ↓= A(x).

Prove there is a r.e. set which is not auto-reducible. Extra credit: Prove
that there exists a A low simple set which is not auto-reducible.

30 Friedberg splitting Theorem

Theorem 30.1 (Friedberg Splitting) Every r.e. set which is not recursive is
the disjoint union of two recursively enumerable sets which are not recursive.

Proof

Lecture notes in Recursion Theory A. Miller December 3, 2008 61

Suppose B = {bs : s < ω} is a one-one recursive enumeration of the
nonrecursive set B. We will decide at each stage to put bs into either A0 or
A1. Hence at any stage s we will have

Bs = {bt : t < s} = As0 t As1

where t stands for disjoint union.
The requirements are:

R2e+i We 6= Ai

The strategy is to try to make Ai ∩We 6= ∅.

Stage s

Find the least 2e+ i < s (if any) such that

1. W s
e ∩ Asi = ∅ and

2. bs ∈ W s
e .

For the least such put bs into Ai, i.e.,

As+1
i = Asi ∪ {bs} and As+1

1−i = As1−i.

In this case, we say that R2e+i acted at stage s.
If there is no such 2e+ i put bs into A0. This ends the construction.

Verification

Suppose for contradiction that Ai = We. Since Ai ⊆ B we know that

B ∪We = ω.

We show that B is computable. Note that each requirement can act at most
once. Choose a stage s0 so that for any q < 2e + i if Rq every acts it has
already acted before stage s0.

To compute B: Input x. Find any s > s0 such that x ∈ Bs ∪W s
e .

Case 1. x ∈ Bs. Hence x ∈ B.

Lecture notes in Recursion Theory A. Miller December 3, 2008 62

Case 2. x ∈ W s
e \ Bs. We claim that x /∈ B. If it were then for some

t > s > s0 we would have x = bt and at that stage we would put bt into Ai.
But we are assuming Ai ∩We = ∅ and this would be a contradiction.
QED

Exercise 30.2. Suppose B is a r.e. set which is not recursive. Prove there
exists a partial recursive function f with domain B such that for every n < ω
the set f−1{n} is not computable.

Exercise 30.3. Prove or disprove. There exists An for n < ω pairwise
disjoint r.e. sets which are not recursive such that

ω = tn<ωAn.

Exercise 30.4. Define f is proper iff f is a partial recursive function and
both the domain and range of f are nonrecursive subsets of ω. Prove that for
every proper f that there exists proper f0 and f1 with f the disjoint union
of f0 and f1. (We are identifying the functions with their graph.)

Exercise 30.5. Show that if B is r.e. but not recursive, then there exists
Ai r.e. such that B = A0 t A1 and A0 and A1 cannot be separated by a
recursive set. Hint: If ψe is total, show that there must be infinitely many s
such that ψe,s(bs) ↓.

31 Sacks splitting Theorem

Theorem 31.1 (Sacks) Suppose 0 <T C ≤T 0′ and A is r.e. Then there
exists r.e. sets A0 and A1 such that

1. A is the disjoint union of A0 and A1, i.e., A = A0 t A1,

2. C 6≤T Ai for i = 0, 1, and

3. Ai is of low degree for i = 0, 1, i.e., A′
i ≡T 0′.

Proof
By the limit lemma there exists a recursive function g : ω×ω → 2 such that
for every n

C(n) = lim
s→∞

g(s, n).

Lecture notes in Recursion Theory A. Miller December 3, 2008 63

To simplify notation let Cs(n) = g(s, n).
Let A = {as : s ∈ ω} be a 1-1 recursive enumeration of A. If A is

finite or even recursive the result is trivially true, so we don’t have to worry
about that case. We will achieve the splitting of A by simply putting as into
exactly one of the two sets A0 or A1 at stage s+ 1.

The Requirements

The lowness of the sets will be achieved by the same requirements as in
the low simple set proof:

Ne,i (∃∞s {e}Ai,s(e) ↓)→ {e}Ai(e) ↓
Our new requirements are for each e ∈ ω and i = 0, 1:

Re,i {e}Ai 6= C
which we will write Rq = Re,i where q = 2e+i. If we meet each of these, then
C 6≤T Ai for i = 0, 1. The strategy used for meeting Re,i is to preserve the
length of agreement between {e}Ai and C. This seems contradictory, since
we want them to be different. The reason it succeeds is because otherwise
we will be able to compute C.

For each q we will have two variables lq and uq which are the length of
agreement and the use of some computations. We will use uq to restrain for
both Nq and Rq.

The Construction

At stage s = 0 put Ai,s = ∅ and put uq = lq = 0.

Stage s+ 1.
Begin by computing the length of agreement lq and the usage uq for each

q < s+ 1:
Suppose q = 2e+ i.

(a) If {e}Ai,s
s (e)) ↓, then:

uq := max{uq, use({e}Ai,s
s (e))}.

(b) Next we adjust the length of agreement. There are two cases:
(1) For all x ≤ lq

{e}Ai,s
s (x) ↓= Cs(x).

Lecture notes in Recursion Theory A. Miller December 3, 2008 64

In this case we bump up the usage and increment lq:

uq := max{ uq, use({e}Ai,s
s (x)) : x ≤ lq }

lq := lq + 1

(2) Not case (1). In this case we do not change lq and uq.

Now we take action. Find the least q < s+ 1 (if any) such that as < uq.
If q = 2e+ i, then put as into the opposite set, A1−i, i.e.,

A1−i,s+1 = A1−i,s ∪ {as}.

(Hence we protect the computations in (b)(1) for q from being injured.)
If no such q exists, then put as into A0. This ends the stage and the

construction.

The Verification

Now we verify that the construction works. We use the notation lsq and
usq to refer to the values of these variables at stage s.

Claim. For each q
(1) Rq is met,
(2) lims→∞ lsq = Lq <∞,
(3) lims→∞ usq = Uq <∞, and
(4) Nq is met.

Proof
In the case of (2) and (3) since our variables are nondecreasing this just means
that at some stage they stop growing. The Claim is proved by induction on
q. So suppose it is true for all p < q and let Rq = Re,i

Proof of (1)

Lecture notes in Recursion Theory A. Miller December 3, 2008 65

For contradiction assume that Rq is not met, i.e.,

{e}Ai = C.

Subclaim (a). lims→∞ lsq =∞.
To see why this is true, note that for any x there will be some stage s0

where Cs�x = C�x for all s > s0 and also {e}Ai�x will be same computations

as {e}Ai,s0
s0 �x, i.e., the use of the oracle has settled down. After s0 the variable

lq will be incremented until it is at least x, if it isn’t already. This proves
subclaim (a).

Now go to a stage s0 such that for all s > s0

1. for all p < q usp = Up and

2. as > max{Up : p < q}.

Subclaim (b). If s > s0 is a stage where lq is incremented then

C(x) = {e}Ai,s
s (x).

for any x < lq
To see why this is true, note that uq protects the computation {e}Ai,s

s (x)
from ever changing since as is never beneath up for any higher priority p < q.
This means that

{e}Ai,s
s (x) = {e}Ai(x).

But we are assuming {e}Ai = C. This proves subclaim (b).

Now we get a contradiction to our assumption that C is not recursive.
To compute C(x) search for a stage s > s0 where lq > x and it has just been

incremented. Then C(x) = {e}Ai,s
s (x).

This contradiction proves the main Claim part (1) that Rq is met.

Proof of (2)

Since Rq is met there exists x such that either
(a) {e}Ai(x) ↑ or
(b) {e}Ai(x) ↓6= C(x).

Fix any such x. Go to a stage s0 such that for all s > s0

Lecture notes in Recursion Theory A. Miller December 3, 2008 66

1. for all p < q usp = Up,

2. as > max{Up : p < q}, and

3. Cs(x) = C(x).

It is impossible that at some stage s > s0 where lq > x that lq is incre-
mented. This is because at such a stage s

{e}Ai,s
s (x) ↓= Cs(x).

For the rest of the construction uq will protect the computation {e}Ai,s
s (x).

But then
{e}Ai(x) = {e}Ai,s

s (x) = Cs(x) = C(x)

which contradicts the choice of x.

Proof of (3)

Note that uq changes only when either lq is incremented or when we see

{e}Ai,s
s (e) converges. Hence if we go to a stage s0 such that for all s > s0

1. for all p < q usp = Up,

2. as > max{Up : p < q}, and

3. lsq = Lq

then uq will change at most once more, after which it protects the computa-

tion {e}Ai,s
s (e) from changing and never changes again.

Proof of (4)

The proof that Nq is met is the same as in the low simple set argument.

This ends the proof of the Claim and of the Sacks Splitting Theorem.
QED

Proposition 31.2 Suppose A = A0 t A1 is a disjoint union of r.e. sets A0

and A1, then A ≡T A0 ⊕ A1.

Lecture notes in Recursion Theory A. Miller December 3, 2008 67

Proof
Clearly A = A0 ∪ A1 ≤T A0 ⊕ A1. To see that Ai ≤T A, input x and first
ask the oracle if x ∈ A. If yes, enumerate A0 and A1 until x shows up.
QED

Corollary 31.3 (Friedberg Splitting) Every r.e. set which is not recursive
is the disjoint union of two r.e. sets which are not recursive.

Proof
Take C = A. Then Ai 6≤T A but if either is recursive then by Proposition
31.2 we get a contradiction.
QED

Corollary 31.4 For every c ∈ D if o < c < o′, then there exists a ∈ R with
a|c.

Proof
Let A = 0′ = K. By Proposition 31.2, A = A0⊕A1 where C 6≤T Ai for both
i = 0, 1. But then at most one of the Ai can be ≤T C, since otherwise

0′ ≡T A0 ⊕ A1 ≤T C.

QED

Corollary 31.5 There exists a0, a1 ∈ R such that

(a0 ∨ a1)
′ 6= a′0 ∨ a′1

Proof
By the Theorem there exists low r.e. sets Ai such that A0⊕A1 ≡T 0′. Hence

a′0 ∨ a′1 = o′ < o′′ = (a0 ∨ a1)
′

QED

Corollary 31.6 No r.e. degree is minimal, in fact, beneath any nontrivial
r.e. degree is a nontrivial low r.e. degree.

Lecture notes in Recursion Theory A. Miller December 3, 2008 68

Proof
Given r.e. set A which is not recursive, let C = A and then we have low r.e.
sets A0 and A1 which split A and A 6≤T Ai. Then for each i we have that
0 <T Ai <T A.
QED

Exercise 31.7. (Welch) Prove there are low r.e. degrees a0 and a1 such
that for every r.e. degree b there are r.e. degrees b0 ≤ a0 and b1 ≤ a1 with
b = b0 ∨ b1. Hint: Sacks split W .

32 Lachlan and Yates: minimal pair

Theorem 32.1 (Lachlan, Yates) There exists a minimal pair of r.e. degrees,
i.e. a0, a1 ∈ R \ {o} such that the only degree b with b ≤ a0 and b ≤ a1 is
b = o.

Proof

Requirements:

Pe,i ψe 6= Ai

Ne0,e1 ({e0}A0 = {e1}A1 = B)→ B recursive.

Strategies:

For Pe,i wait for ψe,s(x) ↓= 0 for some follower x and then put x into Ai.

For Ne0,e1 restrain agreement to get (a) or (b):
(a) for some l < ω we have that {e0}A0�l ↓= {e1}A1�l ↓ and either

({e0}A0(l) ↑ or {e1}A1(l) ↑) or ({e0}A0(l) ↓6= {e1}A1(l) ↓)
(b) {e0}A0 = {e1}A1 = B and B is recursive by virtue of our restraining

certain computations, that is, we can compute B by finding stages where we
can be sure the approximate computation at that stage is the final one.

Outcomes:

Lecture notes in Recursion Theory A. Miller December 3, 2008 69

For Pe,i the outcomes are either to wait forever or to act at some time.
We order them by { act < wait }.

For Ne0,e1 the outcomes are either l < ω where l is the largest length of
agreement which we see at a true stage or {∞} if the length of agreement
has infinite limit. We use the ordering

∞ < · · · < l + 1 < l < · · · < 2 < 1 < 0

because it is traditional to take limit infimums (rather than limsups) in the
outcome tree to determine the truth path.

The outcomes are Λ = {act,wait } ∪ {∞} ∪ ω. The tree of outcomes is
Λ<ω. At each stage s in the construction we will have recursively constructed
fs ∈ Λs which is an approximation to the true path, i.e., the eventually
correct outcomes.

If α ∈ Λn where n = 2〈e0, e1〉 then α works on the requirement Ne0,e1 . If
β ∈ Λn where n = 2m+ 1 and m = 2e+ i, then β works on the requirement
Pe,i.

Supplementary variables:

For each such β working on a positive requirement we have a restraint
variable Rβ ∈ ω. Also for each such β we let

Fβ = {〈β, x〉 : x ∈ ω}

be the followers of β. These could be any pairwise disjoint family of uniformly
recursive infinite subsets of ω.

For each α working on a negative requirement we have two variables lα
and uα (length of agreement and the usage of some computations).

The Construction:

Stage s = 0. Put A0,0 = A1,0 = ∅ and f0 = 〈〉, and put all supplementary
variables, Rβ, lα, uα equal to zero.

Stage s+ 1. Given A0,s, A1,s, and fs ∈ Λs proceed as follows.

Action:
Look for the least β (fs working on a positive requirement Pe,i such that

Lecture notes in Recursion Theory A. Miller December 3, 2008 70

(1) fs(|β|) =‘wait’ and
(2) there exist x > Rβ with x ∈ Fβ and x < s such that ψe,s(x) ↓= 0.

Put the least such x into Ai, i.e.,

Ai,s+1 = Ai,s ∪ {x}.

In this case we say that β and Pe,i acted at stage s+ 1. If no such β exists,
then no action is taken.

Update variables:
Define fs+1�n for n ≤ s+ 1 by induction on n. At the same time we may

update the supplementary variables for each γ ⊆ fs+1.

Case β = fs+1�n where β is working on Pê,̂i.
If Pê,̂i has acted at some stage ≤ s+1 then put fs+1(n) =‘act’. Otherwise

fs+1(n) =‘wait’.
Define Rβ to be the maximum of the following sets:

(1){uα : α <lex β} where α <lex β means that there exists k < min(|α|, |β|)
such that α�k = β�k and α(k) < β(k) in the ordering of outcomes.
(2) {uα : α (β and β(|α|) 6=∞}.

Remarks. β preserves computations of α’s which are lexicographically to
its left because α’s want β’s to their right to respect their computations. β
also respects computations directly below it except for those which β thinks
will have an infinite length of agreement.

Case α = fs+1�n and α is working on Ne0,e1 .

We begin by asking:
Does {e0}A0,s+1

s+1 (x) ↓= {e1}A1,s+1
s+1 (x) ↓ for every x ≤ lα?

If yes, we put fs+1(n) =∞ and we set:

uα := max{uα, use({ei}Ai,s+1
s+1 (x)) : x ≤ lα, i = 0, 1}

lα := lα + 1

If no, we put fs+1(n) = lα and make no changes in the variables.

Remarks. If we see expansion in the length of agreement over what it was
when last we set it, we guess optimistically that the length of agreement will
expand forever. If we don’t see this expansion, we pessimistically guess we
will never see another expansion. (At least on the stages which go thru α.)

Lecture notes in Recursion Theory A. Miller December 3, 2008 71

Verification.

We begin by defining the true path f ∈ Λω. We define f�n by induction
on n. First let

Tn = {s > n : f�n ⊆ fs}

these are the true stages and note that Tn ⊆ Tn−1. The set Tn is a recursive
set which (by induction) is infinite. Define f(n) by

f(n) = lim inf
s∈Tn

fs(n).

If β = f�n is working on Pe,i, then f(n) =‘act’ if Pe,i every acts, and otherwise
f(n) =‘wait’, meaning we wait forever. In the case α = f�n is working on
a negative requirement f(n) will be ∞ if there are infinitely many s ∈ Tn in
which the length of agreement lα has been incremented and otherwise it will
be the final value of lα.

Claim. For each n the requirement that f�n is working on is met.
Proof

Case f�n = β is working on Pe,i.

If f(n) =‘act’, then for some x we put x into Ai at a stage s where we
saw ψe,s(x) ↓= 0. But then Ai(x) = 1 6= ψe(x).

If f(n) =‘wait’, let us first prove that Rβ does not change at any stage
s ≥ min(Tn). We first note that for every s > min(Tn) that it is not true that
fs <lex β. Why? Suppose fs�k = β�k and fs(k) < β(k). If β(k) =‘wait’ and
fs(k)=‘act’, then we get a contradiction, since then β is not on the true path
f . In the case of a negative requirement α = β�k then β(k) = l < ω (since
nothing is to the left of∞), but this would mean that the true path would go
to the left of β. It follows that for every s ∈ Tn the variables {uα : α <lex β}
will be what they were at the stage s = min(Tn). Similarly for any uα with
α ⊆ β and β(|α|) 6=∞ these variables will have also reached their maximum
since uα is only changed when lα is incremented.

To see that Pe,i is met in this case let R∗
β be this final value of Rβ. Let

x ∈ Fβ with x > R∗
β. It is not the case that ψe(x) ↓= 0, because if this ever

happened then for some large enough stage s ∈ Tn the worker β would have
acted (either putting this or some smaller x into Ai. Since x is never put
into Ai the requirement is met because ψe(x) 6= 0 = Ai(x).

Lecture notes in Recursion Theory A. Miller December 3, 2008 72

Case f�n = α is working on Ne0,e1 .

Subcase f(n) = l
Then for every s ∈ Tn+1 the length of agreement was less than l + 1, i.e. for
some x ≤ l + 1 it was not true that:

{e0}A0,s
s (x) ↓= {e1}A1,s

s (x) ↓

otherwise we would have incremented lα. It follows that

¬({e0}A0 = {e1}A1 = B)

and so Ne0,e1 is satisfied.

Subcase f(n) =∞
Then we claim that B is recursive. To see this suppose s1 < s2 are successive
stages in Tn+1. Note that α = fs1�n = fs2�n and fs1(n) = fs2(n) = ∞. See
Figure 5.

This means that lα was incremented at each stage si, say l − 1 to l at
stage s1 and l to l + 1 at stage s2. At stage s1 before any action the two
computations agreed:

{e0}A0,s1
s1

�l ↓= {e1}A1,s1
s1

�l ↓ .

If β1 ⊆ fs1 is the node which acted at stage s1 (if any), then it must be that
α ⊆ β1 and β1(n) = ∞. This action could destroy either the left side or
ride side of this agreement but not both, since some x may be put into A0

or A1 but not both. The variable uα is set to protect the surviving side in
subsequent stages. At stages s with s1 < s < s2 any acting node β must
either be above αˆ〈lα〉 or be lexicographically to the right of α as β′ is in
the figure. But this means that Rβ ≥ uα and so the action at stage s cannot
damage the surviving side. At stage s2 we increment l to l + 1 which means
that the destroyed side must have come back and equaled the surviving side.

This means that for each s, s′ ∈ Tn+1 with s < s′ and x < lsα:

{e0}A0,s
s (x) ↓= {e0}A0,s′

s′ (x) ↓ .

The two computations may be different but they output the same value (and
the same for e1). Hence, assuming {e0}A0 = B, to compute B(x) search for
a stage s ∈ Tn+1 such that x < lsα and then B(x) = {e0}A0,s

s (x). It follows
that B is recursive. This proves the Claim and the minimal pair theorem.

Lecture notes in Recursion Theory A. Miller December 3, 2008 73

A
A

A
A

A
A

@
@

@

�
�

�

r

r
α′

r r
∞ lα′

�
�
�
�
�
�
�
�
�
r
β′

fs′

�
�
�
�
�
�
��

r��
�

@
@

@
r r���

�
�
�
�
�
��

r@@
@

�
�

�
��
r6fs2
β2

α

∞ lα

r
β

fsr���
�� fs1

β1

Figure 5: s1 < s, s′ < s2

Lecture notes in Recursion Theory A. Miller December 3, 2008 74

QED

Exercise 32.2. Put the Friedberg-Muchnik argument on a tree of outcomes.
Show there is no injury on the true path.

Exercise 32.3. Put the low simple non-auto-reducible set construction
on a tree of outcomes. Prove the construction works. Show that there is no
injury on the true path.

Exercise 32.4. (From Cooper) Show that there is minimal pair A0 and A1

such that (A0 ⊕ A1)
′ ≡T 0′.

33 Friedberg: A one-one enumeration of the

r.e. sets

Theorem 33.1 (Friedberg, Enumeration without repetition) There exists an
r.e. set U such that

1. {Ue : e ∈ ω} is the set of all r.e. sets and

2. Ue1 6= Ue2 for all e1 6= e2

Proof
We will first construct an r.e. set V and then modify it to get U . The

requirements are:
Re ∀ê < e (Wê 6= We)→ We = Vx for some unique x.

The strategy for meeting this requirement is to appoint a follower x. As
long as it looks like ∀ê < e (Wê�x 6= We�x) keep enumerating We into Vx.
Otherwise make it a disloyal follower and put it into the garbage. What
do we do with Vx when x is a disloyal follower? We make it into an initial
segment.

Definition 33.2 A ⊆ ω is an initial segment iff A = ∅ or A = ω or there
exists n < ω such that A = [0, n] =def {i < ω : 0 ≤ i ≤ n}.

Lecture notes in Recursion Theory A. Miller December 3, 2008 75

So our modified requirement is:

Re If ∀ê < e (Wê 6= We) and We is not an initial segment, then
We = Vx for some unique x.

At stage s+ 1 in our construction we have the following sets:

1. Fs the followers

2. a 1-1 mapping from Fs to ω which tells us that x is the follower of e,
say fs(x) = e

3. Ds the disloyal former followers

4. (Vx,s : x ∈ Fs ∪Ds)

5. a nondecreasing variable gs keeping track of last initial segment assigned
to a disloyal follower.

The sets Fs and Ds will be disjoint finite sets whose union is an initial
segment.

Construction

Stage s+ 1
Let s = 〈e, ?〉. (So we visit each e infinitely often.)
If no follower is assigned to Re, let x = min(Fs ∪Ds) and assign x to be

the follower of Re. Put Fs+1 = Fs ∪ {x} and end the stage.
If x is the follower of Re and

1. ∀ê < e
Wê,s+1 ∩ [0.x] 6= (We,s+1) ∩ [0, x]

2. We,s+1 ∩ [0, x] is not an initial segment

then put Vx,s+1 = Vx,s ∪ We,s+1 and end the stage. Actually in this case
Vx,s ⊆ We,s so we could have said put Vx,s+1 = We,s+1.

If x is the follower of Re and either of those two conditions fails then

1. change x into a disloyal follower, i.e., Fs+1 = Fs \ {x} and Ds+1 =
Ds ∪ {x},

Lecture notes in Recursion Theory A. Miller December 3, 2008 76

2. let gs+1 be the minimum g > gs such that Ve,s ⊆ [0, g], and

3. permanently assign Vx to be [0, gs+1], i.e., set Vx,s+1 = [0, gs+1] and
never change Vx again.

End the stage.

Verification

Claim 1. The following are equivalent for any e:

1. We is not an initial segment of ω and We 6= Wê for each ê < e.

2. Re obtains a permanent follower x and hence Vx = We.

Proof
Suppose condition 2 holds. Then Re obtains a permanent follower x. Then
for all stages s+1 after x is appointed and for which s = 〈e, ?〉, we have that
We,s ∩ [0, x] is not an initial segment and We,s ∩ [0, x] 6= Wê,s ∩ [0, x] for each
ê < e. Condition (1) follows since there are infinitely many such stages.

Suppose that condition 1 holds. Choose y so that We ∩ [0, y] is not an
initial segment and

We ∩ [0, y] 6= Wê ∩ [0, y]

for every ê < e. Go to some stage s0 where

We,s0 ∩ [0, y] = We ∩ [0, y]

and
Wê,s0 ∩ [0, y] = Wê ∩ [0, y]

for every ê < e. IfRe has no permanent follower then infinitely many followers
are appointed to it. Hence some follower x > y will be appointed after stage
s0. But such a follower will always remain loyal.
QED

Let D = ∪s∈ωDs be the set of disloyal followers. Then D is the set of
permanent followers.

Claim 2.

Lecture notes in Recursion Theory A. Miller December 3, 2008 77

1. {Vx : x ∈ D} is the set of r.e. sets which are not initial segments.

2. There exist a recursive set G such that

{[0, n] : n ∈ G} = {Vx : x ∈ D}.

3. Vx 6= Vx′ unless x = x′.

Proof
Part (1) follows from Claim 1.
For Part (2), since the sequence gs is non-decreasing we see that

G = {gs : s ∈ ω}

is recursive.
For Part (3) note that there are two types of Vx. If x is a permanent

follower of some Re and then Vx = We where We is not an initial segment
and We is distinct from each Wê. Or x is a disloyal follower at some stage
s+ 1 and then Vx = [0, gs+1]. Since the sequence gs is bumped up each time
it is used we see that the Vx for disloyal followers are distinct finite initial
segments. This proves Claim.
QED

Let us show how to modify V to U to prove Friedberg’s enumeration
without repetition theorem. Note that V uniquely enumerates every r.e. set
except ω, ∅, and the finite initial segments of the form [0, n] where n /∈ G.
Let {xn : 1 < n < ω} be a 1-1 recursive enumeration of G. Now define U by
U0 = ω, U2 = ∅, U2n = [0, xn] for n > 1, and U2n+1 = Vn.
QED

Definition 33.3 A family of subsets V of ω is called an r.e. class iff there
exists an r.e. set V such that

V = {Ve : e ∈ ω}

where Ve = {x : 〈e, x〉 ∈ V }. V is call an enumeration of V. If Ve 6= Ve′
whenever e 6= e′ then V is called a Friedberg enumeration of V.

Theorem 33.4 If V is an r.e. class containing all initial segments, then V
has a Friedberg enumeration.

Lecture notes in Recursion Theory A. Miller December 3, 2008 78

Proof
This is an obvious modification of the proof of Theorem 33.1.
QED

Example 33.5 (Pour-El, Putnam) There is an r.e. class consisting of in-
finitely many one and two element sets which has no Friedberg enumeration.

Proof
Take A to be any set which is r.e. but not recursive. Let Fn = {2n, 2n+ 1}
and Gn = {2n}. Then

V = {Fn : n ∈ ω} ∪ {Gn : n ∈ A}

is an r.e. class. This is because we just enumerate 2n + 1 into Gn turning
it into Fn when n is enumerated into A). But V cannot have a Friedberg
enumeration V since then:

∀n (n ∈ A iff ∃x, y x 6= y and 2n ∈ (Vx ∩ Vy)).

QED

Example 33.6 (Pour-El, Putnam) There is an infinite r.e. class V con-
taining ω such that any enumeration of V must list ω infinitely many times.

Proof
Let A be any r.e. set which is not recursive. Let V be the class of r.e. sets
B such that B ⊆ A or B = ω. To see that V is an r.e. class just enumerate
each We into Ve as long as you see that As ∩ We,s = ∅. If this ever fails,
enumerate all of ω into Ve.

If there is an enumeration of V which only lists ω finitely many times,
then there is an enumeration U of the elements of V which are not ω. But
then

A =
⋃
{Ue : e ∈ ω}

would the be an r.e. set.
QED

It seems to require a more complicated proof than that for Theorem 40.6
to show:

Theorem 33.7 (Friedberg) The class of graphs of partial recursive function
has a Friedberg enumeration.

Lecture notes in Recursion Theory A. Miller December 3, 2008 79

Exercise 33.8. Prove that the family of recursive sets is an r.e. class and
has a Friedberg enumeration.

Exercise 33.9. Prove that the family of r.e. sets which are not simple is
an r.e. class and has a Friedberg enumeration.

34 Hypersimple sets

Definition 34.1 Coding finite sets. For D ⊆ ω let x =
∑

n∈D 2n. Write
Dx = D.

Definition 34.2 (Dx : x ∈ R) is a strong array iff R is an infinite recursive
set and for every x, y ∈ R we have Dx ∩Dy = ∅ whenever x 6= y.

Definition 34.3 A set A ⊆ ω is hypersimple iff A is r.e. , A is infinite, and
for every strong array (Dx : x ∈ R) there exists x ∈ R such that Dx ⊆ A.

Proposition 34.4 (Post)
(1) Hypersimple implies simple.
(2) There is a simple set which is not hypersimple.
(3) There is a hypersimple set.

Proof
(1) If A is not simple, then there exists an infinite recursive set R ⊆ A. Then
{D2x : x ∈ R} witnesses that A is not hypersimple.
(2) In Post’s original construction of a simple set A (see Theorem 15.2) we
constructed a simple set A by waiting until there was some x ∈ We,s with
x > 2e and We,s ∩As = ∅ and then putting x into A. The reason that A was
infinite was because for every e we had that |[0, 2e] ∩ A| ≤ e. This means
that for every a we have that

[a, 4a] ∩ A 6= ∅

because [a, 4a] is 3/4 of the interval [0, 4a]. So define a0 = 5 and an+1 =
4an + 1. Take xn so that Dxn = [an, 4an] and note that Dxn ∩ A 6= ∅ for
each n so the recursive set R = {xn : n < ω} witnesses that A is not
hypersimple.
(3) This is a consequence of the following proposition, although originally
Post gave a construction similar to his construction of a simple set.
QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 80

Proposition 34.5 (Dekker) Deficiency sets are hypersimple.

Proof
See Theorem 17.1. Suppose that A = {as : s ∈ ω} is a 1-1 recursive
enumeration of A and A is not recursive. Define

D = {s : ∃t > s at < as}.

As we saw before A ≡T D and D is simple. A similar proof will show that
D is hypersimple.

Suppose for contradiction that there exists a strong array (Dx : x ∈ R)
such that Dx ∩D 6= ∅ for every x ∈ R.

Now we get a contradiction by showing that A is computable.
Input u. Find an x ∈ R such that

u < min{as : s ∈ Dx}.

Such an x exists, since as is a 1-1 enumeration and the Dx are pairwise
disjoint. But now at least one of t ∈ Dx is not deficient, so for all s > t we
have as > at. Hence u ∈ A iff u = as for some s ≤ maxDx.
QED

Exercise 34.6. Define A to be bdd-hypersimple iff A is r.e. , A is infinite,
and for every strong array (Dx : x ∈ R) such that there exists N < ω such
that |Dx| ≤ N for all x ∈ R, there exists x ∈ R such that Dx ⊆ A. Prove
that bdd-hypersimple is equivalent to simple.

Definition 34.7 For any set A ⊆ ω such that A is infinite define an to be
the (n+ 1)th element of A, i.e.,

A = {a0 < a1 < · · · < an < · · ·}.

Proposition 34.8 For any r.e. set A with A infinite the following are equiv-
alent:

1. A is hypersimple.

2. For any recursive increasing sequence nk < nk+1 there are infinitely
many k with [nk, nk+1) ⊆ A.

Lecture notes in Recursion Theory A. Miller December 3, 2008 81

3. For any recursive f ∈ ωω there are infinitely many k such that f(k) <
ak.

Proof
(1)→ (2). This is clear since if Dxk

= [nk, nk+1), then R = {xk : k < ω}
is a strong array. There are infinitely many since R(l) =def {xk : k > l} is a
strong array for any l.

(2)→ (3). Given a recursive f construct a recursive sequence nk+1 > nk
with the property that f(nk + 1) < nk+1 for each k. For any k such that
[nk, nk+1) ⊆ A note that A ∩ [0, nk+1) ⊆ [0, nk) and so ank+1 = (nk + 1)th

element of A must be greater than nk+1. Hence f(nk + 1) < ank+1.
(3)→ (1). Suppose A is not hypersimple and hence there exists a strong

array (Dx : x ∈ R) such that Dx ∩ A 6= ∅ for all x ∈ A. Let {xn : n ∈ ω)
be a 1-1 recursive enumeration of R and define

f(n) = 1 + max(∪m≤nDxm)

Then |A ∩ [0, f(n))| > n and so f(n) > an.
QED

Exercise 34.9 Suppose A is hypersimple and f : ω → ω is recursive. Prove
there exist an infinite recursive set C such that f(n) < an for all n ∈ C.

Exercise 34.10. Prove that for every r.e. set A ⊆ ω if A is infinite, then
there exists a hypersimple set B ⊇ A.

Consider propositional logic with the set of atomic letters

{Pn : n ∈ ω}.

For any propositional sentence ψ and subset A ⊆ ω define

A |= ψ

inductively by
A |= Pn iff n ∈ A

A |= ¬ψ iff not A |= ψ

A |= (ψ ∨ θ) iff (A |= ψ or A |= θ)

Lecture notes in Recursion Theory A. Miller December 3, 2008 82

and so forth for the other logical symbols.
By coding symbols as elements of ω and thinking of sentences as strings

of symbols or finite sequences of elements of ω, we identify the set of propo-
sitional sentences with a recursive subset of ω, SENT. The details of this
coding are left to the reader.

The following notion is known as truth-table (tt) reducibility.

Definition 34.11 A ≤tt B iff there exists a recursive sequence

(θn ∈ SENT : n ∈ ω)

such that for all n ∈ ω
n ∈ A iff B |= θn

Note: It is easy to see that A ≤tt C and B ≤tt C implies (A ∩ B) ≤tt C
and A ≤tt C. Hence the family of sets which are truth-table reducible to C is
closed under finite boolean combinations. It is easy to see that ≤m-reducible
is stronger than ≤tt, and ≤tt is stronger than ≤T .

Proposition 34.12 (Nerode) The following are equivalent:

1. A ≤tt B.

2. There exist e with the property that

∀X ∀x {e}X(x) ↓

and {e}B = A.

3. There exists e and f ∈ ωω recursive such that

∀x {e}Bf(x)(x) ↓

and {e}B = A.

Proof
(1) → (2). Given (θn : n ∈ ω) witnessing that A ≤tt B, it is easy to

construct an oracle machine e such that for any input x and oracle X that
{e}X(x) ↓= 1, if X |= θx and {e}X(x) ↓= 0, if X |= ¬θx.

(2)→ (3). We show that the same e works. Input x and let

Tx = {σ ∈ 2<ω : {e}σ|σ|(x) ↑}.

Lecture notes in Recursion Theory A. Miller December 3, 2008 83

The trees Tx are uniformly recursive in x. By Konig’s tree lemma, since Tx
has no infinite branch, it is finite. Therefore we can compute the least n such
that for all σ ∈ 2n we have that σ /∈ Tx. Put f(x) = n.

(3) → (1). Input x. Compute a use bound ux so that for every possible
computation {e}?f(x)(x) the computation only asks about i < ux. (Since it

takes at least one step to ask the oracle anything there are at most 2f(x) such
simulations.)

Now define
tx = {R ⊆ [0, ux] : {e}Rf(x)(x) ↓= 1}.

Define
θx = ∨∨R∈tx(∧∧i∈R Pi ∧ ∧∧i∈[0,ux]\R ¬Pi)

Then for any x ∈ ω we have that

x ∈ A iff {e}Bf(x)(x) ↓= 1 iff B ∩ [0, ux] = R ∈ tx iff B |= θx.

QED

Proposition 34.13 (Post)

1. If A is simple, then A <m K.

2. If A is hypersimple, then A <tt K.

3. There exists a simple A with A ≡tt K.

Proof
(1) If K ≤m A then A is creative and hence not simple. (See Theorem

14.3.)
(2) Since every r.e. set is many-one reducible to K it is enough to see

that K ≤tt A implies A is not hypersimple.

Claim. Let Γ = {Pn : n ∈ A}. Then there exists a recursive list (ρn : n < ω)
of propositional sentences such that for every n

1. A |= ρn and

2. Γ ∪ {ρm : m < n} 6` ρn.

Lecture notes in Recursion Theory A. Miller December 3, 2008 84

Proof
Since K ≤tt A there exists a recursive function θ : ω → SENT such that
n ∈ K iff A |= θ(n).

Now we effectively construct ρn as follows. Let

Σn = {ρ : Γ ∪ {ρm : m < n} ` ρ}.

Note that Σn is recursively enumerable as a subset of SENT. Also A |= θ for
every θ ∈ Σn. It follows that θ−1(Σn) ⊆ K is r.e. By the S-n-m Theorem
there exists a recursive function f such that

Wf(n) = θ−1(Σn)

and by the proof that K is creative we have that

f(n) ∈ K ∪ θ−1(Σn).

Take ρn = θ(f(n)).
QED

Let Sk be that set of all n such that the propositional letter Pn occurs in
the sentence ρk, i.e., Sk is the support of ρk.

Claim. For any n let

m = max
(⋃
{Sk : k ≤ 22n+1

+ 1}
)

then A ∩ [n,m) 6= ∅.
Proof
Suppose not and assume that [n,m) ⊆ A. Let ρ∗k be obtained from ρk by
replacing all propositional letters Pi for n < i < m by the letter Pn. Note
that Γ ` Pi for all these i and hence Γ ` ρ∗k ≡ ρk for every k ≤ 22n+1

+1. But
there are at most 22n+1

logically inequivalent propositional sentences with
atomic letters Pi for i ≤ n and so for some k < l we have that ρ∗k ≡ ρ∗l . But
this is a contradiction since then

Γ ` ρi ≡ ρj.

QED
Now it is an easy matter to construct a recursive sequence nk < nk+1 so

that A ∩ [nk, nk+1) 6= ∅ for each k. Hence A is not hypersimple.

Lecture notes in Recursion Theory A. Miller December 3, 2008 85

(3) Let B be any simple set which is not hypersimple. By Proposition
34.8 there exists a recursive increasing sequence (nk : k < ω) such that for
all k we have that B ∩ [nk, nk+1) 6= ∅. Now let

A = B ∪
⋃
k∈K

[nk, nk+1)

A is simple because it is a superset of the simple set B. A is infinite because
for each k ∈ K we have A ∩ [nk, nk+1) 6= ∅. We have that K ≤tt A because

k ∈ K iff A |= ∧∧nk≤i<nk+1
Pi

QED

Exercise 34.14. Prove that ≤tt is transitive, i.e., A ≤tt B and B ≤tt C
implies A ≤tt C.

35 Hyperhypersimple sets

Definition 35.1 V is a weak array iff V is r.e. and Vx ∩ Vy = ∅ whenever
x 6= y. As usual, Vx = {y : 〈x, y〉 ∈ V }.

Definition 35.2 A ⊆ ω is hyperhypersimple iff A is re, A is infinite, and
for every weak array V there exists x with Vx ⊆ A.

Proposition 35.3 For any A ⊆ ω for which A is r.e. and A is infinite the
following are equivalent:

1. A is hyperhypersimple

2. for every infinite r.e. set B such that Wx ∩ Wy = ∅ for all distinct
x, y ∈ B there exists x ∈ B with Wx ⊆ A

3. for every weak array V there exists an infinite recursive set R such that
Vx ⊆ A for all x ∈ R

4. for every weak array V such that Vx is finite for all x there exists x
such that Vx ⊆ A

Lecture notes in Recursion Theory A. Miller December 3, 2008 86

Proof
(1) iff (2) is true because the two types of arrays are the same.
(1)→ (3), The sequence (Rn = {〈n,m〉 : m ∈ ω} : n < ω) is a uniformly

recursive partition of ω into infinite pieces. Take

Un = ∪e∈RnVe

Then U is weak array and so there exists n with Un ⊆ A.
(4) → (1). Given a weak array V such that Ve ∩ A 6= ∅ for all e we find

another weak array V ∗ such that V ∗
e finite and V ∗

e ∩A 6= ∅ for all e. For each
s define V ∗

e,s = Ve,s0+1 where s0 is the largest t ≤ s such that Ve,t ⊆ As.
QED

Exercise 35.4. Prove
(a) If A is simple and B is simple, then A ∩B is simple.
(b) If A is hypersimple and B is hypersimple, then A∩B is hypersimple.
(b) If A is hyperhypersimple and B is hyperhypersimple, then A ∩ B is

hyperhypersimple.

Example 35.5 There exists a hypersimple set A which is not hyperhyper-
simple.

Proof
Let B ⊆ ω be any hypersimple set. Define A ⊆ ω by

A = {〈n,m〉 : n ∈ B or n ≤ m}.

See Figure 6. A is not hyperhypersimple since each of the horizontal lines:

Vk =def {〈m, k〉 : m ∈ ω}

meets A. To see that A is hypersimple suppose we are given a strong array
(Dn : n ∈ R). Let π(〈m,n〉) = m be projection to the first coordinate. We
can find an infinite recursive subset S ⊆ R such that (π(Dx∩Q) : x ∈ S) are
pairwise disjoint where Q = {〈n,m〉 : m < n < ω}. Since B is hypersimple,
there exists x ∈ S with π(Dx ∩Q) ⊆ B and hence Dx ⊆ A.
QED

Example 35.6 Dekker deficiency sets are never hyperhypersimple.

Lecture notes in Recursion Theory A. Miller December 3, 2008 87

-

6

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�

�
�

�
�

��

�
�

���
�

n ∈ B

&%
'$
Dx

"!

Dy

Vk

Figure 6: A = {〈n,m〉 : n ∈ B or n ≤ m}.

Proof
Let A = {as : s ∈ ω} be a one-one recursive enumeration of a non recursive
set A. And D = {s : ∃t > s at < as}. We construct a weak array V to meet
the requirements:

Rx Vx ∩D 6= ∅

Stage s+1
Step (a). For any x ≤ s if Rx has a follower t such that as < at then

unappoint t so that now Rx has no follower.
Step(b). For the least x for which Rx has no follower, appoint s the

follower of Rx and put Vx,s+1 = Vx,s ∪ {s}.
This ends the stage and the construction. Note that V is a weak array.

Claim. Each Rx obtains a permanent follower s and for this s we have
s ∈ Vx ∩D.
Proof
This is by induction on x. So after some sufficiently large stage s0 no y < x
is appointed a new follower. Suppose for contradiction that Rx is appointed
a new follower at stages s1, s2, . . . where s0 < s1 < s2 < · · ·. Note that since
higher priority requirements don’t get new followers after s0 each time Rx

Lecture notes in Recursion Theory A. Miller December 3, 2008 88

losses its follower it acquires the stage itself as its new follower. But this
means that

as1 > as2 > as3 > · · ·

which is a contradiction.
QED

Exercise 35.7. Prove that if A is hypersimple and (Dx : x ∈ C) is a strong
array then there exists an infinite computable E ⊆ C such that Dx ⊆ A for
all x ∈ E.

36 Maximal sets

Definition 36.1 A ⊆∗ B iff B \ A is finite.
A =∗ B iff A ⊆∗ B and B ⊆∗ A
∀∞ means ‘for all but finitely many’
∃∞ means ‘exists infinitely many’

Definition 36.2 M ⊆ ω is maximal iff M is r.e. , M is infinite, and for
every A r.e. if M ⊆ A then M =∗ A or A =∗ ω.

Proposition 36.3 Maximal sets are hyperhypersimple.

Suppose V is a weak array such that Ve ∩ A 6= ∅ for all e. Define

B = A ∪
⋃
e<ω

V2e

then A 6=∗ B and B 6=∗ ω, so A is not maximal.
QED

Theorem 36.4 (Friedberg) Maximal sets exist.

Proof
We will construct the maximal set M as follows. We use the notation pn for
the nth element of the complement of M , i.e.,

M = {p0 < p1 < p2 < · · ·}

Are requirements are

Lecture notes in Recursion Theory A. Miller December 3, 2008 89

Re (∀∞n pn ∈ We) or (∀∞n pn /∈ We)

This guarantees that M ∪We =∗ ω or M ∪We =∗ M ,
At stage s given Ms we let

Ms = {p0,s < p1,s < p2,s < · · ·}

The idea of this proof is called moving markers. We think of a marker
labeled n with position pn,s. As we slide the marker upward we put the
uncovered numbers into Ms. In order to get M infinite we want each marker
to eventually stop moving.

Definition 36.5 σ ∈ 2n is the n-state of x at stage s iff

for all e < n σ(e) =

{
1 if x ∈ We,s

0 if x /∈ We,s

Two easy facts about the n-state are the following:

(1) Suppose s1 ≤ s2,
σ1 ∈ 2n is the n-state of x at stage s1, and
σ2 ∈ 2n is the n-state of x at stage s2,

then σ1 ≤lex σ2.

(2) For fixed n and x there is σ ∈ 2n such that σ is the n-state of x for
all but finitely many stages s. We call this the final n-state of x.

Our strategy can be summarized simply as ‘maximize the lexicographic
order of the n-state of pn’.

Stage s+ 1.
Find the least n (if any) such that there exists m with n < m < s such that

if σ ∈ 2n is the n state of pn,s and
τ ∈ 2n is the n state of pm,s, then σ <lex τ .

For the least such n find the least m and shift the marker n to m:
Put pn+i,s+1 = pm+i,s for all i < ω. Equivalently put

Ms+1 = Ms ∪ {pj,s : n ≤ j < m}

Otherwise as usual if there are no such n,m just go to the next stage with
everything unchanged.

Lecture notes in Recursion Theory A. Miller December 3, 2008 90

This ends the stage and the construction.

Claim. The markers eventually stop moving, i.e.,

lim
s→∞

pn,s = pn <∞

Proof
This is proved by induction on n. Note that the only way the marker n moves
is either that it is bumped up by some marker m < n or it moves to a higher
n-state. So consider some stage s0 so that no marker m < n moves after
stage s0. But it is impossible for pn to change infinitely many times after
this since its n-state would have to increase lexicographically infinitely many
times. (Note that in between moves its n-state might also change without
the marker moving but it can only increase if it doesn’t move.)
QED

Claim. For each n there exists τ ∈ 2n such that

∀∞m τ = the final n-state of pm.

Proof
Suppose not. Then there exists distinct τ1, τ2 ∈ 2n such that
∃∞m τ1 = the final n-state of pm and
∃∞m τ2 = the final n-state of pm.

Suppose τ1 <lex τ2. Then we can choose m1,m2 with n < m1 < m2 and the
final n-state of pmi

is τi. This is a contradiction, since for some large enough
stage s0 > m2 the markers pj for j ≤ m2 have stopped moving and their final
n-states are their states at stage s0. But by the construction some marker
≤ pm1 must move.
QED

This final claim proves the Theorem, since if n = e+ 1 we have that
τ(e) = 1 implies ∀∞m pm ∈ We

and
τ(e) = 0 implies ∀∞m pm /∈ We

QED

Example 36.6 There exists a hyperhypersimple set which is not maximal.

Lecture notes in Recursion Theory A. Miller December 3, 2008 91

Proof
First we note that it easy to get M1 and M2 maximal so that M1 6=∗ M2.
Take any maximal set M and let R ⊆ M to be an infinite recursive subset.
Let π : ω → ω be a recursive bijection which takes R to R. Let M1 = M
and let M2 = π(M1).

Now let A = M1 ∩M2. Then A is hyperhypersimple (see exercise) but
not maximal since A ⊆M1 ⊆ ω and A 6=∗ M1 and M1 6=∗ ω.
QED

Remark. Yates noted that we can add to the maximal set construction
an extra ‘kick’ to the pe marker to ensure that {e}(e) ↓ iff {e}pe(e). Then
the maximal set constructed will be Turing equivalent to K.

Exercise 36.7. Suppose A = {an : n < ω} is a 1-1 recursive enumeration
of a hyperhypersimple set A. Let B = {aan : n < ω}. Prove that B is
hyperhypersimple but not maximal.

Exercise 36.8. An r.e. set A ⊆ ω is simple in R where R is an infinite
recursive set iff A∩R is infinite but contains no infinite r.e. subset. Is every
r.e. set which is not recursive, simple in some infinite recursive set? Hint:
Split a maximal set.

37 The lattice of r.e. sets

Definition 37.1 The lattice of r.e. sets is E = (r.e.sets,⊆). A subset X ⊆
E is definable iff there is a first order formula θ(v) in the language of ⊆ such
that

X = {A ∈ E : E |= θ(A)}.

Similarly for X ⊆ E2 or X ⊆ E3.

Example 37.2 The following are definable in E.

1. {(A,B,C) ∈ E3 : A ∪B = C}

2. {(A,B,C) ∈ E3 : A ∩B = C}

3. {∅}

4. {ω}

Lecture notes in Recursion Theory A. Miller December 3, 2008 92

5. recursive sets

A is recursive iff E |= ∃B B ∩ A = ∅ and B ∪ A = ω

6. r.e. but not recursive sets

7. infinite r.e. sets

A is infinite r.e. iff E |= ∃B B ⊆ A and B is not recursive

8. finite sets

9. cofinite sets

10. ⊆∗, =∗

11. simple sets

12. maximal sets

Definition 37.3 π is an automorphism of E iff π : E → E is a bijection
such that for every A,B ∈ E

A ⊆ B iff π(A) ⊆ π(B).

Note that for any first-order formula θ(v1, . . . , vn) in the language of E ,
i.e., ⊆, that for any π ∈ aut(E) and A1, . . . , An ∈ E we have that

E |= θ(A1, . . . , An) iff E |= θ(π(A1), . . . , π(An))

Hence definable sets are closed under automorphisms.

Example 37.4 If A ∈ E, then {A} is definable in E iff A = ∅ or A = ω.

Proof
If A is neither ∅ or ω, then we can choose n,m < ω such that n ∈ A and
m /∈ A. Let π : ω → ω be the identity except π(n) = m and π(m) = n.
Define π : P (ω)→ P (ω) by π(A) = {π(n) : n ∈ A}. Then since π is recursive
it is clear that π ∈ aut(E). But since

π(A) = (A \ {n}) ∪ {m}

we see that {A} is not closed under automorphisms and hence cannot be
definable.
QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 93

Proposition 37.5 1. For every π ∈ aut(E) there exists a bijection π̂ of
ω such that π(A) = {π̂(n) : n ∈ A}.

2. Not every bijection π : ω → ω induces an automorphism of E.

3. There are continuum many bijections π : ω → ω which induce an
automorphism of E.

Proof
(1) It is easy to see that the set of singletons

{{n} : n ∈ ω} ⊆ E

is definable in E . Hence any automorphism π : E → E must permute the
singletons. Define π̂(n) so that π({n}) = {π̂(n)}. But now for every n ∈ ω

n ∈ A iff {n} ⊆ A iff π({n}) ⊆ π(A) iff π̂(n) ∈ π(A)

Hence π(A) = {π̂(n) : n ∈ A}.
(2) Take any bijection which maps the even integers to some non recursive

infinite coinfinite set.
(3) Let M be a maximal set. Let π : ω → ω be any bijection such

that π�M = id. There are continuum many such bijections, one for each
permutation of M . But for any A ∈ E we have that A ∩ M is finite or
A ∩M =∗ M . But this gives us that π(A) =∗ A. Similarly π−1(A) =∗ A.
QED

The following theorem shows that the family of hyperhypersimple sets is
definable in E .

Theorem 37.6 (Lachlan) A is hyperhypersimple iff A is r.e. , A is infinite,
and

E |= ∀B ⊇ A ∃C ⊇ A B ∩ C = A and B ∪ C = ω

Proof
Suppose A is not hyperhypersimple and V is a weak array such that Ve∩A 6= ∅
for all e. Define

B = A ∪
⋃
e∈ω

(Ve ∩We)

Suppose for contradiction that C satisfies B ∩C = A and B ∪C = ω. Then
for some e we have that C = We. Let x ∈ Ve ∩A. If x ∈ We then x ∈ C ∩B

Lecture notes in Recursion Theory A. Miller December 3, 2008 94

but this contradicts B ∩ C = A. If x /∈ We then x /∈ C and x /∈ B but this
contradicts B ∪ C = ω.

Conversely suppose there exists B as above for which there is no C.
We must show there is a weak array V such that Ve ∩ A 6= ∅ for all e.
So let B = {bs : s ∈ ω} be a 1-1 recursive enumeration of B and put
Bs = {bt : t < s}. Similarly, let As be a recursive enumeration of A.

We will construct Ve,s pairwise disjoint subsets of B and meet the require-
ments:

Re Ve ∩ A 6= ∅

We will carry along g(e, s) a gate which we use to let elements into each
Ve. At stage s = 0 as usual we put Ve,s = ∅ and g(e, s) = 0.

Construction

Stage s+ 1.
First define g(e, s + 1) for e < s. If Ve,s ⊆ As, then g(e, s + 1) = g(e, s) + 1.
In other words, if the requirement Re is not looking good, then increment
the gate, otherwise let it alone.

Look for the least e < s (if any) such that bs ≤ g(e, s+1) and put bs into
Ve, i.e.,

Ve,s+1 = Ve,s ∪ {bs}.

If there is no such e, do nothing. This ends the construction.

Verification

Claim. lims→∞ g(e, s) = g(e) <∞ and Re is met.
Proof
This is proved by induction on e. Choose s0 so that for all ê < e and s > s0

we have that g(ê, s) = g(ê) and

bs > max{g(ê) : ê < e}

Suppose for contradiction that

lim
s→∞

g(e, s) =∞

Lecture notes in Recursion Theory A. Miller December 3, 2008 95

Define
C = A ∪

⋃
s≥s0

([0, g(e, s+ 1)] ∩Bs

Suppose x ∈ A. Then we claim that

x ∈ C iff x ∈ B

This is a contradiction since then C ∩B = A and C ∪B = ω.
Suppose x ∈ B. This implies that x ∈ Bs for all s. But if g(e, s) → ∞

we have that x ∈ C.
Suppose x ∈ C. Then for some s ≥ s0 we have that x ∈ [0, g(e, s)] ∩ Bs

(since we are assuming x /∈ A.) If x /∈ B then x ∈ B \ Bs. Hence x = bt for
some t ≥ s. But notice that bt = x ≤ g(e, s) ≤ g(e, t + 1). By our choice
of s0 we have that bt > g(ê) for all ê < e and so bt will be put into Ve. But
x = bt was assumed to be an element of A. This means that g(e, t) will never
increase again which contradicts it going to ∞.

The reason Re is met is because if g(e, s) stops growing then eventually
we stop putting bs’s into Ve. Hence Ve is finite and so it is impossible that
Ve ⊆ A.

This proves the Claim and the Theorem.
QED

The following shows that the family of hypersimple sets is not definable
in E .

Theorem 37.7 (Martin) There exists a hypersimple set A and π ∈ aut(E)
such that π(A) is not hypersimple.

Proof
We will construct the r.e. set A as usual by constructing a recursive increasing
sequence As. We will construct a recursive sequence πs of bijections of ω with
the property that πs(n) = n for every n ≥ s. So each πs is really a finite
permutation. π will be the limit of πs.

Let W ∗
e,s be defined as follows:

W ∗
e,s = We,s0 where s0 ≤ s is the largest t ≤ s with the property that for

distinct x, y ∈ We,t we have that Dx ∩Dy = ∅.
The list W ∗

e automatically contains all strong arrays. Our requirements
for this construction include:

Re W ∗
e infinite → ∃x ∈ W ∗

e Dx ⊆ A

Lecture notes in Recursion Theory A. Miller December 3, 2008 96

The strategy for making sure that A is a variant on the Post 2e strategy.
At stage s = 0 in our construction we have As = ∅ and πs the identity.

Stage s+ 1.
Given πs and As, we say that e < s requires attention iff

1. ¬∃n ∈ W ∗
e,s Dn ⊆ As

2. ∃x, y such that

(a) x, y /∈ As
(b) ∃n ∈ W ∗

e,s x ∈ Dn

(c) e < x < y < s, e < πs(x), e < πs(y)

(d) i. e-state of x at stage s = e-state of y at stage s

ii. e-state of πs(x) at stage s = e-state of πs(y) at stage s

(e) 2x < πs(y).

The action at this stage is the following. For the least e < s (if any) which
requires attention we choose the least x for which there is a y and then we
choose the least y. For this choice (e, x, y) = (es, xs, ys) we

(a) put x into A, As+1 = As ∪ {xs}
(b) put πs+1 = πs◦swap(x, y) where swap(x, y) refers to the transposition

which interchanges x and y.
As usual if there is no e which requires attention we do nothing and go onto
the next stage.

This ends the construction. Let Q denote the stages s where action takes
place at stage s+ 1. Then

A = {xs : s ∈ Q}

We define
π(u) = lim

s→∞
πs(u)

although at this point we have not proved that this limit always exists. Note
the pointwise limit of 1-1 functions must be 1-1 where it is defined.

Note that for s ∈ Q we have that πs+1(xs) = πs(ys). Since xs enters
A we have (by 2a) that xs will never be a xt or yt latter. It follows that
π(xs) = πs+1(xs). Hence

B =def {πs+1(xs) : s ∈ Q} = {π(xs) : s ∈ Q}

Lecture notes in Recursion Theory A. Miller December 3, 2008 97

is well defined and r.e.

Claim (1) for any n we have that |B ∩ [0, 2n]| ≤ n.
Proof
Note that (by 2e) we have that π(xs) = πs(ys) > 2xs. Since each xs is distinct
the Claim follows.
QED

As we have seen before this implies that B is not hypersimple. (Proposi-
tion 34.4).

Claim (2) lims→∞ πs(u) = π(u) <∞ for every u.
Proof
Fix s0 so that A∩ [0, u] = As0∩ [0, u]. Now the only way that πs+1(u) 6= πs(u)
for some s > s0 is if u = xs or u = ys. But in either case since xs < ys and
xs enters A we have A changes in the interval [0, u] which is a contradiction.
QED

We don’t know yet that π is onto.

Claim (3) For each e
(a) Re is met.
(b) ∃s0 ∀s > s0 es > e

Proof
This is proved by induction on e.

(a) We may suppose by induction that there exists s0 such that es ≥ e for
all s > s0. Suppose Re is not met. Then W ∗

e is infinite and for all n ∈ W ∗
e

we have that Dn ∩ A 6= ∅. For each n ∈ W ∗
e define

un = min(Dn ∩ A)

Since the Dn are pairwise disjoint all of the un are distinct. Note there exist
σ, τ ∈ 2e such that
∃∞n ∈ W ∗

e σ = final e-state of un and τ = final e-state of π(un).
Choose un and um such that

1. n,m ∈ W ∗
e

2. e < un < um

3. 2un < π(um)

Lecture notes in Recursion Theory A. Miller December 3, 2008 98

4. σ is the final e-state of un and um, and

5. τ is the final e-state of π(un) and π(um).

Increase s0 (if necessary) so that not only is es ≥ e for all s ≥ s0 but also
so that

1. n,m ∈ W ∗
e,s0

2. un < um < s0 and π(un) < s0 and π(um) < s0

3. πs(un) = π(un) and πs(um) = π(um) all s > s0

4. σ is the e-state of un and um at stage s0,

5. τ is the e-state of π(un) and π(um) at stage s0 and

6. As0 ∩ [0, um] = A ∩ [0, um]

Recall that we chose un, um ∈ A. It is easy to check that e requires
attention at stage s0 and un and um witness this fact. But this means that
un or some smaller u enters A. But this contradicts the condition that A
does not change below um.

(b) Suppose that es ≥ e for all s > s0 and Re is met. If W ∗
e is infinite,

then for some n ∈ W ∗
e we have that Dn ⊆ A. But this will be seen at some

stage and so e will not require attention after that. If W ∗
e is finite, then

suppose that
∪{Dn : n ∈ W ∗

e } ⊆ [0, N].

After we reach a stage s > s0 where As ∩ [0, N] = A ∩ [0, N], then e will
never again require attention because then A would change beneath N .
QED

Claim (4) π is onto.
Proof
Given z choose s0 so that es > z for all s ≥ s0. If πs0(u) = z, then u will
never be either xs or ys for any s ≥ s0. This is because we required (2c) that
πs(xs), πs(ys) > es. Hence π(u) = z.
QED

Claim (5)
(a) ∀C ∈ E π(C) ∈ E

Lecture notes in Recursion Theory A. Miller December 3, 2008 99

(b) ∀C ∈ E π−1(C) ∈ E
Proof

(a) Fix s0 so that for all s > s0 we have that es > e. Then we show that

π(We) =
⋃
s>s0

πs(We,s)

To see this first suppose y ∈ π(We). Then there exists x ∈ We with π(x) = y
but for all sufficiently large s we have that x ∈ We,s and πs(x) = π(x) and
thus y ∈ πs(We,s).

To see the other inclusion, suppose that y ∈ πs(We,s) for some s > s0.
We claim that for every t > s that y ∈ πt(We,t). This is proved by induction
on t. Suppose that πt(u) = y for some u ∈ We,t. Then πt+1(u) = πt(u) unless
u = xt or u = yt and then πt+1(xt) = πt(yt) and πt+1(yt) = πt(xt). But since
xt and yt have the same et-state and et > e, if one is in We,t so is the other.
In either case we have that there exists v ∈ We,t+1 with πt+1(v) = y. Now
to see that y ∈ π(We) suppose that π(u) = y and choose sufficiently large
t > s0 such that πt(u) = π(u) = y. Since πt is a bijection and y ∈ πt(We,t),
it must be that u ∈ We,t and hence u ∈ We.

(b) This is similar, except we use that πt(xt) and πt(yt) have the same
et-state.
QED

Exercise 37.8. Prove that there exists a bijection π : ω → ω such that
π(A) ∈ E for all A ∈ E but π /∈ aut(E). (Hint: use a maximal set.)

Exercise 37.9. For each n ≥ 2 prove there is a sequence of maximal sets
A1, . . . , An such that Ai 6=∗ Aj for distinct i and j. Prove that for any such
sequence that E∗(A1∩A2∩· · ·∩An) is isomorphic to (P({1, . . . , n}),⊆). The
structure E∗(A) is the set of r.e. supersets of A modulo the finite sets and
ordered by ⊆∗.

38 Arithmetic hierarchy

Definition 38.1 For A and B predicates over subsets of ω or finite products
of ω we define:

Π0
0 = Σ0

0 = the recursive predicates.
A is Σ0

n+1 iff there exists B which is Π0
n and A(x) ≡ ∃y B(x, y).

Lecture notes in Recursion Theory A. Miller December 3, 2008 100

A is Π0
n+1 iff there exists B which is Σ0

n and A(x) ≡ ∀y B(x, y).
A is ∆0

n iff A is Σ0
n and A is Π0

n.

Note that by DeMorgan’s Laws

Π0
n = {¬A : A ∈ Σ0

n} and Σ0
n = {¬A : A ∈ Π0

n}

and hence
∆0
n = {¬A : A ∈ ∆0

n}.

Proposition 38.2 Suppose Γ is Σ0
n, Π0

n, or ∆0
n. Then Γ is closed under ≤m,

i.e., A ≤m B ∈ Γ implies A ∈ Γ. This implies that if the predicate B(x, y)
is in Γ and f is a recursive function, then A(x, y) ≡ B(x, f(x)) is in Γ.

Proposition 38.3 If B(x, y) in Σ0
n, then A(x) ≡ ∃y B(x, y) is in Σ0

n. If
B(x, y) in Π0

n, then A(x) ≡ ∀y B(x, y) is in Π0
n.

Proposition 38.4 Suppose Γ is Σ0
n, Π0

n, or ∆0
n. If A,B ∈ Γ, then A ∧

B and A ∨ B are both in Γ. Also, Γ predicates are closed under bounded
quantification, e.g., ∃u < x A(u, x, . . .) and ∀u < x A(u, x, . . .).

Proposition 38.5 Σ0
n ∪ Π0

n ⊆ ∆n+1 = Σ0
n+1 ∩ Π0

n+1

Definition 38.6 We say that A is universal for Γ iff

Γ = {Ax : x ∈ ω}.

We say that A is m-complete for Γ iff

Γ = {B : B ≤m A}

Note that universal for Γ implies m-complete for Γ. Also, the complement
of a set universal for Γ is universal for Γ̃ and the same for m-completeness.

Proposition 38.7 For each n > 0 there is a universal Σ0
n set.

Proposition 38.8 For each n > 0 we have Red(Σ0
n), Sep(Π

0
n), ¬Sep(Σ0

n),
and ¬Red(Π0

n).

Lecture notes in Recursion Theory A. Miller December 3, 2008 101

Proof
See definitions 8.2. We first show Red(Σ0

n). Let

A(x) ≡ ∃y R(x, y) and B(x) ≡ ∃y S(x, y)

where R and S are ∆0
n. Reduce A and B by

A0(x) ≡ ∃y (R(x, y) ∧ ∀z < y ¬S(z, x))

and
B0(x) ≡ ∃y (S(x, y) ∧ ∀z ≤ y ¬R(z, x))

Since Red(Γ)→ Sep(Γ̃) Proposition 8.4, it follows that Sep(Π0
n) holds.

To see ¬Sep(Σ0
n), first construct a doubly universal pair A and B. These

are Σ0
n sets such that for every pair C and D of Σ0

n sets there exists a u with
C = Au and D = Bu. To get A and B let U be a universal Σ0

n set. Then
define

A = {(〈x, y〉, z) : 〈x, z〉 ∈ U}

and
B = {(〈x, y〉, z) : 〈y, z〉 ∈ U}

then u = 〈x, y〉 codes the pair Ux and Uy. Now applying reduction to A and
B we get A0 ⊆ A and B0 ⊆ B. Note that this simultaneously reduces all
cross sections Au and Bu. Assuming for contradiction that separation holds,
let C be ∆0

n such that A0 ⊆ C and B0 ⊆ C. We get a contradiction since,
then C would be a universal ∆0

n set. This is because if P is ∆0
n then there

exists u with Au = P and Bu = P . But the reduction followed by separation
can’t effect the u cross section, so Cu = P .
QED

Exercise 38.9. Prove there does not exist a universal ∆0
n set.

39 Post: ∆0
2 same as recursive in 0′

Lemma 39.1 A ⊆ ω is Π0
2 iff there exists P recursive such that

A(x) iff ∃∞s P (s, x)

Lecture notes in Recursion Theory A. Miller December 3, 2008 102

Proof
(←) ∃∞s P (s, x) iff ∀t ∃s > t P (s, x)
(→) Suppose

A(x) iff ∀n ∃m R(n,m, x)

where R is ∆0
1. Define P ⊆ ω<ω × ω by

P (σ, x) iff ∀i < |σ| [R(i, σ(i), x) and ∀j < i ¬R(i, j, x)]

QED

Theorem 39.2 (Post) Suppose A ⊆ ω. Then A is ∆0
2 iff A ≤T 0′

Proof
Suppose A is ∆0

2. Then by Lemma 39.1 there exists recursive P (u, x) and
Q(v, x) such that

A(x) ≡ ∃∞u P (u, x)

¬A(x) ≡ ∃∞v Q(v, x)

Now define g(x, s) as follows. Input x, s and let us be the maximum u ≤ s
such that P (u, x) (zero if no such u). Similarly define vs to be the maximum
v ≤ s such that Q(v, x). Define

g(x, s) =

{
1 if us ≥ vs
0 if us < vs

It is easy to check that
A(x) = lim

s→∞
g(x, s)

and so by the Limit Lemma 28.1 we have that A ≤T 0′.
Conversely if A ≤T 0′ then by the Limit Lemma we have g recursive such

that
A(x) = lim

s→∞
g(x, s)

but then
A(x) ≡ ∀∞s g(x, s) = 1 ≡ ∃∞s g(x, s) = 1

so A is ∆0
2.

QED

Lemma 39.3 (1) A ⊆ ω is Σ0
1(B) iff A ≤m B′.

(2) A is ∆0
2(B) iff A ≤T B′.

Lecture notes in Recursion Theory A. Miller December 3, 2008 103

Proof
A is Σ0

1(B) iff there exists a predicate R ≤T B such that

A(x) iff ∃y R(x, y)

(1) is just a relativization of the standard result that 0′ is m-complete for Σ0
1.

(2) is just the relativization of Post’s Theorem 39.2.
QED

Theorem 39.4 (Post)
(1) A ≤T 0(n) iff A is ∆0

n+1.
(2) 0(n) is an m-complete Σ0

n-set.

Proof
(1) for n = 2:

A ≤T 0′′ iff A ≤T (0′)′ iff A is ∆0
2(0

′).
A is ∆0

2(0
′) iff there exists R1, R2 ≤T 0′ such that

A(x) iff ∃n ∀m R1(n,m)

¬A(x) iff ∃n ∀m R2(n,m)

but since R1, R2 ≤T 0′ iff R1 and R2 are ∆0
2, we have that

A is ∆0
2(0

′) iff A is ∆0
3.

(2) for n = 2:
0′′ is Σ0

1(0
′) and m-complete for Σ0

1(0
′). But Σ0

1(0
′) is Σ0

2. This is because
B is Σ0

1(0
′) iff there exists R ≤T 0′ such that

B(x) iff ∃y R(x, y)

But R ≤T 0′ iff R is ∆0
2. Hence B is Σ0

2 iff B is Σ0
1(0

′).

The proofs for n > 2 are analogous.
QED

Exercise 39.5. Prove there does not exist A which is m-complete for ∆0
2.

Exercise 39.6. (Enderton, Putnam) Prove that if 0(n) ≤T A for every n,
then 0(ω) ≤T A′′.
Hint: Show that

P (e1, e2) ≡ ∃B,C B = {e1}A ∧ C = {e2}A ∧ C = B′

is Π0
2(A).

Lecture notes in Recursion Theory A. Miller December 3, 2008 104

40 EMP, TOT, FIN, and REC

Proposition 40.1 EMP =def {e : We = ∅} is Π0
1-m-complete.

Proof
e ∈ EMP iff ∀x, s x /∈ We,s

so EMP is Π0
1. Let A be Π0

1, then there is R recursive so that

A(x) iff ∀y R(x, y).

Using S-n-m Theorem get f recursive so that for every x

Wf(x) = {y : ¬R(x, y)}

Then A(x) iff f(x) ∈ EMP .
QED

Proposition 40.2 TOT =def {e : We = ω} is m-complete for Π0
2.

FIN =def {e : We is finite} is m-complete for Σ0
2.

Proof
e ∈ TOT iff ∀x ∃s x ∈ We,s

e ∈ FIN iff ∃x ∀y, s (y ∈ We,s → y < x)

so TOT is Π0
2 and FIN is Σ0

2. Now suppose that A is Π0
2 we show that

(A,A) ≤m (TOT, FIN)

which simultaneously shows that TOT is Π0
2-m-complete and FIN is Σ0

2-m-
complete. Suppose

A(x) iff ∃∞s P (s, x)

where P is ∆0
1. Using S-n-m find a recursive function f so that

Wf(x) = {t : ∃s > t P (s, x)}

Hence A(x)→ Wf(x) = ω while ¬A(x)→ Wf(x) is finite.
QED

Proposition 40.3 COF =def {e : We is finite } is Σ0
3-m-complete.

Lecture notes in Recursion Theory A. Miller December 3, 2008 105

Proof
e ∈ COF iff ∃n ∀m > n ∃s m ∈ We,s

Now suppose that A is Σ0
3. Then there exists P which is ∆0

1 such that

A(x) iff ∃n ∃∞m P (n,m, x)

Input x and describe the r.e. set Bx by using a moving marker construction
similar to the construction of a maximal set but simpler. At any stage s we
have that

Bx,s = {p0,s < p1,s < p2,s < · · ·}

We look for the least n < s (if any) such that P (n, s, x) and bump the nth

marker, i.e., enumerate pn,s into Bx, i.e., Bx,s+1 = Bx,s ∪ {pn,s}. Note that if
A(x) is true then there exist n so that the nth marker is bumped infinitely
often and so Bx is cofinite. On the other hand if ¬A(x), then each marker
eventually stops moving and so Bx is coinfinite.

By the usual S-n-m argument we can find a recursive function f so that
Bx = Wf(x) for all x and so

A(x) iff f(x) ∈ COF

QED

Proposition 40.4 REC =def {e : We is recursive } is Σ0
3-m-complete.

Proof
e ∈ REC iff ∃e′ (We ∪We′ = ω and We ∩We′ = ∅)

and We∪We′ = ω is Π0
2 and We∩We′ = ∅ is Π0

1. To see that it is m-complete,
use a moving marker argument as above. Just add an additional reason to
bump the eth marker to make sure that if Bx is coinfinite, then for each e

ψe(e) ↓ → ψe,pe(e) ↓

This guarantees that if Bx is coinfinite, then K ≤T Bx.
QED

Exercise 40.5.
(a) Let A be an infinite r.e. set. Let

QA = {e : We = A}

Lecture notes in Recursion Theory A. Miller December 3, 2008 106

Prove that QA is Π0
2-m-complete.

(b) Let A be a finite nonempty set. Prove that

QA = {e : We = A}

is D(Σ0
1)-m-complete, where

D(Σ0
1) = {A ∩B : A,B ∈ Σ0

1}.

Lemma 40.6 Suppose A is Σ0
k+1 then there exists B Π0

k such that

A(x) iff ∃y B(x, y) iff ∃!y B(x, y)

Proof
Suppose

A(x) iff ∃y P (x, y)

where P is Π0
k. Then

A(x) iff ∃y (P (x, y) ∧ ∀z < y ¬P (x, z)

Define
C(x, y) iff ∀z < y ¬P (x, z)

In case k+ 1 = 1 then C is ∆0
1. In case k+ 1 > 1 then since C is Σ0

k we have
by induction a Π0

k−1 predicate D so that

C(x, y) iff ∃u D(x, y, u) iff ∃!u D(x, y, u)

Hence

A(x) iff ∃y ∃u (P (x, y) ∧D(x, y, u)) iff ∃!y ∃!u (P (x, y) ∧D(x, y, u))

so taking B(x, 〈y, u〉) ≡ P (x, y) ∧D(x, y, u) does the trick.
QED

Proposition 40.7 (a) A is Π0
3 iff there exists B which is ∆0

1 such that

A(u) ≡ ∃∞s ∀n B(s, n, u)

(b) A is Π0
4 iff there exists B which is ∆0

1 such that

A(x) ≡ ∃∞s ∃∞t B(s, t, x)

Lecture notes in Recursion Theory A. Miller December 3, 2008 107

Proof
(a) Suppose

A(u) ≡ ∀x ∃y ∀z R(x, y, z, u)

where R is ∆0
1. Define

Q(x, u) ≡ ∃y ∀z R(x, y, z, u)

Then by Lemma 40.6 there is a C which is Π0
1 and

Q(x, u) ≡ ∃y C(x, y, u) ≡ ∃!y C(x, y, u)

Hence
A(u) ≡ ∀x∃!y C(x, y, u)

A(u) ≡ ∃∞σ ∈ ω<ω ∀i < |σ| C(i, σ(i), u)

Note that ∀i < |σ| C(i, σ(i), u) is Π0
1 and so there is B recursive so that

∀n B(σ, n, u) ≡ ∀i < |σ| C(i, σ(i), u)

(b) Suppose
A(u) ≡ ∀x ∃y R(x, y, u)

where R is Π0
2. By Lemma 40.6 applied to ∃y R(x, y, u) we may assume that

A(u) ≡ ∀x ∃!y R(x, y, u)

Hence
A(u) ≡ ∃∞σ ∀i < |σ| R(i, σ(i), u)

but the predicate
Q(σ, u) ≡ ∀i < |σ| R(i, σ(i), u)

is Π0
2 so there exists a recursive B so that

Q(σ, u) ≡ ∃<∞τ B(σ, τ, u)

Hence
A(u) ≡ ∃∞σ ∃∞τ B(σ, τ, u)

QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 108

Exercise 40.8. For the correct class Γ, show that INF, EQ, EQ* are
m-complete Γ sets where

INF = {e : We is infinite}

EQ = {〈e1, e2〉 : We1 = We2}

and
EQ∗ = {〈e1, e2〉 : We1 =∗ We2}.

Exercise 40.9.
Let PTIME = {e : ψe runs in polynomial time }, i.e., there exists a

polynomial p(x) such that ψe(x) halts in less than p(x) steps for every x.
Prove that PTIME is Σ0

2-m-complete.

Exercise 40.10. For each e let Qe = { n
m+1

: 〈n,m〉 ∈We} ⊆ Q. Define
Ω = {e : Qe is order isomorphic to ω}.

Prove that Ω is Π0
3-m-complete.

Exercise 40.11. Show that if Q = {e : We ∈ V} is not Σ0
3 then V cannot

be an r.e. class. See Definition 33.3.

Exercise 40.12. Prove that the family of coinfinite r.e. sets is not an r.e.
class.

Exercise 40.13. Prove that SIMP={e : We is simple } is m-complete Π0
3.

Hint: Like the proof for COF but also let We kick the eth marker at most
once to make A meet We if We infinite.

Exercise 40.14. Prove that the family of simple sets is not an r.e. class.

Exercise 40.15. Prove of disprove:
(a) there exists a total f ≤T 0((2) such that for all e, if We is recursive,

then Wf(e) = We.
(b) there exists a total f ≤T 0(3) such that for all e, if We is recursive,

then Wf(e) = We.

Lecture notes in Recursion Theory A. Miller December 3, 2008 109

41 Domination and high degrees

Theorem 41.1 (Martin) For any set A ⊆ ω the following are equivalent:

1. 0′′ ≤T A′ and

2. there exists g ≤T A such that ∀∞n f(n) ≤ g(n) for every recursive f .

Proof
(1)→ (2)
Since TOT is Turing equivalent to 0′′ (40.2), by the limit lemma (28.1)

there is a total h ≤T A so that for every e ∈ ω

T0T(e) = lim
s→∞

h(e, s).

Define he(x) = h(e, x) and define g(x) to be the maximum of the set:

{{e}(x) : e < x and {e}s(x) ↓ where he�[x, s) ≡ 1}.

Note that if {e} is not total, then he is eventually zero. If it is total then
he is eventually one. It is easy to check that g ≤T h ≤T A and g eventually
dominates each recursive functions.

(2)→ (1)
Define

h(e, s) =

{
1 if {e}g(s)(x) ↓ for all x < s
0 otherwise.

Then since g eventually dominates all recursive functions we get that

T0T(e) = lim
s→∞

h(e, s)

and hence by the limit lemma that

0′′ ≡T T0T ≤T A′.

QED

Theorem 41.2 (Martin, Tennenbaum) If A is a maximal set, then

A′′ ≡T 0′′.

Lecture notes in Recursion Theory A. Miller December 3, 2008 110

Proof
Let g(n) = an where A = {a0 < a1 < · · ·}. We already know that since
A is hypersimple that ∃∞n f(n) < g(n) for any recursive f . Suppose
∃∞n g(n) < f(n). Then there is a strong array 〈Fn : n < ω〉 such that
|Fn ∩ A| ≥ 2 for infinitely many n. This because there must be infinitely
many n with

f(n) ≤ g(n) < g(n+ 1) < f(n+ 1)

and hence Fn = [f(n), f(n+1)) does the trick. But as in the characterization
of hyperhypersimple (35.3 part 4) there is a weak array 〈Hn ⊆ Fn : n < ω〉
such that for every n if Fn ∩ A 6= ∅, then |Hn ∩ A| = 1. But then

A ⊆ A ∪
⋃
n

Hn ⊆ ω

shows that A is not maximal.
QED

Theorem 41.2 is also true for the hyperhypersimple sets. Martin has
shown the converse that every high r.e. degree contains a maximal set.

Exercise 41.3. Prove that if for all f partial recursive we have that

∀∞n ∈ dom(f) f(n) ≤ g(n)

then 0′ ≤T g.

Example 41.4 Suppose A is maximal and B = A ⊕ A. Then B is not
maximal, but 〈bn : n < ω〉 eventually dominates every recursive function.

Proof
It is not maximal since B ⊆ (B ⊕ Evens) ⊆ ω and these inclusions are non
trivial.

To see domination note that b2n = 2an and b2n+1 = 2an + 1. For any
recursive f

∀∞n (f(2n), f(2n+ 1) < an < b2n < b2n+1)

and hence
∀∞m f(m) < bm.

QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 111

Example 41.5 There is a r.e. set A which is not hyperhypersimple but an
eventually dominates every recursive function.

Proof
Let Fk = [nk, nk+1) be the strong array with nk+1 = nk + k + 1. Note that
|Fk| = k. Let B any maximal set. For each k and l if |B ∩ k| = l let Gk be
the top l elements of Fk. It is easy to see that 〈Gk ⊆ Fk : k ∈ ω〉 is a weak
array. Let

A =
⋃

Gk ∪
⋃
k∈B

Fk.

Note that for every k
|Fbk \Gbk

| = k.

For each l < ω define

Pl = {nk + l : l < k < ω}

then 〈Pl : l < ω〉 is a weak array demonstrating that A is not hyperhyper-
simple. Note that

Fbk \Gbk
= {ai : lk ≤ i < lk+1}

where lk+1 = lk + k and so lk = k(k+1)
2

. Hence for any recursive function f
we have that

∀∞k f(lk+1) < bk < alk

and so for f increasing we have:

∀∞m f(m) < am.

QED

Exercise 41.6. Prove that for any maximal set B

∀∞n f(bn) < bn+1

for every recursive f .

Lecture notes in Recursion Theory A. Miller December 3, 2008 112

42 High degrees using the Psuedojump

Theorem 42.1 (Shoenfield, Sacks) There is a nontrivial high degree, i.e.,
there exists a r.e. set A with A <T 0′ and A′′ ≡T 0′′.

Proof
This was originally proved using an infinite injury priority argument. We
give here a proof due to Jockusch and Shore which needs only a finite injury
priority argument together with relativization and uniformization.

Define that pseudojump operator Je as follows:

Je(A) = A⊕WA
e .

Lemma 42.2 For any e0 there exists a r.e. set A with
A >T 0 and Je0(A) ≡T 0′.

Proof
Let 0′ = {es : s < ω} be a one-to-one recursive enumeration of 0′ = K.

Requirements and strategies

Our requirements can be described as follows:

P2e A 6= We

Our strategy will be to put its follower v2e into A if it ever turns up in We.

P2e+1 Code e into A if e every turns up in 0′.

Our strategy will put its follower v2e+1 into As+1 if e = es. We will show that
v2e+1 can be computed from Je0(A) and so 0′ ≤T Je0(A).

Nn (∃∞s {e0}As
s (n) ↓)→ {e0}A(n) ↓

This is to insure that WA
e0
≤T 0′. We use the usual low simple set strategy

of restraining the computation.

Construction

For each negative requirement Nn define the restraint function r(n, s)
to be the use of the computation {e0}As

s (n) (recall that this is zero if the
computation does not converge).

Lecture notes in Recursion Theory A. Miller December 3, 2008 113

For each positive requirement Pn its set of potential followers is

Fn = {〈n,m〉 : m < ω}

and its follower vsn at stage s is:

vsn = min{v ∈ Fn : v > max(r(m, s) : m ≤ n)}.

We say that Pn requires attention at stage s iff

1. (n = 2e+ 1 and e = es) or

2. n = 2e < s and W s
e ∩ As = ∅ and vsn ∈ W s

e .

Put As+1 = As ∪ {vsn : Pn requires attention at stage s}.

Verification

Note that each positive requirement can act at most once. It follows that

lim
s→∞

r(n, s) = r(n) <∞

and each Nn and Pn is met. Hence we have that WA
e0
≤T 0′ and A >T 0. It

remains only to see the following:

Claim. 0′ ≤T A⊕WA
e0

.

Define

f(n) =

{
1 if Pn ever acts
0 otherwise.

Obviously 0′ ≤T f since e ∈ 0′ iff f(2e+ 1) = 1. So it is enough to see that

f ≤T A⊕WA
e0
.

Assume we have computed f�n using an oracle for A⊕WA
e0

and we show
how to compute f(n). Find a stage s0 so that

1. ∀m < n if Pm ever acts, it has already acted by stage s0, and

2. ∀m ≤ n {e0}A(m) ↓ iff {e0}
As0
s0 (m) ↓.

Lecture notes in Recursion Theory A. Miller December 3, 2008 114

Using the oracle (n ∈ WA
e0

?) we can test that s0 satisfies (2), but since

r(m, s0) will protect the computation {e0}
As0
s0 (m), this will in fact be the

correct computation at all stages s ≥ s0. It follows that r(m, s) = r(m, s0)
for all m ≤ n and s ≥ s0. Therefor v(n, s) = v(n, s0) for all s ≥ s0. Hence Pn
will act iff either it has already by stage s0 or v(n, s0) ∈ A (which happens
iff it acts after s0).

This proves the Claim and the Lemma.
QED

Next we need to see that a relativized and uniformitized version of the
Lemma is true.
The Lemma says:

For all e there exists a r.e. set A such that A >T 0 and Je(A) ≡ 0′.

The uniformized version says:
There exists a recursive f : ω → ω such that for all e

Wf(e) >T 0 and Je(Wf(e)) ≡ 0′.

Or using the psuedojump we could equivalently prove:
There exists a recursive f : ω → ω such that for all e

Jf(e)(0) >T 0 and Je(Jf(e)(0)) ≡ 0′.

The same proof will work for every oracle B. So finally we get the relativized
and uniformitized version:

Lemma 42.3 There exists a recursive f : ω → ω such that for all e and for
all B ⊆ ω:

Jf(e)(B) >T B and Je(Jf(e)(B)) ≡ B′.

Fix f from Lemma 42.3 and consider any n > 0 and e.

Proposition 42.4 Suppose

∀B (Je(B))(n) ≡T B(n) and (Je(B))(n−1) 6≡T B(n−1)

Then
∀B (Jf(e)(B))(n) ≡T B(n+1) and (Jf(e)(B))(n−1) 6≡T B(n).

Lecture notes in Recursion Theory A. Miller December 3, 2008 115

Proof
Note that

(Jf(e)(B))(n) ≡T (Je(Jf(e)(B)))(n)

by substituting Jf(e)(B) for B in the hypothesis. We also have that

(Je(Jf(e)(B)))(n) ≡T B(n+1)

because Je(Jf(e)(B)) ≡T B′ and hence

(Jf(e)(B))(n) ≡T B(n+1).

Similarly by substituting Jf(e)(B) for B in the hypothesis

(Jf(e)(B))(n−1) 6≡T (Je(Jf(e)(B)))(n−1) ≡T B(n)

and so
(Jf(e)(B))(n−1) 6≡T B(n).

QED
We are using the terminology B(0) = B.

By a similar proof we have

Proposition 42.5 Suppose

∀B (Je(B))(n) ≡T B(n+1) and (Je(B))(n−1) 6≡T B(n).

Then
∀B (Jf(e)(B))(n+1) ≡T B(n+1) and (Jf(e)(B))(n) 6≡T B(n).

Define the high low hierarchy of r.e. degrees as follows

1. H0 = {o′}

2. L0 = {o}

3. Ln = {a ∈ R : a(n) = o(n)}

4. Hn = {a ∈ R : a(n) = o(n+1)}

Lecture notes in Recursion Theory A. Miller December 3, 2008 116

Choose e0 so that for every B, B′ ≡T Je0(B). Let en+1 = f(en). And let
an be the Turing degree of Jen(0).

Proposition 42.6 For every n

a2n ∈ Hn \Hn−1 and a2n+1 ∈ Ln+1 \ Ln.

Proof
Note that

∀B (Jf(e0)(B))(1) ≡ Je0(Jf(e0)(B)) ≡ B(1)

but
(Jf(e0)(B))(0) 6≡ B(0).

So applying the Propositions 42.4 and 42.5 alternatingly, the result follows.
QED

Note that in particular, a2 is a nontrivial high degree and this proves
Theorem 42.1.

Theorem 42.7 (Martin, Lachlan, Sacks) There exist a r.e. degree a such
that

a /∈
⋃
n<ω

(Ln ∪Hn).

Proof
In Lemma 42.3 take e0 to be fixed point for f and hence Je0(B) = Jf(e0)(B)
for every set B. Define H(B) = Je0(B) where H is short for the Hop of B.
Then for every A we have

B <T H(B) <T H
2(B) ≡T B′

i.e., two hops make a jump. Hence if A = H(0), then for every n we have
that A(n) = H2n+1(0) and so

0(n) ≡T H2n(0) < TH2n+1(0) ≡T A(n) <T H
2n+2(0) ≡T 0(n+1).

QED
M.Simpson found a proof of the Sack’s Jump Theorem using the psuedo-

jump. It appears in Soare.

Exercise 42.8. Prove or disprove: For any e if A ≤T B then WA
e ≤T WB

e .

Lecture notes in Recursion Theory A. Miller December 3, 2008 117

43 First-order theories

In this section we give two examples of first-order theories with interesting
properties. All theories in this section are assumed to be in a recursively
presented language. Craig noted that being axiomatized by an r.e. set of
sentences is equivalent to having a recursive set of axioms. Given an r.e. list
θ0, θ1, . . . , replace it by the recursive list:

θ0, (θ0 ∧ θ1), . . . , (θ0 ∧ θ1 ∧ · · · ∧ θn), . . .

Lemma 43.1 (Shoenfield) There exist an r.e. set B such that

1. B <T 0′,

2. ∀e ∈ TOT Be =∗ ω,

3. ∀e /∈ TOT Be =∗ ∅, and

4. ∀e, n n ∈ Be → {e}(n) ↓.

Proof
Recall that e ∈ TOT iff {e} is a total function.
By Theorem 42.1 there exists an r.e. set A <T 0′ with A′ ≡T 0′′ and

hence by Theorem 41.1 there exists g ≤T A such that for every recursive f
we have ∀∞n f(n) ≤ g(n). Let A =

⋃
sAs be a recursive enumeration of A

and suppose g = {e0}A.
Using a permitting argument we will get B ≤T A. Put

Bs+1 = Bs ∪ {〈e, n〉 < s : {e0}As
s (n) ↓= t and ∀m ≤ n {e}t(m) ↓}.

It is easy to check that B has properties (2),(3), and (4).
We show that B ≤T A. To decide whether 〈e, n〉 ∈ B find a stage s0 such

that {e0}As
s (n) ↓ with use u and As0 ∩ [0, u] = A∩ [0, u]. But this means that

〈e, n〉 ∈ B iff 〈e, n〉 ∈ Bs0+1.
QED

Definition 43.2 For a first-order theory T in a language containing a se-
quence of terms n for n < ω we say that

1. R ⊆ ω is weakly represented in T iff there is a formula θ(x) such that

∀n (n ∈ R iff T ` θ(n)).

Lecture notes in Recursion Theory A. Miller December 3, 2008 118

2. R ⊆ ω is strongly represented in T iff there is a formula θ(x) such that

∀n (n ∈ R→ T ` θ(n))

and
∀n (n /∈ R→ T ` ¬θ(n)).

Proposition 43.3 Assume T is recursively axiomatizable.

1. Strongly representable implies weakly representable.

2. Weakly representable sets are recursively enumerable.

3. Strongly representable sets are recursive.

4. If every recursive set is weakly represented in T , then T is undecidable.

5. If every r.e. set is weakly representable in T , then the decision problem
for T is equivalent to 0′.

Proof
(4)
If T is decidable, then there is a recursive predicate U ⊆ ω × ω which

is universal for all R ⊆ ω which are weakly represented in T . But then the
recursive set D = {n : 〈n, n〉 /∈ U} cannot be weakly represented in T .

(5)
By the decision problem for T we mean the Turing degree of the set:

{θ : T ` θ}.

This result is clear since 0′ is weakly represented in T .
QED

Example 43.4 (Shoenfield) There is a recursively axiomatizable theory T in
which every recursive set is strongly represented but the decision problem for
T is of degree strictly smaller than 0′.

Proof
The language of T consists of infinitely many constant symbols n and unary
predicate symbols Rn for n < ω. Let B be the set from Lemma 43.1. The
axioms of T are the following:

Lecture notes in Recursion Theory A. Miller December 3, 2008 119

1. n 6= m for n < m < ω,

2. Re(m) if 〈e,m〉 ∈ B and {e}(m) ↓= 1,

3. ¬Re(m) if 〈e,m〉 ∈ B and {e}(m) ↓= 0, and

4. infinitely many axioms saying the predicates Re are independent. i.e.,
for each pair of disjoint finite sets G,H ⊆ ω:

∃v (
∧
e∈G

Re(v) ∧
∧
e∈H

¬Re(v)).

This is an r.e. set but by Craig’s trick T is recursively axiomatizable.
Every recursive set is strongly represented in T . If R ⊆ ω is recursive,

then for some e we have that {e} is the characteristic function of R. Since
Be =∗ ω we know that the formula Re(v) almost represents R. It is easy to
tweak it to represent R.

The decision problem for T is Turing reducible to B. This follows from
the fact that T eliminates quantifiers.
QED

Definition 43.5 A set of sentences Σ is independent iff Σ 6` θ for any θ ∈ Σ.

Tarski proved that any first-order theory in a countable language is inde-
pendently axiomatizable. Reznikoff proved it for uncountable languages.

Lemma 43.6 Suppose a theory T can be axiomatized by an infinite recur-
sively enumerable independent set Σ. Then for any r.e. set of sentences
〈ρn : n < ω〉 axiomatizing T there is a recursive function f such that for
every n > 0: ∧

k<n

ρk does not imply
∧

k<f(n)

ρk.

Example 43.7 (Kreisel) There is a recursively axiomatizable theory T which
cannot be axiomatized by a recursively enumerable independent set of sen-
tences.

Proof

Lecture notes in Recursion Theory A. Miller December 3, 2008 120

Robinson’s theory Q is a finite subset of Peano Arithmetic PA which is in
turn a subtheory of true arithmetic (ω,+, ·, S, 0), i.e.,

Q ⊆ PA ⊆ Th(ω,+, ·, S, 0).

Every r.e. set is weakly represented in Q. Let H ⊆ ω be any hypersimple
set and suppose θ(v) is a formula such that

∀n (n ∈ H iff Q ` θ(n)).

Let T be the theory in the language of arithmetic plus one new unary pred-
icate symbol R with the following set of axioms:

1.
∧
Q,

2. ∀v (θ(v)→ R(v)), and

3. infinitely many axioms:
R(n)

for each n < ω.

The symbol n is shorthand for S(S(· · ·S(0)) · · ·) with n many S’s. Let f be
the recursive function from Lemma 43.6. Since H is hypersimple there exists
n such that [n, f(n)) ⊆ H. But then for all k in [n, f(n))

Q ` θ(n).

Hence
[
∧

Q ∧ ∀v θ(v)→ R(v)] `
∧

n≤k<f(n)

R(n)

which is a contradiction.
QED

44 Analytic sets

Definition 44.1 A ⊆ ωω is Σ1
1 iff there exists a recursive R ⊆ ω<ω × ω<ω

such that
x ∈ A ≡ ∃y ∈ ωω ∀n ∈ ω R(x�n, y�n).

Similarly A ⊆ ω is Σ1
1 iff there exists a recursive R ⊆ ω × ω<ω such that

k ∈ A ≡ ∃y ∈ ωω ∀n ∈ ω R(k, y�n).

Π1
1 sets are the complements of Σ1

1 sets and ∆1
1 = Π1

1 ∩ Σ1
1.

Lecture notes in Recursion Theory A. Miller December 3, 2008 121

We can give similar definitions of Σ1
1 and Σ0

n and Π0
n for X any finite

product X =
∏

i<N Xi where each Xi is either ω or ωω.

Proposition 44.2 1. Π0
1 ⊆ Σ1

1

2. If A ⊆ X × ωω is Σ1
1 then B is Σ1

1 where

B(x) iff ∃y A(x, y)

3. If A and B are Σ1
1 then A ∧B and A ∨B are Σ1

1.

4. If A ⊆ ω ×X is Σ1
1 then both

(a) B(x) ≡ ∃n ∈ ω A(n, x) and

(b) C(x) ≡ ∀n ∈ ω A(n, x)

are Σ1
1.

Proof
(1) trivial
(2) Suppose X = ωω and

A(x, y) ≡ ∃z ∀n R(x�n, y�n, z�n)

define
R∗(σ, τ) iff R(σ, τ0, τ1) where τ(i) = 〈τ0(i), τ1(i)〉

Then
B(x) ≡ ∃u ∀n R∗(x�n, u�n)

(3) Suppose
A(x) ≡ ∃y C(x, y)

B(x) ≡ ∃z D(x, z)

where C and D are Π0
1. Then

A(x) ∨B(x) ≡ ∃w (C(x,w) ∨D(x,w))

and
A(x) ∧B(x) ≡ ∃y ∃z (C(x, y) ∧D(x, z))

Lecture notes in Recursion Theory A. Miller December 3, 2008 122

(4a) Suppose

A(n, x) ≡ ∃y ∀m R(n, x�m, y�m)

Define

R∗(x�n, y�n) iff R(y(0), x�(n− 1), y∗�(n− 1)) where y∗(i) = y(i+ 1)

Then
B(x) ≡ ∃n A(n, x) ≡ ∃y ∀m R∗(x�m, y�m)

(4b) Suppose

A(n, x) ≡ ∃y ∀m R(n, x�m, y�m)

Define
R∗(x�m, z�m) iff R(i, x�j, yi�j) for each 〈i, j〉 < m and yi(j) = z(〈i, j〉).
Then

C(x) ≡ ∀n A(n, x) ≡ ∃z ∀m R∗(x�m, z�m)

QED

Proposition 44.3 Universal Σ1
1 sets exists, hence Σ1

1 6= Π1
1.

Proof
Let U ⊆ ω ×X × ωω be a universal Π0

1 set for subsets of X × ωω, then

V (n, x) ≡ ∃y A(n, x, y)

is Universal Σ1
1.

QED

Theorem 44.4 (Tennenbaum) There exists a recursive linear order (ω,�)
which is isomorphic to ω + ω∗ with the property that every nonempty r.e.
subset of ω has a �-least and �-greatest element.

Proof
Note that ω∗ stands for reverse ω or equivalently the order type of the neg-
ative integers. Let

L = {x ∈ ω : |{y : y � x}| < ω} and R = {x ∈ ω : |{y : x� y}| < ω}

Lecture notes in Recursion Theory A. Miller December 3, 2008 123

In our construction we make sure that ω = L ∪ R and each is infinite. At
stage s we assume that we have (effectively) determined the finite linear order
��(s× s) and just decide where to put the new element, s, of

s+ 1 = {0, 1, 2, . . . , s}.

Our requirements are:

Re We infinite → We ∩ L 6= ∅ and We ∩R 6= ∅.

We assume at stage s in our construction that some requirements Re, say
e ∈ Fs ⊆ s, have followers le < s and re < s which satisfy:

if e < e′ and e, e′ ∈ Fs, then le � le′ � re′ � re.
At stage s+ 1 we look for the smallest e < s (if any) such that

1. e /∈ Fs (or equivalently Re has no followers)

2. there exists l, r ∈ We,s such that for every e′ < e with e′ ∈ Fs we have
that

le′ � l � r � re′

For the smallest such e and smallest such pair l, r we appoint l = le and
r = re the followers of Re and put

Fs+1 = {e′ < e : e′ ∈ Fs} ∪ {e}

i.e., we unappoint all followers for e′ > e. If there is no such e we do not
change any followers.

In either case, we put s into the ordering ��(s× s) in the first gap above
all the le for e ∈ Fs+1 (and therefore, below all the re for e ∈ Fs+1.)

Claim. For each e if We is infinite, then Re obtains permanent followers le
and re and is met.
Proof
Suppose the Claim is true for all e′ < e. Suppose s0 is a large enough stage
so that no e′ < e acts after stage s0. Let e0 be the maximum element of Fs0
below e. Then since s > s0 are put between le0 and re0 and We is infinite, it
must be that some followers are appointed to Re if it doesn’t already have
them. These followers are permanent.
QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 124

Since infinitely many We are infinite and hence acquire permanent fol-
lowers, it must be that L and R are infinite and therefore the order type we
construct is ω + ω∗.
QED

Corollary 44.5 (Jockusch) There exists a recursive function f : [ω]2 → 2
such that there is no infinite recursive H ∈ [ω]ω such that f�[H]2 is constant.

Proof
Define

f(x, y) =

{
1 if x < y → x� y
0 if x < y → y � x

QED

Definition 44.6 T ⊆ ω<ω is a well-founded tree iff
(a) ∀σ, τ σ ⊆ τ ∈ T → σ ∈ T
(b) T has no infinite branch, i.e., [T] = ∅ where

[T] =def {x ∈ ωω : ∀n x�n ∈ T}.

Definition 44.7 (Kleene-Brouwer ordering) For σ, τ ∈ ω<ω

σ <KB τ iff σ) τ or ∃n < min(|σ|, |τ |) σ�n = τ�n and σ(n) < τ(n)

σ ≤KB τ iff σ <KB τ or σ = τ

Proposition 44.8 ≤KB is a recursive linear ordering of ω<ω.

Theorem 44.9 (Kleene-Brouwer) Given a tree T ⊆ ω<ω

T is well-founded iff (T,≤KB) is a well-ordering.

Proof
Suppose that T is not well-founded and x ∈ [T]. Then for each n

x�(n+ 1) <KB x�n

and so (T,≤KB) is not a well-ordering.
Conversely, suppose that (T,≤KB) is not a well-ordering and (σn ∈ T :

n < ω) is <KB-descending, i.e.,

σn+1 <KB σn.

Lecture notes in Recursion Theory A. Miller December 3, 2008 125

Then an easy induction produces x ∈ ωω with the property that

∀n ∀∞m x�n ⊆ σm.

It follows that x ∈ [T] and so T is not well-founded.
QED

Definition 44.10 For T ⊆ ω<ω a tree and α an ordinal we define Tα ⊆ T
as follows:

(a) σ ∈ T0 iff σ ∈ T and ∀n σn /∈ T . (Terminal nodes of T .)
(b) σ ∈ Tα iff σ ∈ T and ∀n (σn ∈ T → σn ∈ T<α).
(c) T<α =def ∪β<αTβ.

Definition 44.11 For σ ∈ T
(a) rankT (σ) = α where α is the smallest ordinal with σ ∈ Tα.
(b) rankT (σ) =∞ if there is no such α.

Proposition 44.12 For T ⊆ ω<ω a tree, T is well-founded iff rankT (〈〉) <
∞, i.e., its an ordinal.

Proof
Note that if rankT (σ) = ∞, then there exists n such that rankT (σn) = ∞.
Hence, rankT (〈〉) = ∞ implies that T has an infinite branch. On the other
hand if rankT (σ) <∞, then for every n with σn ∈ T we have that

rankT (σn) < rankT (σ)

Hence T cannot have an infinite branch.
QED

Definition 44.13 c : T → ω is a hypcode iff T ⊆ ω<ω is a recursive well-
founded tree and c is partial recursive map with domain T . Given a hypecode
c we define the sets H(c, σ) as follows by induction on the rank of σ. Fix
U ⊆ ω ×X a universal Σ0

1 set.

(a) for σ ∈ T0 a terminal node of T

H(c, σ) = Uc(σ)

(b) for σ ∈ T not terminal and c(σ) = 0

H(c, σ) = ∪n,σn∈TH(c, σn)

Lecture notes in Recursion Theory A. Miller December 3, 2008 126

(c) for σ ∈ T not terminal and c(σ) > 0

H(c, σ) = ∩n,σn∈TH(c, σn)

A ⊆ X is hyperarithmetic (HYP) iff there exists a hypcode c and

A = H(c) =def H(c, 〈〉).

Proposition 44.14 HYP ⊆ ∆1
1.

Proof
x ∈ H(c) iff there exists f : T → {0, 1} such that

1. ∀σ ∈ T0

f(σ) = 1 iff x ∈ Uc(σ)

2. ∀σ ∈ T \ T0 if c(σ) = 0 then

f(σ) = 1 iff ∃n (σn ∈ T ∧ f(σn) = 1)

3. ∀σ ∈ T \ T0 if c(σ) > 0 then

f(σ) = 1 iff ∀n (σn ∈ T → f(σn) = 1)

4. f(〈〉) = 1

It is easy to check that 1− 4 are all arithmetic predicates and so H(c) is Σ1
1.

To see that the complement of H(c) is also Σ1
1 just note that

x /∈ H(c) iff there exists f : T → {0, 1} such that
1,2,3, and
4′. f(〈〉) = 0.

QED

Theorem 44.15 (Kleene-Souslin)
Suppose A and B are disjoint Σ1

1 sets. Then they can be separated by a
hyperarithmetic set C. Hence HYP = ∆1

1.

Lecture notes in Recursion Theory A. Miller December 3, 2008 127

Proof
To simplify the notation we assume that A,B ⊆ ωω although essentially the
same proof will work for A,B ⊆ ω or any X . Since A,B are Σ1

1 there are
recursive trees

TA, TB ⊆ ∪n<ωωn × ωn

such that
x ∈ A iff ∃y ∀n (x�n, y�n) ∈ TA

x ∈ B iff ∃z ∀n (x�n, z�n) ∈ TB

The fact that A and B are disjoint implies that it is impossible to find (x, y, z)
such that (x�n, y�n) ∈ TA and (x�n, z�n) ∈ TB for all n. This tells us how
to find our recursive well-founded tree T .

Given ρ ∈ ω<ω we determine a triple trip(ρ) = (σ, τ1, τ2) by the rule that
σ(i) = ρ(3i), τ1(i) = ρ(3i + 1), and τ2(i) = ρ(3i + 2). We take the natural
length functions, namely

• |σ| = |τ1| = |τ2| = n if |ρ| = 3n,

• |σ| = n+ 1, |τ1| = |τ2| = n if |ρ| = 3n+ 1, and

• |σ| = |τ1| = n+ 1, |τ2| = n if |ρ| = 3n+ 2.

Now we define the recursive well-founded tree T ⊆ ω<ω and hypcode
c : T → ω as follows:

1. for ρ ∈ ω<ω with length |ρ| = 3n+ 2 and trip(ρ) = (σ, τ1, τ2) if

(a) (σ�n, τ1�n) ∈ TA,

(b) (σ�n, τ2) ∈ TB, and

(c) (σ, τ1) /∈ TA,

then ρ is a terminal node of T and put c(ρ) = n0 where

Un0 = ∅.

2. for ρ ∈ ω<ω with length |ρ| = 3(n+ 1) and trip(ρ) = (σ, τ1, τ2) if

(a) (σ, τ1) ∈ TA,

(b) (σ�n, τ2�n) ∈ TB, and

Lecture notes in Recursion Theory A. Miller December 3, 2008 128

(c) (σ, τ2) /∈ TB,

then ρ is a terminal node of T and put c(ρ) = n1 where

Un1 = [σ] =def {x ∈ ωω : σ ⊆ x}.

3. For any other ρ we put ρ into T iff it is a proper subset of a terminal
node of T . For these ρ we put c(ρ) = 0 if |ρ| = 3n or |ρ| = 3n+ 1 and
put c(ρ) = 1 if |ρ| = 3n+ 2.

Now given trip(ρ) = (σ, τ1, τ2) define the following sets:

Aρ = {x ∈ [σ] : ∃y ⊇ τ1 ∀n (x�n, y�n) ∈ TA}

Bρ = {x ∈ [σ] : ∃z ⊇ τ2 ∀n (x�n, z�n) ∈ TB}

To finish the proof we verify the following:

Claim. For each ρ ∈ T let trip(ρ) = (σ, τ1, τ2) then

Aρ ⊆ H(c, ρ) ⊆ [σ]

and
Bρ ⊆ [σ] \H(c, ρ)

Proof

Case ρ a terminal node of T .
Note that in case 1 of the definition of T , we have that Aρ is the empty set
and c(σ) is a code for the empty set and so its OK. In case 2 of the definition
of T , we have that Bρ is the empty set and c(σ) is a code for [σ] and so its
OK.

Case |ρ| = 3n and ρ not terminal.
Note that for nonterminal nodes ρ we have that for every k that ρk ∈ T . In
this case trip(ρk) = (σk, τ1, τ2).

Aρk = [σk] ∩ Aρ

Bρk = [σk] ∩Bρ

Lecture notes in Recursion Theory A. Miller December 3, 2008 129

and by induction

Aρ = ∪k<ωAρk ⊆ ∪k<ωH(c, ρk) =def H(c, ρ) ⊆ [σ]

(c(ρ) = 0, so we take unions)

Bρ = ∪k<ωBρk ⊆ ∪k<ω([σk] \H(c, ρk)) = [σ] \H(c, ρ)

The last equality holds because each H(c, ρk) ⊆ [σk] and ([σk] : k < ω) is a
partition of [σ].

Case |ρ| = 3n+ 1 and ρ not terminal.
In this case trip(ρk) = (σ, τ1k, τ2), and also c(ρ) = 0, i.e., we take unions.
Note that for every k that Bρk = Bρ since neither σ nor τ2 change. Also, by
the definition of Aρ note that

Aρ = ∪k<ωAρk.

Now by inductive hypothesis we have that

Aρ = ∪k<ωAρk ⊆ ∪k<ωH(c, ρk) =def H(c, ρ)

Bρ ⊆ [σ] \H(c, ρk)

for every k so
Bρ ⊆ [σ] \H(c, ρ)

as was to be proved.

Case |ρ| = 3n+ 2 and ρ not terminal.
In this case trip(ρk) = (σ, τ1, τ2k), and c(ρ) = 1, i.e., take intersections.
Note that for every k that Aρk = Aρ since neither σ nor τ1 change. Now by
inductive hypothesis we have that

Aρ ⊆ ∩k<ωH(c, ρk) =def H(c, ρ)

Bρ = ∪k<ωBρk ⊆ ∪k<ω[σ] \H(c, ρk) = [σ] \H(c, ρ)

as was to be proved.
This proves the Claim. However since A〈〉 = A and B〈〉 = B the Theorem

follows.
QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 130

Appendix

45 Turing machines

In this section we define the notion of Turing computable function and include
Turing’s analysis of why every effectively calculable function should be Turing
computable. We also sketch the proof of a universal Turing machine.

A Turing machine is a function m such that for some finite sets A and
S the domain of m is a subset of S × A and range of m is a subset of
S × A× {l, r}. We call A the alphabet and S the states.1

For example, suppose S is the set of letters {a, b, c, . . . , z} and A is the
set of all integers less than seventeen, then m(a, 4) = (b, 6, l) would mean
that when the machine m is in state a reading the symbol 4 it will go into
state b, erase the symbol 4 and write the symbol 6 on the tape square where
4 was, and then move left one square.

˜ 0 3 4 ˜

head
read

6

machine m

in state a

˜ ˜ 0 3 6 ˜

head
read

6

machine m

in state b

If (a, 4) is not in the domain of m, then the machine halts. This is the
only way of stopping a calculation. Let A<ω be the set of all finite strings
from the alphabet A.

1This section is taken from my book:
http://www.math.wisc.edu/∼miller/res/index.html
see
Introduction to Mathematical Logic - Moore style

Lecture notes in Recursion Theory A. Miller December 3, 2008 131

-

?

1

(1,r)

˜ (1,r)

"!

"!

a b

m(a, 1) = (a, 1, r)
m(a, ˜) = (b, 1, r)

Figure 7: Successor function

The Turing machine m gives rise to a partial function M from A<ω to
A<ω as follows. We suppose that A always contains the blank space symbol
˜ ; and S contains the starting state a. Given any word w from A<ω we
imagine a tape with w written on it and blank symbols everywhere else.
We start the machine in state a and reading the leftmost symbol of w. A
configuration consists of what is written on the tape, which square of tape
is being read, and the state the machine is in. Successive configurations are
obtained according to rules determined by m, namely if the machine is in
state q reading symbol s and m(q, s) = (q′, s′, d) then the next configuration
has the same tape except the square we were reading now has the symbol
s′ on it, the new state is q′, and the square being read is one to the left if
d = l and one to the right if d = r. If (q, s) is not in the domain of m, then
the computation halts and M(w) = v where v is what is written on the tape
when the machine halts.

Suppose B is a finite alphabet that does not contain the blank space
symbol ˜ then a function f : B<ω → B<ω is a partial Turing computable
function iff there is a Turing machine m with an alphabet A ⊇ B such that
f = M�B<ω. A partial Turing computable function is Turing computable
iff it is total. A function f : ω → ω is Turing computable if it is Turing
computable when considered as a map from B<ω to B<ω where B = {1}.
Words in B can be regarded as numbers written in base one, hence we identify
the number x with x ones written on the tape.

For example, the identity function is Turing computable, since it is com-
puted by the empty machine. The successor function is Turing computable
since it is computed by the machine in Figure 7.

In the diagram on the left, states are represented by little circles. The
arrows represent the state transition function m. For example, the horizontal
arrow represents the fact that when m is in state a and reads ˜ then it writes
1, moves right, and goes into state b.

Lecture notes in Recursion Theory A. Miller December 3, 2008 132

��
��

��
��

��
��

a b

c

-

�

Z
Z

Z
ZZ~

�
�

�
�=

-

?
0

(˜, r)

1 (˜, r)

1(˜, r)

˜

(1, r) (˜, r)

˜
0

(˜, r) m(a, 0) = (a, ˜, r)
m(a, 1) = (b, ˜, r)
m(b, 0) = (b, ˜, r)
m(b, 1) = (a, ˜, r)
m(a, ˜) = (c, 1, r)
m(b, ˜) = (c, ˜, r)

Figure 8: Parity checker

The set of strings of zeros and ones with an even number of ones is Turing
computable. Its characteristic function (parity checker) can be computed by
the machine in Figure 8.

The following problems are concerned with Turing computable functions
and predicates on ω.

Exercise 45.1. Show that any constant function is Turing computable.

Exercise 45.2. A binary function f : ω × ω → ω is Turing computable
iff there is a machine such that for any x, y ∈ ω inputing x ones and y ones
separated by “,” the machine eventually halts with f(x, y) ones on the tape.
Show that f(x, y) = x+ y is Turing computable.

Exercise 45.3. Show that g(x, y) = xy is Turing computable.

Exercise 45.4. Let x−̇y = max{0, x−y}. Show that p(x) = x−̇1 is Turing
computable. Show that q(x, y) = x−̇y is Turing computable.

Exercise 45.5. Suppose f(x) and g(x) are Turing computable. Show that
f(g(x)) is Turing computable.

Exercise 45.6. Formalize a notion of multitape Turing machine. Show
that we get the same set of Turing computable functions.

Exercise 45.7. Show that we get the same set of Turing computable
functions even if we restrict our notion of computation to allow only tapes
that are infinite in one direction.

Lecture notes in Recursion Theory A. Miller December 3, 2008 133

Exercise 45.8. Show that the family of Turing computable functions is
closed under arbitrary compositions, for example f(g(x, y), h(x, z), z). More
generally, if f(y1, . . . , ym), g1(x1, . . . , xn), . . ., and gm(x1, . . . , xn) are all Tur-
ing computable, then so is

f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Exercise 45.9. A set is Turing computable iff its characteristic function is.
Show that the binary relation x = y is Turing computable. Show that the
binary relation x ≤ y is Turing computable.

Exercise 45.10. Define

sgn(n) =

{
0 if n = 0
1 otherwise

Show it is Turing computable.

Exercise 45.11. Show that if A ⊆ ω is Turing computable then so is ω \A.
Show that if A and B are Turing computable so is A ∩B and A ∪B.

Exercise 45.12. Suppose g(x) and h(x) are Turing computable and A is a
Turing computable set. Show that f is Turing computable where:

f(x) =

{
g(x) if x ∈ A
h(x) if x /∈ A

Exercise 45.13. Show that the set of even numbers is Turing computable.
Show that the set of primes is Turing computable.

Exercise 45.14. Show that e(x, y) = xy is Turing computable. Show that
f(x) = x! is Turing computable.

Exercise 45.15. Suppose that h(z) and g(x, y, z) are Turing computable.
Define f by recursion, f(0, z) = h(z) and f(n+1, z) = g(n, z, f(n, z)). Show
that f is Turing computable.

Exercise 45.16. Prove that the set of partial Turing computable functions
is the same as the set of partial recursive functions.

Lecture notes in Recursion Theory A. Miller December 3, 2008 134

Exercise 45.17. Prove that the halting problem for nonwritting Tur-
ing machines is decidable. A Turing machine m is nonwritting iff whenever
m(s, a) = (s′, a′, d) then a = a′. It is decidable whether or not m halts when
given input x =< x1, . . . , xn >∈ An started on x1 in state s0.

Church-Turing Thesis

Here is an excerpt in support of Church’s Thesis from Alan M. Turing2.
Note that Turing uses the word computer for the person that is performing
some effective procedure.

“ Computing is normally done writing certain symbols on paper. We
may suppose this is divided into squares like a child’s arithmetic book. In
elementary arithmetic the two-dimensional character of the paper is some-
times used. But such a use is always avoidable, and I think that it will be
agreed that the two-dimensional character of paper is no essential of computa-
tion. I assume then that the computation is carried out on one-dimensional
paper, i.e. on a tape divided into squares. I shall also suppose that the
number of symbols which may be printed is finite. If we were to allow an
infinity of symbols, then there would be symbols differing to an arbitrarily
small extent. The effect of this restriction of the number of symbols is not
very serious. It is always possible to use sequences of symbols in the place
of single symbols. Thus an Arabic numeral 17 or 9999999999999999999 is
normally treated as a single symbol. Similarly in any European language
words are treated as single symbols (Chinese, however, attempts to have an
infinity of symbols). The differences from our point of view between the
single and compound symbols is that the compound symbols, if they are too
lengthy, cannot be observed at one glance. This is in accordance with expe-
rience. We cannot tell at one glance whether 9999999999999999999999999
and 99999999999999999999999999 are the same.

“ The behavior of the computer at any moment is determined by the
symbols which he is observing, and his ‘state of mine’ at that moment. We
may suppose that there is a bound B to the number of symbols or squares
which the computer can observe at one moment. If he wishes to observe
more, he must use successive observations. We will also suppose that the
number of states of mind which need be taken into account is finite. The
reasons for this are of the same character as those which restrict the number

2“On computable numbers, with an application to the Entscheidungsproblem”, Pro-
ceedings of the London Mathematical Society, 2-32(1936), 230-265.

Lecture notes in Recursion Theory A. Miller December 3, 2008 135

of symbols. If we admitted an infinity of states of mind, some of them will
be ‘arbitrarily close’ and will be confused. Again, the restriction is not one
which seriously affects computation, since the use of more complicated states
of mind can be avoided by writing more symbols on the tape.

“ Let us imagine the operations performed by the computer to be split
up into ‘simple operations’ which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special order),
and the state of mind of the computer. We may suppose that in a simple
operation not more than one symbol is altered. Any other changes can be
split up into simple changes of this kind. The situation in regard to squares
whose symbols may be altered in this way is the same as in regard to the
observed squares. We may, therefore, without loss of generality, assume that
the squares whose symbols are changed are always ‘observed’ squares.

“ Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares must
be immediately recognizable by the computer. I think it is reasonable to
suppose that they can only be squares whose distance from the closest of
the immediately previously observed squares does not exceed a certain fixed
amount....

“ The operation actually performed is determined, as has been suggested
above, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation. ”

Universal Turing Machine

In his paper Turing also proved the following remarkable theorem.

Theorem 45.18 There is a partial Turing computable function f(n,m) such
that for every partial Turing computable function g(m) there is an n such
that for every m, f(n,m) = g(m). Equality here means either both sides are
defined and equal or both sides are undefined.

Proof
Given the integer n we first decode it as a sequence of integers by taking its
prime factorization, n = 2k13k2 · · · pkm

m (pm is the mth prime number). Then

Lecture notes in Recursion Theory A. Miller December 3, 2008 136

we regard each integer kj as some character on the typewriter (if kj too big
we ignore it). If the message coded by n is a straight forward description of
a Turing machine, then we carry out the computation this machine would
do when presented with input m. If this simulated computation halts with
output k, then we halt with output k. If it doesn’t halt, then neither does
our simulation. If n does not in a straight forward way code the description
of a Turing machine, then we pretend its coding the empty function, i.e. we
just never halt.
QED

46 Trees, Konig’s Lemma, Low basis

Definition 46.1 Recall:

1. A nonempty T ⊆ 2<ω is a tree iff σ ⊆ τ ∈ T implies σ ∈ T .

2. For T ⊆ 2<ω a tree, define:

[T] = {b ∈ 2ω : ∀n b�n ∈ T}

the infinite branches of T .

3. For σ ∈ T define:

T (σ) = {ρ ∈ T : ρ ⊆ σ or σ ⊆ ρ}.

Lemma 46.2 (Konig’s Lemma) If T ⊆ 2<ω is an infinite tree, then [T] is
nonempty.

Proof
Construct b�n by induction so that T (b�n) is infinite.
QED

Example 46.3 There exists an infinite recursive tree T ⊆ 2<ω with no re-
cursive branch.

Proof
Let K0 and K1 be disjoint recursively inseparable sets. Put σ ∈ T iff for all
n < |σ| and i = 0, 1 if n ∈ Ki,|σ| then σ(n) = i. Then the infinite branches of
T are the characteristic functions of separating sets.
QED

Lecture notes in Recursion Theory A. Miller December 3, 2008 137

Proposition 46.4 Suppose T ⊆ 2<ω is a recursive tree, and [T] is countable,
then there exists a recursive b in [T].

Proof
There must be a σ ∈ T such that [T (σ)] has exactly one element, otherwise
T contains a perfect tree. This one element b must be recursive. To see
this, note that if σ ⊆ τ and τ 6⊆ b, then the tree T (τ) is finite. Hence to
determine b�n for any n > |si| we search for an m > n such that exactly one
τ ∈ 2n ∩ T (σ) has an extension at level m.
QED

Proposition 46.5 (Low basis, Jocusch and Soare) If T ⊆ 2<ω is an infinite
recursive tree, then there exists b ∈ [T] with b′ ≡T 0′.

Proof
Inductively construct recursive trees Te with T0 = T as follows: Given Te
define the tree:

T̂e = {σ ∈ Te : {e}σ|σ|(e) ↑}.

Case 1. T̂e is infinite. Put Te+1 = T̂e.
Case 2. T̂e is finite. Put Te+1 = Te.
Since Te+1 ⊆ Te are all infinite trees, the set

⋂
e Te is an infinite tree. This

is because the intersection of trees is always a tree. It is infinite because for
any n < ω there must be σ ∈ 2n which is in infinitely many Te and hence all.
By Konig’s Lemma there exists b ∈

⋂
e[Te].

To see, that b′ = 0′, note that e ∈ b′ iff Case 2 occurred at step e in the
construction. But this can be answered uniformly by 0′.
QED

Exercise 46.6. Find a recursive tree T ⊆ ω<ω which is binary branching,
and such that [T] = {b} where b ≡T 0′. Binary bran

Exercise 46.7. Prove there exists an infinite recursive subtree T ⊆ ω<ω

such that T does not contain an infinite recursive chain or an infinite recursive
antichain.

T is a subtree of ω<ω means that σ ⊆ τ ∈ T implies σ ∈ T for every
σ, τ ∈ ω<ω.

C ⊆ T is a chain iff σ ⊆ τ or τ ⊆ σ for every σ, τ ∈ C.
A ⊆ T is an antichain iff σ ⊆ τ for σ, τ ∈ T just in case σ = τ .

