
References:
Hartley Rogers, Theory of recursive functions
Robert Soare, Recursively enumerable sets and degrees
Barry Cooper, Computability theory

UR-Basic Programming Language

Variables are any string of letters or numerals, A-Za-z0-9.
Statements are of the form

Let X = X + 1
Let X = X−̇1
If X ≤ Y then goto k

where X and Y are any variables and k is a nonnegative integer, i.e. k ∈ ω.
A UR-Basic program is a sequence S0, S1, S2, . . ., Sn of statements.

Variables only take on nonnegative integer values. The symbol −̇ means
subtraction unless the result is negative and then it yields zero. The program
halts if we go to any line k > n.

A function f : ω → ω is UR-Basic computable iff there exists a program
P , designated input variable X and output variable Y such that for any
n ∈ ω if we put X = n and all other variables zero and start with the first
statement of P , then P eventually halts with f(n) in variable Y . There is a
similar definition for f : ωm → ω to be UR-Basic computable.

Basic: UR-Basic:
Go to k If X ≤ X then goto k
Continue Let Donothing=Donothing+1

Let Y=X 1 If X ≤ Y then go to 4
2 Let Y=Y+1
3 Go to 1
4 If Y ≤ X then go to 7
5 Let Y = Y −̇1
6 Go to 4
7 Continue

Constants
0 this is a variable - we agree never to change it

1

1 let 1 = 1 + 1

2 Let 2 = 2 + 1
Let 2 = 2 + 1

If X < Y then goto k Let tempX = X
Let tempX = tempX + 1
if tempX ≤ Y then goto k

If X = Y then goto k 1 If X < Y then goto 4
2 If Y < X then goto 4
3 Go to k
4 continue

For i = 1 to n 1 If n = 0 then goto 7
S1 2 Let i = 1
. . . 3 S1

Sk . . .
Next i 4 Sk

5 Let i = i+ 1
6 If n < i then goto 3
7 continue

Theorem 1 The functions Z = X + Y , Z = XY and Z = XY are UR-
Basic computable. The functions X−̇Y is UR-Basic computable. The pair of
functions remainder and quotient are UR-Basic computable i.e., input n,m
then output q, r with n = qm+ r and 0 ≤ r < m.

Proof
Z = X + Y :

Let Z = X
For i = 1 to Y

Let Z = Z + 1
Next i

Z = XY :

2

Let Z = 0
For i = 1 to Y

Let Z = Z +X
Next i

Z = XY :
Let Z = 1
For i = 1 to Y

Let Z = ZX
Next i

Z = X−̇Y :
0 Let saveY=Y
1 If X ≤ Y then goto 7
2 Let Z = X
3 If Y = 0 then goto 8
4 Let Y = Y −̇1
5 Let Z = Z − 1
6 Go to 3
7 Let Z = 0
8 Continue
9 Let Y = saveY

n = qm+ r:
1 Let q = 0
2 Let r = n
3 If r < m then goto 7
4 Let r = r−̇q
5 Let q = q + 1
6 go to 3
7 continue

QED

Hmwk 1. (Fri 9-3) Prove that the greatest common divisor function d =
gcd(n,m) is UR-Basic computable. Or if you prefer the function f(n) =
the nth prime. Or you can prove that your favorite function is UR-Basic
computable.

3

Primitive recursive functions

The class of primitive recursive functions is the smallest set of functions
f : ωm → ω of arbitrary arity m which contain

1. the constant zero function, Z : ω → ω, Z(n) = 0 all n,

2. the successor function, S : ω → ω with S(n) = n + 1 all n (which we
usually write n+ 1), and

3. the projections πnm(x1, . . . , xn) = xm for 1 ≤ m ≤ n < ω

and is closed under

• composition: h is primitive recursive, if

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

where f is n-ary and each gi is m-ary are primitive recursive, and

• primitive recursion: h is primitive recursive, if

h(0, x1, . . . , xm) = g(x1, . . . , xm)

h(y + 1, x1, . . . , xm) = f(y, x1, . . . , xm, h(y, x1, . . . , xm))

where g is m-ary and f is (m+ 2)-ary primitive recursive.

Note that by using the projections and compositions we may swap vari-
ables around and introduce dummy variables, e.g.

h(x, y, z) = f(g(x, y), z, k(z, x)) = f(g1(x, y, z), g2(x, y, z), g3(x, y, z))

where

g1(x, y, z) = g(π3
1(x, y, z), π

3
2(x, y, z))

g2(x, y, z) = π3
3(x, y, z)

g3(x, y, z) = k(π3
3(x, y, z), π

3
2(x, y, z))

A predicate P ⊆ ωn is primitive recursive iff its characteristic function
χP (~x) is where

χP (~x) =

{
1 if P (~x)
0 if ¬P (~x)

4

Constant functions of any arity are primitive recursive. E.g.

f(x, y, z) = S(S(Z(π3, 1(x, y, z)))) = 2.

Define z = x+ y:
x+ 0 = x
x+ (y + 1) = (x+ y) + 1

Define z = xy:
x0 = 0
x(y + 1) = xy + x

Define z = xy:
x0 = 1
xy+1 = xyx

Define z = x(y) = xx
x.x

:
x(0) = x
x(y+1) = xx

(y)

Define z = x!:
0! = 1
(x+ 1)! = (x+ 1)x!

Define z = x−̇1:
0−̇1 = 0
(x+ 1)−̇1 = x

Define z = y−̇x:
y−̇0 = y
y−̇(x+ 1) = (y−̇x)−̇1

Define

sign(x) =

{
1 if x > 0
0 if x = 0

by sign(x) = 1−̇(1−̇x).

5

Proposition 2 The predicates x ≤ y, x = y, x < y are primitive recursive.
If P and Q are primitive recursive predicates, then so is P ∨ Q and ¬P .
If P (~x, y) is a primitive recursive predicate and f(~x) a primitive recursive
function, then Q(~x) ≡ P (~x, f(~x)) is a primitive recursive predicate.

Proof
χ≤(x, y) = 1−̇(x−̇y)
χP∨Q = sign(χP + χQ)
χ¬P = 1−̇χP
x = y iff x ≤ y and y ≤ x
x < y iff ¬y ≤ x
χQ(~x) = χP (~x, f(~x))

QED

Proposition 3 If P (~x, y) is a primitive recursive predicate and f(~x) a prim-
itive recursive function, then

∃y ≤ f(~x) P (~x, y) and ∀y ≤ f(~x) P (~x, y)

are both primitive recursive predicates.

Proof
Let

Q(~x, z) ≡ ∃y ≤ z P (~x, y)

Then χQ has the recursive definition:
χQ(~x, 0) = χP (~x, 0)
χQ(~x, z + 1) = sign(χQ(~x, z) + χP (~x, z + 1))

Note that
Q(~x, h(~x) ≡ ∃y ≤ h(~x)) P (~x, y)

and

∀y ≤ h(~x) P (~x, y) ≡ ¬∃y ≤ h(~x) ¬P (~x, y)

QED
For example,

x divides y iff ∃z ≤ y y = xz.
x is a Prime iff x > 1 and ∀y ≤ x if y divides x, then y = 1 or y = x.

are primitive recursive predicates.

6

Bounded search: define f(~x, z) = µy ≤ z P (~x, y) where f is the least y ≤ z
which satisfies P (~x, y) and f = 0 if no y ≤ z can be found.

Proposition 4 Suppose Q is a primitive recursive predicate and h a primi-
tive recursive function. Then

g(~x) = µy ≤ h(~x) P (~x, y)

is primitive recursive.

Proof
Let

Q(~x, y) ≡ P (~x, y) ∧ ∀u < y ¬P (~x, u).

Then if we define
f(~x, z) = µy ≤ z P (~x, y)

then

f(~x, z) =
z∑
y=0

y · χQ(~x, y)

which has the following primitive recursive definition:
f(~x, 0) = χQ(~x, 0)
f(~x, z + 1) = f(~x, z) + χQ(~x, z + 1)

Hence
g(~x) = f(~x, h(~x)) = µy ≤ h(~x) P (~x, y).

QED

Proposition 5 If f : ω → ω is primitive recursive, the graph(f) is a prim-
itive recursive predicate. If graph(f) is a primitive recursive predicate and
there is a primitive recursive function g which bounds f , then f is primitive
recursive.

Proof
Graph(f) has characteristic function χ=(~x, f(~x)). If f is bounded by g then

f(~x) = µy ≤ g(~x) (~x, y) is in the graph of f.

QED
Examples:

7

z=max(x,y) iff (x = z and x ≥ y) or (y = z and y ≥ x)
has primitive recursive graph and is bounded by x + y, so it is a primitive
recursive function.

Division,Quotient: input n,m > 0 output q, r with n = qm+r and r < m.
q = quotient(n,m) and r = remainder(n,m) both have primitive recursive
graphs bounded by n+m so they are primitive recursive.

Hmwk 2. (Wed 9-8) Let r(n) = nth digit of
√

2 = 1.4142136 . . ., so r(0) = 1,
r(1) = 4, and so on. Prove that r is primitive recursive. If you prefer you
may use e = 2.7182818 . . . instead of

√
2. Does every naturally occurring

constant in analysis have this property?

Coding pairs and sequences.

Coding pairs. 〈x, y〉 = 2x(2y + 1) − 1 is a bijection between ω2 and ω.
Both unpairing functions are primitive recursive since if x = 〈x0, x1〉, then
x0, x1 ≤ x.
Triples can be coded by 〈x, y, z〉 = 〈x, 〈y, z〉〉 and similarly n ≥ 4-tuples.
To code arbitrary length finite sequences we can use primes:
Define: nextprime(x) = µy ≤ x! + 1 y > x and y is prime

Note that if there is no prime between x and x! then x! + 1 is prime.
Actually there is always a prime between x and 2x.
Define: p0 = 2 and pn is the nth odd prime, primitively recursively by:

p0 = 2
pn+1 =nextprime(pn).

Sequences are coded by c : ω × ω → ω where
c(y, i) = µk ≤ y pk+1

i does not divide y
We often use yi to denote c(y, i).

Theorem 6 Every primitive recursive function is UR-Basic computable.

Proof
The empty program with input x and output y, computes the constant zero
function. Similarly for the projections. The successor function is computed
by the one-line program “Let x=x+1”, with input and output variable x.

For closure under composition: z = f(g1(~x), . . . , gn(~x)) use the basic
program:

Let z1 = g1(~x)
Let z2 = g2(~x)

8

· · ·
Let zn = gn(~x)
Let y = f(z1, . . . , zn)

where appropriate substitution of UR-Basic code has been done.

The basic code for a primitive recursion looks like
Let z = g(~x)
For i = 1 to y

Let z = h(i, z, ~x)
next i

QED

Theorem 7 (Kleene) There exists a primitive recursive predicate Q(e, x, y)
and primitive recursive g such that for every partial UR-Basic computable
f : ω → ω there exists an e with

f(x) = g(µy Q(e, x, y)).

Proof
We can assume that the UR-Basic program only uses the variable vi for i < ω
and that the input variable is v0 and output variable v1.

1. S = 〈0, i〉 ∈ ω codes the statement “Let vi = vi + 1”.
2. S = 〈1, i〉 ∈ ω codes the statement “Let vi = vi−̇1”.
3. S = 〈n, i, j, k〉 for n ≥ 2 codes the statement “If vi ≤ vj then goto k”.

For e ∈ ω let e = 〈n, S〉 and let S0, S1, . . . , Sn−1 be the program statements
with Si coded by c(S, i).

Next we define three primitive recursive predicates:
In the tuple (e, x, y), e codes the program, x is the input value and y is

pair 〈k, V 〉 coding the line k in the program which is being executed and V
coding the values of the variables.

Init(e, x, y) ≡
∃V < y y = 〈0, V 〉 and c(V, 0) = x and ∀i < e (i > 0→ c(V, i) = 0)

Since this is the start we want to start with Statement 0, i.e., y = (0, V)
and v0 = x and vi = 0 for all i with 0 < i < e. Note that we can bound this
by e since e cannot refer to any variables with index higher than e.

Halt(e, y) ≡ ∃n, S < e ∃k, V < y y = 〈k, V 〉 and e = 〈n, S〉 and k ≥ n

9

All this says is we halt when we try to execute a line of the program
beyond its length.

Onestep(e, y, y′)

This just says we take one step in executing the program. So it will be:

∃k, V, k′, V ′ < y + y′ and ∃n, S < e such that all of the following are true:

1. y = 〈k, V 〉, y′ = 〈k′, V ′〉, and e = 〈n, S〉

2. k < n (we don’t take a step if program has halted)

3. If c(S, k) codes “Let vi = vi + 1” then

c(V, i) = c(V ′, i) + 1,

c(V, j) = c(V ′, j) for all j < e with j 6= i, and

k′ = k + 1,

4. If c(S, k) codes “Let vi = vi−̇1” then

c(V, i) = c(V ′, i)−̇1,

c(V, j) = c(V ′, j) for all j < e with j 6= i, and

k′ = k + 1.

5. If c(S, k) codes “If vi ≤ vj then goto l” then

V = V ′ and

k′ = l if c(V, i) ≤ c(V, j) or k′ = k + 1 if c(V, i) > c(V, j).

Q(e, x, y)

This says that y codes a computation using program e and input x.

Q(e, x, y) ≡
∃N, Y < y y = 〈N, Y 〉 and Init(e, x, c(Y, 0)) and Halt(e, c(Y,N − 1)) and

∀i < N Onestep(e, c(Y, i), c(Y, i+ 1))

The function g simply extracts the value of v1 the output variable from
the computation sequence y. Since g(y) ≤ y it is enough to see that its graph
is primitive recursive:

10

g(y) = v iff

∃N, Y, V, k < y 〈N, Y 〉 = y and c(Y,N − 1) = 〈k, V 〉 and c(V, 1) = v

QED

Hmwk 3. (Fri 9-11) Prove that there exists a (total) f : ω → ω whose graph
is a primitive recursive predicate but f is not a primitive function.

Hmwk 4. (Mon 9-13) Prove there exists a primitive recursive bijection
f : ω → ω such that f−1 is not primitive recursive.

Corollary 8 The family of (partial) UR-Basic computable functions is the
same as the family of (partial) recursive functions.

Church-Turing Thesis:

Every intuitively computable function is recursive.

Proposition 9 There exists a computable function f : ω → ω which is not
primitive recursive.

Proof
Make an effective list fn : ωkn → ω of all the primitive recursive functions.
Define f(n) = fn(n) + 1 if fn is a 1-ary function, otherwise put f(n) = 0.
Since the listing can be effectively done by the Church-Turing Thesis the
function f is recursive.
QED

Proposition 10 There exists a universal partial computable function

ψ : ω → ω

i.e. if we define ψe(x) = ψ(〈e, x〉) then {ψe : e ∈ ω} is a uniformly
computable listing of all partial recursive functions.

11

Proof
ψ(〈e, x〉) = g(µy Q(e, x, y)).
QED

Proposition 11 (Padding Lemma) There exists a 1-1 computable function
p such that ψe = ψp(e,n) for every e, n.
(S-n-m Theorem). There exists a computable function S : ω2 → ω such that
ψe0(e1, x) = ψS(e0,e1)(x) for all e0, e1, x.

Proof
To pad the program S0, S1, . . . , Sm coded by e just add the statement

Sm+1 = LetDonothing〈e, n〉 = Donothing〈e, n〉+ 1

and let p(e, n) code this new program.
Given P the program coded by e0 and input e1 make-up a new program

coded by S(e0, e1) which puts e1 into P ’s first input variable and then pops
into program P .
QED

This proposition can be used as follows: Suppose we have described a par-
tial computable function θ(e, x). Then there exists a one-to-one computable
function f : ω → ω such that

∀e, x ψf(e)(x) = θ(e, x)

When use it this way we should call it the 1-1-S-1-1 Theorem.

Definition 12 A ⊆ ω is computably enumerable iff either A is empty or A
is the range of a computable function, i.e., A = {a0, a1, a2, . . .} where the
function n 7→ an is computable. This is abbreviated c.e.

A ⊆ ω is computable iff its characteristic function χA is computable.
A ⊆ ω is Σ0

1 iff there exists a computable predicate R ⊆ ω2 such that
A = {n : ∃m R(n,m)}.

Proposition 13 For A ⊆ ω the following are equivalent:
(1) A is computably enumerable.
(2) A is the domain of a partial computable function.
(3) A is Σ0

1.
(4) A is finite or A has a one-to-one computable enumeration.

12

Proof
(1) → (2): Given a computable enumerable listing an describe a partial
computable function f by input x and look for x on the list. Halt if you find
it, otherwise continue looking forever.

(2) → (1): Define ψe,s(x) ↓= y to mean that e, x, y < x and the eth UR-
Basic program with input x converges and outputs y in fewer than s steps.
The predicate

P (e, x, y, s) ≡ ψe,s(x) ↓= y

is primitive recursive. If A is the domain of ψe, then either A is empty or
let x0 ∈ A be arbitrary and define a recursive enumeration of A by an = x if
n = 〈x, y, s〉 and ψe,s(x) ↓= y otherwise an = x0.

(1) → (3): Let f : ω → ω be computable and have range A. Let R be
the graph of f , then y ∈ A iff ∃x R(x, y).

(3) → (2): Suppose x ∈ A iff ∃y R(x, y). Then f(x) = µy R(x, y) is
partial recursive with domain A.

(1) → (4): Given {an : n < ω} a computable enumeration of A, define
a computable enumeration {bn : n < ω} by bn+1 = am where m is the least
such that am /∈ {bi : i ≤ n}.
QED

Definition 14 For A ⊆ ω, A = ω \ A the complement of A.
A ⊆ ω is Π0

1 iff A is Σ0
1.

∆0
1 = Σ0

1 ∩ Π0
1.

Proposition 15 For A ⊆ ω the following are equivalent:
(1) A is computable.
(2) A and A are both c.e.
(3) A is ∆0

1.
(4) A is finite or A has a strictly increasing computable enumeration.

Proof
(1)→ (2): Since computable implies c.e.

(2)→ (1): Input x. Effectively list A and A simultaneously until x shows
up.

(2) iff (3): Trivial
(1)→ (4): Take an to be the nth element of A.
(4) → (1): Let {an : n < ω} be a strictly increasing computable

enumeration of A.

13

Input x. Find n such that an > x. Then x ∈ A iff x ∈ {ai : i < n}.
QED

Hmwk 5. (Wed 9-15) Prove that every nonempty computably enumerable
set A is the range of a primitive recursive function. Extra Credit: prove that
not every infinite computably enumerable set is the range of a one-to-one
primitive recursive function.

Proposition 16 Every infinite c.e. set contains an infinite computable set.

Proof
Given {an : n < ω} a computable enumeration of A, define a strictly
increasing computable enumeration {bn : n < ω} by bn+1 = am where m is
the least such that am > bn.
QED

Proposition 17 If A and B are c.e. sets, then A ∩ B is c.e. and A ∪ B
is c.e. If A and B are computable sets, then A ∩ B, A ∪ B, and A are all
computable sets.

Proof
Domain of f + g is the intersection of domain f and domain g. Enumerate
A ∪B by x2n = an and x2n+1 = bn.
QED

Hmwk 6. (Fri 9-17) Suppose that V ⊆ ω is c.e. For each n define Vn =
{x : 〈n, x〉 ∈ V }. Prove that ∪nVn is c.e.

Example 18 There exists an c.e. set K which is not computable.

Proof
K = {e : ψe(e) ↓}

If K is the domain of ψe, then e ∈ K iff e /∈ K.
QED

Example 19 There exists disjoint c.e. sets K0 and K1 which are computably
inseparable, i.e., there is not exists a computable set R ⊆ ω with K0 ⊆ R and
K1 ⊆ R.

14

Proof
K0 = {e : ψe(e) ↓= 0} and K1 = {e : ψe(e) ↓= 1}

QED

Definition 20 For any Γ ⊆ P (ω) define Γ̃ to be the set of all A for A ∈ Γ

and define ∆ = Γ ∩ Γ̃. Sep(Γ) is the property that for every A,B ∈ Γ
disjoint there exists C ∈ ∆ with A ⊆ C and B ⊆ C. Red(Γ) (the reduction
principle) is the property that for every A,B ∈ Γ there exists disjoint A′ ⊆ A
and B′ ⊆ B with A′, B′ ∈ Γ and A ∪B = A′ ∪B′.

Proposition 21 Red(Γ) implies Sep(Γ̃).

Proof
Apply reduction to the complements.
QED

Proposition 22 Red(Σ0
1) and hence Sep(Π0

1).

Proof
A = {x : ∃u R(u, x)} and B = {x : ∃v S(v, x)}. Put

x ∈ A′ ↔ ∃u R(u, x) and ∀v ≤ u¬S(v, x)

x ∈ B′ ↔ ∃v S(v, x) and ∀u < v¬R(u, x)

QED
In example 19 it follows that K0 and K1 cannot be separated by disjoint

Π0
1 sets B0 and B1 because such a B0 and B1 could be computably separated.

Hmwk 7. (Mon 9-20) Prove Sep(Γ) for Γ = {A ∪B : A ∈ Σ0
1, B ∈ Π0

1}.

Definition 23 A ≤m B iff there exists a computable function f such that

∀x ∈ ω x ∈ A↔ f(x) ∈ B.

If the f can be taken one-to-one, then we write A ≤1 B.

Note that A ≤m B and B is computable, then A is computable.

Definition 24 W = {〈e, x〉 : ψ(〈e, x〉) ↓}. Then {We : e ∈ ω} where
We = {x : 〈e, x〉 ∈W} is a uniform listing of the c.e. sets.

15

Example 25 Empty = {e : We = ∅} is not computable.

Proof
Define

θ(e, x) =

{
↓= 0 if e ∈ K
↑ otherwise

By the S-n-m theorem there exists f computable such that

∀e, x ψf(e)(x) = θ(e, x)

But then e ∈ K iff Wf(e) 6= ∅ iff f(e) /∈ E so K ≤m E and therefor E not
computable.
QED

Proposition 26 (Rice) If A is a nontrivial index set, then A is not com-
putable.

Proof
Like proof for Empty.
QED

Theorem 27 (Myhill) A ≤1 B and B ≤1 A iff there exists a computable
bijection π : ω → ω with π(A) = B.

Proof
The Schroeder-Bernstein Theorem says: if there exists a 1-1 f : A→ B and
1-1 g : B → A, then there exists a bijection h : A → B. One way to prove
this is to assume A and B are disjoint and define a bipartite graph on the
vertices A ∪ B. Put a ∈ A connected to b iff either f(a) = b or g(b) = a.
As f and g are 1-1 the order of every vertex is either 1 or 2. The connected
components of this graph come in 4 types, see figure 1. Note that in Type 1
the point a ∈ A is not in the range of g and in Type 2 the point b ∈ B is not
in the range of f . Type 4 components are infinite in both ‘directions’ while
Type 3 is the only finite component.

To get h simply define h = f on any component of type 1,3, or 4 and
h = g−1 on components of type 2.

The proof of Myhill’s theorem is similar except we may never know exactly
which type of component we looking at.

Suppose f and g are 1-1 computable functions reducing A to B and B to
A.

Effectively construct a sequence πs of bijections with

16

A B

a HHH
HHHHj

b
f

�
���

����

b
g

HH
HHH

HHj

b
f

���
�����

b
g

bH
HHH

HHHj...

Type 1

A B

b��
���

���

b
g

HHH
HHHHj

b
f

�
���

����

b
g

HH
HHH

HHj

b
f

���
�����

b
...

Type 2

A B

-b f
��

���
���

b
g

-b f
���

�����

b
g

-b f
�

���
����

b
g

-b f J
J

J
J

J
J

J
J

J
J]

bg

Type 3

A B
...

��
���

���

b
g

-b f
���

�����

b
g

-b f
�

���
����

b
g

-b f

...

Type 4

Figure 1: Schroeder-Bernstein connected components

17

-c f
���

���
���

c
g

-c f
���

���
���

c
g

-c f
��

���
����

c
g

-c f J
J

J
J

J
J

J
J

J
J

JJ]

cg

n0

n1

n2

n3

m0

m1

m2

m3

Figure 2: Myhill back and forth

1. πs : Ds → Es is a bijection.

2. Ds and Es are finite subsets of ω.

3. πs ⊆ πs+1.

4. n ∈ D2n and n ∈ E2n+1.

5. if πs(n) = m, then either m = fgfg · · · fn or n = gfgf · · · gm.

In the condition 5 we have dropped the parentheses to make it more
readable.

If we then take π = ∪sπs then π is a recursive bijection since we effectively
constructed the sequence. It takes A to B, because suppose π(n) = m. Then
if m = fgfg · · · fn

n ∈ A iff fn ∈ B iff gfn ∈ A iff fgfn ∈ B iff · · · iff m = fgfg · · · fn ∈ B

similarly if n = gfgf · · · gm

m ∈ B iff gm ∈ A iff fgm ∈ B iff gfgm ∈ A iff · · · iff n = gfgf · · · gm ∈ A

either way n ∈ A iff m ∈ B.
At stage s=0 we take π0 to be the empty function.
At stage s+1 suppose we are given πs : Ds → Es. If s = 2n we try

to extend πs to include n ∈ Ds+1. If its already there we let πs+1 = πs.
Otherwise consider the following sequences:

18

Let n = n0, fn0 = m0 and in general f(nk) = mk and g(mk) = nk+1, see
figure 2.

Case 1. For some k we have that mk /∈ Es.
In this case we put πs+1 = πs ∪ {〈n0,mk〉.

Case 2. Not case 1.

In this case the connected component of the graph (see Figure 1) must be
of Type 3, i.e., a finite closed loop. Suppose g(mk) = n0. But by condition 5 if
all the mk are in Es, then they must map via π−1

s to the set {n0, n1, . . . , nk}
(although not in any particular order). But this is a contradiction, since
n = n0 /∈ Ds. Hence Case 2 cannot happen.

The construction at stage s+1 where s = 2n + 1 is entirely analogous
except we make sure n ∈ Es+1.
QED

Theorem 28 (Rogers) Suppose ρ : ω → ω is partial computable and we
define ρe(x) = ρ(e, x). Suppose

1. ρ is universal, i.e., {ρe : e ∈ ω} includes all partial computable
functions.

2. ρ satisfies padding, i.e., there exists one-to-one computable p : ω×ω →
ω such that

∀e, n ρe = ρp(e,n)

3. ρ satisfies S-1-1, i.e., there exists a computable S : ω × ω → ω such
that

∀e1, e2, x ρe1(〈e2, x〉) = ρS(e1,e2)(x)

Then there exists a computable bijection π : ω → ω such that

∀e ψe = ρπ(e)

Proof
Let ψ = ρe0 . Using padding and S-1-1 for ρ we can find a 1-1 computable
function f(e) = p(S(e0, e)) such that

∀e ψe = ρS(e0,e) = ρf(e)

19

similarly there is a 1-1 computable function g such that

∀e ρe = ψg(e).

By the proof of Theorem 27 there is a computable bijection π : ω → ω
with the property that whenever π(n) = m then either m = fgfg · · · fn or
n = gfgf · · · gm. But

ψn = ρfn = ψgfn = . . . = ρfgfg···fn = ρm

and
ρm = ψgm = ρfgm = . . . = ψgfgf ···gm = ψn

so in either case ψn = ρπ(n).
QED

Hmwk 8. (Wed 9-22) Find an example of a partial computable ρ which is
universal but fails to satisfy padding. Find an example which is universal,
satisfies padding but fails to satisfy S-1-1. (S-1-1 implies padding see Soare
p.25-26.)

Theorem 29 (Kleene - Recursion Theorem) For any computable function f
there exists an e with ψe = ψf(e).

Proof
Define a partial computable function θ by

θ(u, x) = ψψu(u)(x) = ψ(〈ψ(〈u, u〉〉, x))

By padding-S-1-1 we can find a (one-to-one) computable function d : ω → ω
such that

∀u ψd(u)(x) = θ(u, x)

Let v be an index for f ◦ d, i.e.,

∀x ψv(x) = f(d(x))

Put e = d(v) then

ψe(x) = ψd(v)(x) = θ(v, x) = ψψv(v)(x) = ψf◦d(v)(x) = ψf(e)(x)

QED

20

From the proof we can get an infinite computable set of fixed points e,
since we can take any v′ such that ψv′ = f ◦ d and set e′ = d(v′). Also note
that our fixed point e is obtained effectively from an index for f , so given a
computable f : ω×ω → ω if we let fn : ω → ω be defined by fn(x) = f(n, x)
then we get a fixed points en

ψen = ψfn(en)

and the function n 7→ en is computable. This is called the recursion theorem
with parameters:

∀n ψe(n) = ψf(n,e(n)).

Example 30 There are infinitely many e such that ψe(0) = e. There are
infinitely many e such that We = {e}.

Proof
Define θ(e, x) = e for all e. By the S-n-m Theorem there exists a computable
f such that

∀e, x ψf(e) = θ(e, x)

By the Recursion Theorem there are infinitely many fixed points for f , i.e.,

ψe = ψf (e)

and for each of these ψe is the constant function e.
Define a partial computable function θ by

θ(e, x) =

{
↓= 0 if e = x
↑ otherwise

By S-n-m theorem there is a computable function g with ψg(e)(x) = θ(x).
By the definition of θ we see that for every e:

Wg(e) = {e}

By the Recursion Theorem there are infinitely many fixed points for g and
for any of them

We = Wg(e) = {e}.

Hmwk 9. (Fri 9-24) Prove:
(a) for every f, g computable functions, there exists e1 and e2 such that

ψf(e1) = ψe2 and ψg(e2) = ψe1
(b) ∃e1 6= e2 We1 = {e2}, We2 = {e1}
(c) ∃e1 > e2 > e3 We1 = {e2}, We2 = {e3}, We3 = {e1}

21

Example 31 (Smullyan) For any computable functions f(x, y) and g(x, y)
there exists a, b ∈ ω such that

ψf(a,b) = ψa and ψg(a,b) = ψb

Proof
By the recursion theorem

∀x ∃y ψg(x,y) = ψy

but since the fixed point y is obtained effectively from x and an index for g
there exists a computable function h such that

∀x ψg(x,h(x)) = ψh(x)

Apply the fixed point theorem to f(x, h(x)) there exists a ∈ ω such that

ψf(a,h(a)) = ψa

Letting b = h(a) does the job.
QED

Hmwk 10. (Mon 9-27) Prove
(a) ∃e1 < e2 < e3 We1 = {e2}, We2 = {e3}, We3 = {e1}
(b) ∃e1 6= e2 We1 = {e1, e2} = We2

(c) ∃e1 < e2 < e3 We1 = {e2, e3}, We2 = {e1, e3}, We3 = {e1, e2}

Definition 32 A c.e. set A is m-complete iff B ≤m A for every c.e. B.
Similarly 1-complete. Define C is creative iff C is c.e. and there exists a
computable function q ∈ ωω such that for every e

We ∩ C = ∅ → q(e) /∈ C ∪We.

Theorem 33 (Myhill) For C ⊆ ω c.e. the following are equivalent:

1. C is creative

2. C ≡1 K

3. C is 1-complete

4. C is m-complete

22

Proof
(2) → (3): It is enough to see that K is 1-complete, since then for any B
c.e. we would have B ≤1 K ≤1 A. Define a partial computable function ρ
as follows:

ρ(e, x) =

{
↓= 0 if e ∈ B
↑ otherwise

ρ is partial computable because we enumerate B looking to see if e ever turns
up, if not the computation never halts. Using the 1-1-S-1-1 Theorem there
exists a 1-1 computable function f such that

∀e, x ψf(e)(x) = ρ(e, x) =

{
↓= 0 if e ∈ B
↑ otherwise

Then e ∈ B iff ψf(e)(f(e)) ↓ iff f(e) ∈ K.
(3)→ (4): Trivial
(4)→ (1): The creativity of K is witnessed by the identity function, i.e.,

We ∩K = ∅ → e /∈ We ∪K.

Suppose K ≤m A is witnessed by the function f . Then there exists a com-
putable function g such that

for all e Wq(e) = f−1(We)

(Use S-1-1 to get ψq(e) = ψe ◦ f .) Then

We ∩ A = ∅ →

f−1(We) ∩K = ∅ →
Wq(e) ∩K = ∅ →

q(e) /∈ f−1(We) ∪K →
f(q(e)) /∈ We ∪ A

so f ◦ q witnesses the creativity of A.
(1)→ (2):

Claim The creativity function for A can be taken to be 1-1.
Proof
Given any creativity function d for A. Construct a computable function f
such that

∀x Wf(x) = Wx ∪ {d(x)}.

23

To do this use

∀x, y ψf(x)(y) = ρ(x, y) =

{
↓= 0 if y ∈ Wx or y = d(x)
↑ otherwise

Now we get our 1-1 creativity function d̂ recursively as follows: Input e put
e = e0 and effectively generate the sequence es+1 whereWes+1 = Wes∪{d(es)},
i.e. put es+1 = f(es). and look for es such that. Simultaneously enumerate
A and We looking for something in their intersection.

Search for the least s such that either

1. es > d̂(e− 1) or

2. As ∩We,s 6= ∅

If the first happens put d̂(e) = es. If the second happens put d̂(e) = d̂(e −
1) + 1.

This proves the Claim.
QED

Now we show that K ≤1 A. Define a partial computable function θ as
follows:

ψf(n,x(y) = θ(n, x, y) =

{
↓= 0 if n ∈ K and y = d̂(x)
↑ otherwise

It follows that

Wf(n,x) =

{
{d̂(x)} if n ∈ K
∅ otherwise

By the uniform proof of the recursion theorem and by padding we get a 1-1
computable sequence n 7→ en of fixed points so that

∀n Wf(n,en) = Wen =

{
{d̂(en)} if n ∈ K
∅ otherwise

But then n ∈ K iff d̂(en) ∈ A. So K ≤1 A.
QED

Most naturally occurring noncomputable c.e. sets are m-complete.

Hmwk 11. (Wed 9-29) Prove or disprove: there exists a computable function
d : ω → ω such that for every e

We ∩K finite → d(e) /∈ We ∪K

24

Definition 34 A is simple iff A is c.e. , A is infinite, and A does not
contain an infinite c.e. set.

Theorem 35 (Post) There exists a simple set.

Proof
Define a computable sequence As ⊆ s of increasing finite sets as follows.
A0 = ∅. At stage s + 1 find the least e < s (if any) such that We,s ∩ As = ∅
and ∃x > 2e x ∈ We,s. Put As+1 = As ∪ {x} for the least e and x for which
this is true. If this happens we say that e has acted at stage s + 1. If there
no such e, then put As+1 = As.

The set A = ∪sAs is simple. Note that each e can act at most once.
Hence if We is infinite and We ∩ A = ∅, eventually there will come a stage s
where ∃x > 2e x ∈ We,s and all smaller e’s which will ever act have already
acted at a previous stage. But then e will act, which is a contradiction.

Also we see that A is infinite because for all e |A∩ 2e| ≤ e since the only
epr which can put an x into A with x ≤ 2e are those e′ with e′ < e.
QED

Definition 36 A ≤T B or A is Turing reducible to B. Add to the UR-Basic
programming language statements of the form:

Let y = χB(x)

for any variables x, y. This programming language is called Oracle UR-Basic.
Then A ≤T B iff there is an Oracle UR-Basic program with Oracle for B
which computes the characteristic function χA of A.

Hmwk 12. (Fri 10-1) Suppose A is a simple set and A = {an : n ∈ ω} is a
1-1 computable enumeration of A. Prove there exists infinitely many n such
that Wan = {am : m > n}. (Hint: it is easier to show there exists e ∈ A
such that We = {e}.)

Proposition 37 (Dekker Deficiency Set) For every c.e. set A which is not
computable there exists a simple set B with B ≡T A.

Proof

25

Let {an : n ∈ ω} be a 1-1 computable enumeration of A. Define

B = {n : ∃m > n am < an}

It is easy to see that B is c.e.
B is infinite: Otherwise there would be an N such that an+1 > an for all

n > N and then A would be computable.
A ≤T B: Input x. Find n ∈ B such that an > x. Then x ∈ A iff

x ∈ {ai : i < n}.
B does not contain an infinite computable set: Suppose R ⊆ B is an

infinite computable set. But then the argument we just gave for A ≤T B
shows that A ≤T R which would make A computable.

B ≤T A: Input n. Using an Oracle for A check if

{ai : ai < an and i < n} = A ∩ {x : x < an}

if they are equal, then n /∈ B, otherwise n ∈ B.
QED

Hmwk 13. (Mon 10-4) Define B ⊆ ω is intro-reducible iff B ≤T C for every
infinite C ⊆ B. Prove that for every A there exists B ≡T A intro-reducible.

Definition 38 For A ⊆ ω define the Turing degree of A to be

a = deg(A) = {B : B ≡T A}.

Let D = {deg(A) : A ⊆ ω} be the Turing Degrees. (D,≤) is the partial
order where a ≤ b iff A ≤T B.

Definition 39 For σ ∈ 2<ω and e, x, y, s ∈ ω we write

{e}σs (x) ↓= y

to mean that the eth oracle machine with input x and using σ to answer
Oracle questions, converges in less than s steps and outputs y. We also
require that e, x, y < s and that in this computation the oracle is not asked
about n /∈ dom(σ) or n ≥ s.

Proposition 40 The predicate O(σ, e, x, y, s) defined by

O(σ, e, x, y, s) iff {e}σs (x) ↓= y

is primitive recursive.

26

Definition 41 For A ⊆ ω the jump of A is defined by

A′ = {e : ∃s eA�s
s (x) ↓}

Proposition 42 (1) A ≤T B implies A′ ≤1 B
′.

(2) A <T A
′

Proof
(1) Define

θ(e, x) =

{
↓= 0 if eA(e) ↓
↑ otherwise

Then θ is partial computable in A and since A ≤T B we have that θ is partial
computable in B. By the 1-1-S-1-1 Theorem relativized to B there exists a
1-1 computable function f such that

∀e, x {f(e)}B(x) = θ(e, x).

But then e ∈ A′ iff {e}A(e) ↓ iff {f(e)}B(f(e)) ↓ iff f(e) ∈ B′.
(2) To see A ≤1 A

′ construct a 1-1 computable function f so that f(n)A(?)
has the same computation on any input and it converges iff n ∈ A. Then
n ∈ A iff f(n) ∈ A′. To see that A′ 6≤T A, suppose that it is. Define
f = 1− χA′. Then since f ≤T A′ ≤T A there is an e0 with {e0}A = f . But
then e0 ∈ A′ iff e0 /∈ A′.
QED

Corollary 43 If A ≡T B, then A′ ≡T B′. Hence, letting a′ ∈ D be the
Turing degree of A′ is well-defined and a < a′ for every a ∈ D.

Similarly, a′′ is the jump of the jump of a, and a(n) is n jumps of a.

Definition 44 a|b iff not a ≤ b and not b ≤ a. I.e. the degrees a and b are
Turing incomparable.

Proposition 45 (Kleene-Post) There exists a, b ∈ D with a|b.

Proof
Construct sequences (σs ∈ 2<ω : s ∈ ω), (τs ∈ 2<ω : s ∈ ω) with the

property that σs ⊆ σs+1 and τs ⊆ τs+1 for each s. For s = 0 take τs and σs
to be the empty sequence.

27

At stage s+ 1 we are given τs and σs and we do as follows:

Case s = 2e:
Let n = |τs|.
Case a. There exists σ ⊇ σs such that {e}σ(n) ↓. In this case put σs+1 = σ

and put τs+1 = τsi where i = 0, 1 whichever is different from {e}σ(n).
Case b. No such σ. Put σs+1 = σs and τs+1 = τs0.

Case s = 2e+ 1:
Let n = |σs| and proceed similarly to s = 2e with the roles of σs and τs

reversed.
This ends the construction. We put A = ∪s∈ωσs and B = ∪s∈ωτs.

QED
It is easy to see that the entire construction is computable in o′ and hence

there are incomparable Turing degrees beneath o′.

Proposition 46 (Kleene-Post) For every a ∈ D \ {o} there exists b ∈ D
with a|b.

Let deg(A) = a. Construct (τs ∈ 2<ω : s ∈ ω) as follows. τ0 = 〈〉.
At stage s+ 1 we are given τs.

Case s = 2e. Let n = |τs|. Take i = 0 or i = 1 so that i 6= {e}A(n). Put
τs+1 = τsi.

Case s = 2e+ 1.
Case a. There exists n < ω, ρ1, ρ2 with τs ⊆ ρi and

{e}ρ1(n) ↓6= {e}ρ2(n) ↓

In this case we put τs+1 = ρ1 or τs+1 = ρ2 which ever that case is that

{e}τs+1(n) 6= A(n).

Case b. There is no such n and ρi. Put τs+1 = τs0.

This ends the construction. Now we check that B = ∪sτs is Turing
incomparable to A. The cases 2e easily show that it is not the case that
B ≤G= TA. Suppose A ≤T B and choose e so that {e}B = A and consider

28

stage s+1 where s = 2e+1. In case (a) we get that {e}B(n) 6= A(n) so that
it is impossible. Now we show that case (b) cannot happen. Define

f(n) = i iff ∃τ ⊇ τs{e}τ (n) ↓= i

Note that f is well-defined because we are in case (b) and f is total be-
cause we are assume that {e}B is the characteristic function of A. Hence
f which is computable is the characteristic function of A, which contradicts
the assumption that A is not computable.
QED

Hmwk 14. (Wed 10-6) Prove that for every countable A ⊆ D \ {0} there
exists b ∈ D such that a|b for all a ∈ A.

Definition 47 A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}.

Proposition 48 A0 ≤T A1 and B0 ≤T B1 implies A0 ⊕B0 ≤T A1 ⊕B1.
A ≤T C and B ≤T C iff A⊕B ≤T C.

Definition 49 a∨ b = deg(A⊕B) is the join or least upper bound of a and
b.

Meets, a ∧ b, in the Turing degrees may or may not exist.

Proposition 50 (Kleene-Post) There exists a, b ∈ D \ {o} with a ∧ b = 0
i.e., for all c if c ≤ a and c ≤ b then c = o.

Proof
As before construct sequences (σs ∈ 2<ω : s ∈ ω), (τs ∈ 2<ω : s ∈ ω) with the
property that σs ⊆ σs+1 and τs ⊆ τs+1 for each s. For s = 0 take τs and σs
to be the empty sequence.

At stage s+ 1 we are given τs and σs and we do as follows:

Case s = 3e. Let n = |σs|. Let i = 0 or i = 1 so that ψe(n) 6= i. Put
σs+1 = σsi.

Case s = 3e+ 1. Similar to 3e but for τs+1.

Case s = 3〈e1, e2〉+ 2.

29

Case a. There exists n < ω, σ ⊇ σs, and τ ⊇ τs such that

{e1}σ(n) ↓6= {e2}τ (n) ↓

put σs+1 = σ and τs+1 = τ .
Case b. Not case a. Put τs+1 = τs and σs+1 = σs.

This ends the construction. We put A = ∪sσs and B = ∪sτs. The stages
3e, 3e+ 1 guarantee that neither A nor B is computable. Now suppose that
C ≤T A and C ≤T B. This will be witnessed by a pair e1 and e2. At stage
s = 3〈e1, e2〉+ 2 it must have been that Case a. failed since we assume that

{e1}A = {e2}B = C.

But then we may define a total computable function f by

f(n) = i iff ∃σ ⊇ σs {e1}σ(n) ↓= i

and f must be the characteristic function of C and hence C is computable.
QED

Proposition 51 (Kleene-Post) For every c ∈ D there exists a, b ∈ D with
a ∧ b = c and a|b, i.e., a > c, b > c, and for all d if d ≤ a and d ≤ b then
d ≤ c.

Proof
This is a relativization of the above argument. Construct A0 and B0 so that
for every e

{e}C 6= A0 ⊕ C and {e}C 6= B0 ⊕ C
and

{e1}A0⊕C = {e2}B0⊕C = D → D ≤T C
Then take A = A0 ⊕ C and B = B0 ⊕ C.
QED

Hmwk 15. (Fri 10-8) Prove that for every c ∈ D there exists a, b ∈ D with
a|b, a ∧ b = 0, and a ∨ b ≥ c. Hint: one way to code C into A⊕ B is to use
boot-strapping. Define

x2n = µx > x2n−1 A(x) = 1

x2n+1 = µx > x2n B(x) = 1

n ∈ C iff xn is even

30

Proposition 52 (Spector) Given (an : n < ω) in D with an < an+1 for all
n there exists b, c ∈ D with

(1) an ≤ b and an ≤ c for all n and
(2) for all d ∈ D if d ≤ b and d ≤ c then there exists n with d ≤ an.

Proof
Let deg(An) = an and set A = {〈n, x〉 : n < ω, x ∈ An}. The key to this
construction is to make B and C have the property that for each n

Bn =∗ An =∗ Cn

where Bn = {x : 〈n, x〉 ∈ B} and Cn = {x : 〈n, x〉 ∈ C}.
As before construct sequences (σs ∈ 2<ω : s ∈ ω), (τs ∈ 2<ω : s ∈ ω) with

the property that σs ⊆ σs+1 and τs ⊆ τs+1 for each s. For s = 0 take τs and
σs to be the empty sequence.

At stage s + 1 we will extend σs and τs so as to agree with Ai for i < s
on new elements of their domain. Define

fs = σs ∪ {〈〈i, x〉, j〉 : 〈i, x〉 /∈ dom(σs), i < s, and Ai(x) = j}

gs = τs ∪ {〈〈i, x〉, j〉 : 〈i, x〉 /∈ dom(τs), i < s, and Ai(x) = j}

Note that fs is a partial function extending σs which agrees with the char-
acteristic function of each Ai for i < s except possible on the (finite) domain
of σs. Similarly gs.

Let s = 〈e1, e2〉.

Case a. There exists n < ω, σ ⊇ σs and τ ⊇ τs such that fs ∪ σ is a function
(i.e., they are compatible) and gs ∪ τ is a function and

{e1}σ(n) ↓6= {e2}τ (n) ↓

Put σs+1 = σ and τs+1 = τ .

Case b. Not Case a. Put σs+1 = σs and τs+1 = τs.

This completes the construction, so put B = ∪sσs and C = ∪sτs.

Claim. For all n we have that An ≤T B and An ≤T C. To see this note
that in the construction that for all s > n that fs(〈n,m〉) = fn+1(〈n,m〉).
Furthermore, except for the finitely many element of the domain of σn+1 we

31

have that An(m) = fn+1(〈n,m〉). It follows that An =∗ Bn and so An ≤T
Bn ≤T B. Similarly for C.

Claim. Suppose that D ≤T B and D ≤T C. Then D ≤T An for some
n < ω. To see this suppose that

{e1}B = {e2}C = D

and s = 〈e1, e2〉. Since the characteristic functions of B and C extend σs+1

and τs+1 respectively it is evident that Case (a) could not have occurred. So
we assume Case (b). Note that in this case it is impossible that there exists
n, ρ1, ρ2 with σs ⊆ ρ1 and σs ⊆ ρ2, and each of ρ1 and ρ2 compatible with fs
such that

{e1}ρ1(n) ↓6= {e1}ρ2(n) ↓ .

This is because {e2}C(n) ↓ and so then we would be in Case (a).
It follows easily as before that D = {e1}B ≤T fs. But

fs ≤T A0 ⊕ A1 ⊕ · ⊕ As−1 ≤t As−1

so D ≤T As−1.
QED

Proposition 53 (Friedberg Jump Inversion) For every a ∈ D if a ≥ o′ then
there exists b ∈ D with b′ = a.

Proof
We construct sequence (τs : s ∈ ω) computable in A⊕ 0′ ≡T A as follows.

At stage s+ 1 we are given τs ∈ 2<ω

(a) We put τ = τsi where i = A(s).
(b) Let e = s. We ask 0′ if there exists σ ⊇ τ such that

{e}σ|σ|(e) ↓

If there is such a σ then we effectively find one and put τs+1 = σ.
More precisely, before the construction begins find a computable function

f(e, τ) such that

1. for any e, τ
ψf(e,τ)(0) ↓ iff ∃σ ⊇ τ {e}σ|σ|(e) ↓

32

2. when ψf(e,τ)(0) converges it outputs such a σ and

3. the algorithm ψf(e,τ)(?) ignores its input.

We put τs+1 = τ if f(e, τ) /∈ 0′, otherwise we put τs+1 = σ =def ψf(e,τ)(0).
This ends the construction. We let B = ∪s∈ωτs.

Claim.

1. (τs : s ∈ ω) ≤T A⊕ 0′ ≤T A

2. A ≤T (τs : s ∈ ω)

3. (τs : s ∈ ω) ≤T B ⊕ 0′

4. B′ ≤T (τs : s ∈ ω)

Proof
(1) The construction only requires oracles for 0′ and A. Also A ≥T 0′.
(2) We encoded the characteristic function of A at step (a). Hence

s ∈ A iff τs+1(|τs|) = 1.

(3) Recursively construct the sequence (τs : s ∈ ω) using oracles for 0′

and B. Given τs we use that τs+1 ⊆ B to figure out the first digit, i.e., τ of
step (a). To do step (b) we only used 0′ and the computable function f .

(4) By our construction given any e let s = e, then we have that

e ∈ B′ iff {e}B(e) ↓ iff {e}τs+1

|τs+1|(e) ↓

This proves the Claim. But note that the Claim implies

B′ ≤T (τs : s ∈ ω) ≤T A ≤T (τs : s ∈ ω) ≤T B ⊕ 0′ ≤T B′

QED

Hmwk 16. (Mon 10-11) Prove that ∀a ∈ D a ≥ o′ → ∃b, c ∈ D b|c and
b′ = a = c′.

Theorem 54 (Clifford Spector) There exists a minimal Turing degree, i.e.,
∃a ∈ D with o < a but no b ∈ D with o < b < a.

33

Proof
For any σ ∈ 2n, i.e., a finite sequence of zeros and ones, we can code σ by
the number

x = 2n +
∑
{2i : i < n and σ(i) = 1}.

The extra 2n is there to distinguish sequences ending in zeros from each other.
We suppress this coding and just talk about computable subsets of 2<ω.

Definition 55 T ⊆ 2<ω is a perfect tree iff

1. T is nonempty,

2. σ ⊆ τ ∈ T implies σ ∈ T , and

3. ∀σ ∈ T ∃τ0, τ1 ∈ T with σ ⊆ τ0, σ ⊆ τ1, and τ0 and τ1 are incompa-
rable.

Definition 56 For T ⊆ 2<ω a tree we define:

1. σ ∈ T splits iff σ0, σ1 ∈ T

2. σ = stem(T) iff σ splits but no shorter node of T splits

3. [T] = {x ∈ 2ω : ∀n x�n ∈ T}

4. for σ ∈ T let
T (σ) = {τ ∈ T : τ ⊆ σ or σ ⊆ τ}

To prove the Theorem construct a sequence (Ts : s ∈ ω) of computable
perfect trees as follows.

At stage s = 0 take T0 = 2<ω.

At stage s+ 1 where s = 2e let σ = stem(Ts) and n = |σ|. If ψe(n) ↓= 0
then put Ts+1 = Ts(σ1) otherwise put Ts+1 = Ts(σ0).

At stage s+1 where s = 2e+1 we obtain Ts+1 ⊆ Ts a perfect computable
subtree as follows. We first ask the question:

Does there exist σ ∈ Ts such that for all σ1, σ2 ∈ T (σ) and
n,m1,m2 < ω if {e}σ1(n) ↓= m1 and {e}σ2(n) ↓= m2, then
m1 = m2?

34

Case (a) If the answer is yes, we take Ts+1 = Ts(σ) for any such σ.
Case (b) If the answer is no, we construct computable sequences
(σρ ∈ T : ρ ∈ 2<ω) and (nρ ∈ ω : ρ ∈ 2<ω)

such that

1. {e}σρ0(nρ) ↓6= {e}σρ1(nρ) ↓ and

2. σρ ⊆ σρ0 and σρ ⊆ σρ1.

Note that (1) implies that σρ0 is incomparable to σρ1. We put

Ts+1 = {σ : ∃ρ ∈ 2<ω σ ⊆ σρ}

then Ts+1 is a computable perfect subtree of Ts.
This ends the construction of the sequence of trees. Note that Ts+1 ⊆ Ts.

Take A to be the subset of ω whose characteristic function is the unique
element of ∩s∈ω[Ts]. It is easy to see that stage 2e + 1 guarantees that A
is not computable, so it is enough to see stage 2e + 2 guarantees that if
B = {e}A then either B is computable or A ≤T B.

Case (a) for all σ1, σ2 ∈ Ts+1 and n,m1,m2 < ω if {e}σ1(n) ↓= m1

and {e}σ2(n) ↓= m2, then m1 = m2. In this case B is computable, since
A ∈ [Ts+1] and B = {e}A means that all we have to do to compute B(n) is
to search the computable tree Ts+1 for any σ for which {e}σ(n) ↓ and then
B(n) = {e}σ(n).

Case (b) In this case we show that A ≤T B. We know A ∈ [Ts+1].
Suppose we know that σρ ⊆ A. To decide whether σρ0 ⊆ A or σρ1 ⊆ A, we
compute both of

{e}σρ0(nρ) and {e}σρ1(nρ).

Since these two computations are guaranteed to converge and to different
values at most one of them can agree with B(nρ). One of them must agree
and so using an oracle for B we can determine the unique i = 0, 1 so that
σρi ⊆ A.
QED

Hmwk 17. (Fri 10-15) Prove that there are uncountably many minimal
degrees.

35

Theorem 57 (Sacks) Minimal upper bounds exists. Given any sequence of
degrees (an ∈ D : n < ω) such that an < an+1 for all n there exists b ∈ D
with an < b all n but there is no c ∈ D with an < c < b for all n.

Proof
Here we use the notion of a computably-pointed tree.

Definition 58 T ⊆ 2<ω is computably-pointed iff T is a perfect tree and
T ≤T A for every A ∈ [T].

The new ingredient required in this construction is

Claim. Suppose T ⊆ 2<ω is computably-pointed tree and T ≤T B. Then
there exists T ∗ ⊆ T a computably-pointed tree such that T ∗ ≡T B.
Proof
There exists a natural bijection f : 2<ω → Split(T) where Split(T) are the
splitting nodes of T . Note that f and T are Turing equivalent. Given B ∈ 2ω

let

TB = {σ ∈ 2<ω : σ(2n) = B(n) whenever 2n < |σ|}.

Now take T ∗ to be the tree generated by f(TB).
QED

Construct (Ts : s ∈ ω) a sequence of computably-pointed trees as follows.
Suppose Ts ≡T As and e = s. Relativizing Spector’s proof above to Ts

we can obtain T ◦ ⊆ Ts with T ◦ ≤T Ts a perfect subtree so that for every
B ∈ [T ◦]: if C = {e}B then either B ≤T (C ⊕ T ◦) or C ≤T T ◦.

Note that T ◦ is computably-pointed and T ◦ ≤T As. Hence by applying
the Claim above we can obtain Ts+1 ⊆ T ◦ such that Ts+1 is computably-
pointed and Ts+1 ≡T As+1.

This ends the construction. We let B be the unique element of ∩s∈ω[Ts].

First note that As ≤T B for each s, because B ∈ [Ts], Ts is computably-
pointed and so As ≡T Ts ≤T B.

Suppose that As ≤T C ≤T B for every s ∈ ω. Then at some stage s = e
we have that C = {e}B. Hence by construction either C ≤T T ◦ ≤T As or
B ≤T (C ⊕ T ◦). The first is impossible since As <T As+1 ≤T C and so it
must be that B ≤T (C ⊕ T ◦). But T ◦ ≤T As ≤T C so B ≤T C.
QED

36

Hmwk 18. (Mon 10-18) (a) Prove there exists a, b ∈ D with o < a < b and
not there exists c with either o < c < a or a < c < b.

(b) (Extra Credit) Prove there exists a, b ∈ D with o < a < b and
(c ≤ b iff c = 0 or c = a or c = b), for all c ∈ D.

Definition 59 The use of an oracle computation {e}A(x) written

use({e}A(x))

is n+1 where n is the maximum number for which the oracle for A is queried.

Note that if u = use({e}A(x)) and B ∩ u = A ∩ u then {e}A(x) and
{e}B(x) are the same computation.

Theorem 60 (Friedberg-Muchnik) There exists c.e. sets A0 and A1 such
that A0 6≤T A1 and A1 6≤T A0.

Proof
Our requirements are:

R2e+i {e}Ai 6= A1−i
for each e ∈ ω and i = 0, 1.

The strategy for meeting this requirement is to attach a follower x ∈ ω to
R2e+i and then wait until {e}Ai,s

s (x) ↓= 0. When this happens we put x into

A1−i and try to avoid injuring the computation {e}Ai,s
s (x). If we succeed then

{e}Ai(x) = 0 6= 1 = A1−i(x). If we wait forever, then x is never put into A1−i
and so A1−i(x) = 0 6= {e}Ai(x). In either case the requirement R2e+i is met.
There are two possible successful outcomes for this strategy, either we wait
forever or we act at some stage and then preserved the relevant computation.

Construction

Everything in the construction will be done effectively.
At each stage s of the construction we will have effectively constructed:

1. finite sets Ai,s for i = 0, 1,

2. a follower x = xq,s for each Rq with q < s, and

3. a function fs with domain s which is attempting to predicate the final
outcomes of our strategy for each Rq with q < s.

37

At stage s = 0 put Ai,0 = ∅ for i = 0, 1. Nobody has followers and fs is
the empty function.

At stage s+ 1 look for the least q = 2e+ i < s such that

1. fs(q) =‘waiting’ and

2. {e}Ai,s
s (x) ↓= 0 with use less than s where x = xq,s is the follower of

R2e+i.

If we find such a q then we take the following actions:

1. Put x into A1−i, i.e.,

A1−i,s+1 = A1−i,s ∪ {x}

2. Set fs+1(q) =‘acted’.

3. Reappoint followers for lower priority requirements, i.e. for each q′ > q
with q′ < s+ 1 put x = 〈q′, s+ 1〉 to be the follower of Rq′ .

4. Make all lower priority requirements start over, i.e., for each q′ > q put
fs+1(q

′) =‘waiting’.

We say that Rq acted at stage s + 1. If there is no such q then we just
continue to wait. In either case assign x = (s, s+ 1) to be the follower of Rs

and put fs+1(s) =‘waiting’.
This ends the stage and the construction.
Note that the sequence

(As,0, As,1, fs, xq,s : s ∈ ω, q < s)

is computable.
We put Ai = ∪s∈ωAi,s. These are c.e. sets since Ai,s ⊆ Ai,s+1.

Verification

Claim. For each q

1. Rq acquires a permanent follower, i.e., there exist some stage s0 such
that for all s > s0 the follower of Rq at stage s is that same as at stage
s0.

38

2. Rq is met, i.e, {e}Ai 6= A1−i

3. Rq acts at most finitely many times.

Proof
This is the main claim and it is proved by induction on q.

So suppose that (3) is true for all q′ < q. Then there is a stage s0 such that
some q′ < q acted and no such q′ < q acts after stage s0. Then the follower
xq of Rq appointed at stage s0 is the permanent follower of Rq. Furthermore
fs0(q) =‘waiting’.

Suppose q = 2e+ i. After stage s0 there are two possibilities:
(a) for some s > s0 we have that {e}Ai,s

s (xq) ↓= 0 with use less than s or
(b) not (a).

Suppose (a). In this case since no higher priority q′ acts after stage s0

then Rq will act. Hence xq is put into A1−i. Furthermore all other followers of
lower priority requirements appointed now or at future stages will be larger
than the use of the computation {e}Ai,s

s (xq) (we assume that s ≤ 〈q′, s〉).
Hence

{e}Ai(xq) ↓= 0 6= 1 = A1−i(xq)

Suppose (b). In this case it must be that either

{e}Ai(xq) ↑ or {e}Ai(xq) ↓6= 0.

In either case xq is never put into A1−i - this is because the possible followers
of two distinct requirements are disjoint and no follower is used again for the
same requirement. So A1−i(xq) = 0 6= {e}Ai(xq) and thus Rq is met.

So as we see Rq will act at most one more time after stage s0 and so it
acts only finitely many times. This proves the Claim and the Theorem.
QED

We say that Rq is injured when it is made to appoint new followers and
start over. Hence, the terminology ‘finite injury priority argument’.

Corollary 61 There exists a set A which is c.e. and 0 <T A <T 0′.

Proof
Since 0 and 0′ are ≤T comparable to every c.e. set it must be that both Ai
from the Friedberg-Muchnik Theorem are strictly in between.
QED

39

Another way to prove that some c.e. degree is nontrivial is to construct a
low simple set A. Since a simple set is not computable we have that 0 <T A.
Low means that A′ ≡T 0′ so A <T 0′ by Lemma 42.

Lemma 62 (The Limit Lemma) Suppose g ∈ ωω, then
g ≤T 0′

iff
there exists f : ω × ω → ω computable such that for all n

lim
s→∞

f(n, s) = g(n)

Proof
Suppose g = {e}0′

. Let (0′s : s ∈ ω) be a computable enumeration of 0′,
e.g., 0′s = {e < s : {e}s(e) ↓}. Define

f(n, s) =

{
1 if {e}0

′
s
s (n) ↓

0 otherwise

Then g(n) = lims→∞ f(n, s).
For the converse, suppose that g(n) = lims→∞ f(n, s) where f is com-

putable. For each n using an oracle for 0′ we can compute s0 so that for
every s > s0 we have that f(n, s) = f(n, s0).

(Try s0 = 0 and ask the oracle if the computation that searches for a
change in f ever terminates. If yes, try s0 = 1, etc. Continue incrementing
s0 until the oracle says that beyond this stage f does not change.)

It follows that g(n) = f(n, s0). Hence there is an algorithm with oracle
0′ which computes g.
QED

Theorem 63 There exists a low simple set A, i.e. A′ ≡ 0′ and A is simple.

Proof
We make A simple by a strategy that is suggested by the proof of the limit
lemma, namely we would like to use

f(e, s) =

{
1 if {e}As

s (e) ↓
0 otherwise

to show that A′ ≤T 0′. That is, A′(e) = lims→∞ f(e, s). If e ∈ A′ then it is
easy to see that f(e, s) = 1 for all sufficiently large s. The problem then is
to make sure that if f(e, s) = 1 for infinitely many s, then e ∈ A′.

40

So we make the following requirements:
Ne (∃∞s {e}As

s (e) ↓)→ {e}A(e) ↓
In order to make sure that the set A is simple we have the following

requirements:
Pe (We infinite) → We ∩ A 6= ∅
The strategy for Pe is the same as for the Post Simple Set construction

(Theorem 35), that is we wait for some x ∈ We,s with x > 2e and As∩We,s = ∅
and put x into As+1.

The strategy for Ne is to wait until we see convergence and then try to
prevent the computation from changing by restraining numbers less than the
use of the computation from entering A.

The requirement Pe is positive since the strategy is try to put things into
A while the requirement Ne is negative since it tries to keep things out of A.

Construction

At each stage in the construction we will have As and r(e, s) for each e.
We will always have that r(e, s) = 0 for e ≥ s so the function r is really a
finite function.

Stage s+ 1. Look for the least e < s such that

1. We,s ∩ As = ∅

2. ∃x > 2e with x ∈ We,s and x > r(e′, s) for all e′ < e.

For the least such e choose the least x as above and put As+1 = As∪{x}.
We say in this case that Pe acted at stage s + 1. If there is no such e put
As+1 = As.

Next we compute r(e, s+ 1) for all e < s+ 1. If {e}As+1
s (e) ↓, then put

r(e, s+ 1) = use({e}As+1
s (e)

otherwise put r(e, s+ 1) = 0.
This is the end of the construction. We let A = ∪s∈ωAs which is c.e.

Verification.

Claim.

1. Pe is met.

41

2. Ne is met.

3. lims→∞ r(e, s) = r(e) <∞ exists.

Proof
We prove this by induction on e. Note that each Pe can act at most once,
since after it acts We and A are no longer disjoint. Assume the claim is true
for every e′ < e.

(1) By induction we have some s0 such that for all s > s0 and e′ < e that
r(e′, s) = r(e′). Put

R = max{r(e′) : e′ < e}.

We can also choose s0 so large that no Pe′ for e′ < e acts after stage s0 since
each Pe′ acts at most once. Suppose that We is infinite. It follows that at
some stage s > s0 there will be a x ∈ We,s such that x > 2e + R. At stage
s+ 1 either As ∩We,s 6= ∅ or Pe will act. In either case Pe is met.

(2) Choose s0 so that no Pe′ for e′ ≤ e acts after stage s0. This means that
after stage s0 no positive requirement can ever injure a computation of Ne.

Hence if there is some s1 > s0 such that {e}As1
s1 (e) ↓ then no x < use{e}As1

s1 (e)
will ever enter A. It follows that this is the final computation and therefor
{e}A(e) ↓ with the same computation as at stage s.

(3) As above, either we never see convergence and then r(e, s) = 0 for all
s > s0 or we see convergence and then r(e, s) = r(e, s1) for all s > s1.

This finishes the proof of the Claim and the Theorem.
QED

Hmwk 19. (Fri 10-22) (From Soare) A set A is auto-reducible iff there exists
e such that for every x we have

{e}A\{x}(x) ↓= A(x).

Prove that there exists a A low c.e. set which is not auto-reducible.

We define

An = {x : 〈n, x〉 ∈ A}

and

⊕k 6=nAk = {〈k, x〉 ∈ A : k < ω and k 6= n}.

42

Theorem 64 There exists an c.e. set A such that for every n

An 6≤T ⊕k 6=nAk

Proof
This is a minor modification of the Friedberg-Muchnic argument (Theorem
60).

Our requirements are:
R〈e,n〉 {e}⊕k 6=nAk 6= An
for e, n ∈ ω. And the construction is nearly the same:
At stage s+ 1 look for the least q = 〈e, n〉 < s such that

1. fs(q) =‘waiting’ and

2. {e}⊕k 6=nAk,s
s (x) ↓= 0 with use less than s where x = xq,s is the follower

of Rq.

If we find such a q then we take the following actions:

1. Put

As+1 = As ∪ {〈n, x〉}

2. Set fs+1(q) =‘acted’.

3. Reappoint followers for lower priority requirements, i.e. for each q′ > q
with q′ < s+ 1 put x = 〈q′, s+ 1〉 to be the follower of Rq′ .

4. Restart lower priority requirements, for each q′ > q put

fs+1(q
′) = ‘waiting’.

Finally, assign x = (s, s+ 1) to be the follower of Rs and fs+1(s) =‘waiting’.
The verification is virtually the same as in the Friedberg-Muchnic Theo-

rem.
QED

Corollary 65 Every computable partially ordered set embeds into the c.e.
degrees C.

43

Proof
Let P = (ω,�) be a partial order with � a computable binary relation on ω.
Define J(p) = {〈q, x〉 ∈ A : q � p} and let j(p) = deg(J(p)). Then

j : P→ C

is an order preserving embedding.
QED

Hmwk 20. (Mon 10-25) Prove there exists a computable partial order
P0 = (ω,≤0) such that every countable partial order P1 can be embedded
into it, i.e., there exists a 1-1 mapping j : P1 → P0 such that p ≤1 q iff
j(p) ≤0 j(q).

It follows from this exercise that every countable partial order embeds
into the c.e. degrees.

Hmwk 21. (Wed 10-27) Prove that for every creative set A there exist a
set B which is c.e. and disjoint from A but cannot be separated from it by
a computable set. Prove that there exists disjoint c.e. sets A0 and A1 which
are computably inseparable but not creative.

Theorem 66 (Sacks) Suppose 0 <T C ≤T 0′ and A is c.e. Then there exists
c.e. sets A0 and A1 such that

1. A is the disjoint union of A0 and A1,

2. C 6≤T Ai for i = 0, 1, and

3. Ai is of low degree for i = 0, 1, i.e., A′
i ≡T 0′.

Proof
By the limit lemma there exists a computable function g : ω × ω → 2 such
that for every n

C(n) = lim
s→∞

g(s, n).

To simplify notation let Cs(n) = g(s, n).
Let A = {as : s ∈ ω} be a 1-1 computable enumeration of A. If A

is finite or even computable the result is trivially true, so we don’t have to
worry about that case. We will achieve the splitting of A by simply putting
as into exactly one of the two sets A0 or A1 at stage s+ 1.

44

The lowness of the sets will be achieved by same requirements as in the
low simple set proof:

Ne,i (∃∞s {e}Ai,s(e) ↓)→ {e}Ai(e) ↓
Our new requirements are for each e ∈ ω and i = 0, 1:

Re,i {e}Ai 6= C
which we will write Rq = Re,i where q = 2e + i. If we meet each of these,
then C 6≤T Ai for i = 0, 1. For each q we will have two variables lq and uq
which are the length of agreement and the use of some computations. We
will use uq to satisfy both Nq and Rq.

We use the notation lsq and usq to refer to the values of these variables at
stage s. At stage s = 0 put Ai,s = ∅ and put uq = lq = 0.

Stage s+ 1.
Begin by computing the length of agreement lq and the usage uq for each

q < s+ 1:
Suppose q = 2e+ i.

(a) If {e}Ai,s
s (e)) ↓, then:

uq := max{uq, use({e}Ai,s
s (e))}.

(b) Next we adjust the length of agreement. There are two cases:
(1) For all x ≤ lq

{e}Ai,s
s (x) ↓= Cs(x).

In this case we bump up the usage and increment lq:

uq := max{ uq, use({e}Ai,s
s (x)) : x ≤ lq }

lq := lq + 1

(2) Not case (1). In this case we do not change lq and uq.

Now we take action. Find the least q < s+ 1 (if any) such that as < uq.
If q = 2e+ i, then put as into the opposite set, A1−i, i.e.,

A1−i,s+1 = A1−i,s ∪ {as}.

This means we protect the computations above from being injured.

45

If no such q exists, then put as into A0. This ends the stage and the
construction.

Now we verify that the construction works.

Claim. For each q
(1) Rq is met,
(2) lims→∞ lsq = Lq <∞,
(3) lims→∞ usq = Uq <∞, and
(4) Nq is met.

Proof
In the case of (2) and (3) since our variables are nondecreasing this just means
that at some stage they stop growing. The Claim is proved by induction on
q. So suppose it is true for all q′ < q and let Rq = Re,i

(1) For contradiction assume that Rq is not met, i.e.,

{e}Ai = C.

Subclaim (a). lims→∞ lsq =∞.
To see why this is true, note that for any x there will be some stage s0

where Cs�x = C�x for all s > s0 and also {e}Ai�x will be same computations

as {e}Ai,s0
s0 �x, i.e., the use of the oracle has settled down. After s0 the variable

lq will be incremented until it is at least x, if it isn’t already. This proves
subclaim (a).

Now go to a stage s0 such that

1. for all s > s0 and for all q′ < q usq′ = Uq′ and

2. as > max{Uq′ : q′ < q} for all s > s0.

Subclaim (b). If s > s0 is a stage where lq is incremented then

C(x) = {e}Ai,s
s (x).

for any x < lq
To see why this is true, note that uq protects the computation {e}Ai,s

s (x)
from ever changing since as is never beneath uq′ for any higher priority q′ < q.
This means that

{e}Ai,s
s (x) = {e}Ai(x).

46

But we are assuming {e}Ai = C. This proves subclaim (b).

Now we get a contradiction to our assumption that C is not computable.
To compute C(x) search for a stage s > s0 where lq > x and it has just been

incremented. Then C(x) = {e}Ai,s
s (x).

This contradiction proves the main Claim part (1) that Rq is met.

(2) Since Rq is met there exists x such that either
(a) {e}Ai(x) ↑ or
(b) {e}Ai(x) ↓6= C(x).

Go to a stage s0 such that

1. for all s > s0 and for all q′ < q usq′ = Uq′ ,

2. as > max{Uq′ : q′ < q} for all s > s0, and

3. Cs(x) = C(x) for all s > s0

It is impossible that at some stage s > s0 where lq > x that lq is incre-
mented. This is because at s

{e}Ai,s
s (x) ↓= Cs(x)

but uq protects the computation {e}Ai,s
s (x) for the rest of the construction

but then
{e}Ai(x) = {e}Ai,s

s (x) = Cs(x) = C(x)

which contradicts the choice of x.

(3) Note that uq changes only when either lq is incremented or when we see

{e}Ai,s
s (e) converges. Hence if we go to a stage s0 such that

1. for all s > s0 and for all q′ < q usq′ = Uq′ ,

2. as > max{Uq′ : q′ < q} for all s > s0, and

3. lsq = Lq for all s > s0

then uq will change at most once more, after which it protects the computa-

tion {e}Ai,s
s (e) from changing and never changes again.

(4) The proof that Nq is met is the same as in the low simple set argument.

This ends the proof of the Claim and of the Sacks Splitting Theorem.
QED

47

Proposition 67 Suppose A = A0 ∪ A1 is a disjoint union of c.e. sets A0

and A1, then A ≡T A0 ⊕ A1.

Proof
Clearly A = A0 ∪A1 ≤m A0 ⊕A1. To see that Ai ≤ A, input x and first ask
the oracle if x ∈ A. If yes, enumerate A0 and A1 until x shows up.
QED

Corollary 68 (Friedberg Splitting) Every c.e. set which is not computable
is the disjoint union of two c.e. sets which are not computable.

Proof
Take C = A. Then Ai 6≤T A but if either is computable then by the Propo-
sition we get a contradiction.
QED

Corollary 69 For every c ∈ D if o < c < o′, then there exists a ∈ C with
a|c.

Proof
Let A = 0′. By the Theorem A = A0 ⊕ A1 where C 6≤T Ai for both i = 0, 1.
But then at most one of the Ai can be ≤T C, since otherwise

0′ ≡T A0 ⊕ A1 ≤T C.

QED

Corollary 70 There exists a0, a1 ∈ C such that

(a0 ∨ a1)
′ 6= a′0 ∨ a′1

Proof
By the Theorem there exists low c.e. sets Ai such that A0⊕A1 ≡T 0′. Hence

a′0 ∨ a′1 = o′ < o′′ = (a0 ∨ a1)
′

QED

Corollary 71 No c.e. degree is minimal, in fact, beneath any nontrivial c.e.
degree is a nontrivial low c.e. degree.

48

Proof
Given c.e. set A which is not computable, let C = A and then we have low
c.e. sets A0 and A1 which split A and A 6≤T Ai. Then for each i we have
that 0 <T Ai <T A.
QED

Hmwk 22. (Fri 10-29) Define f is proper iff f is a partial computable
function and both the domain and range of f are noncomputable subsets of
ω. Prove that for every proper f that there exists proper f0 and f1 with f
the disjoint union of f0 and f1.

Theorem 72 (Lachlan, Yates) There exists a minimal pair of c.e. degrees,
i.e. a0, a1 ∈ C \ {o} such that the only degree b with b ≤ a0 and b ≤ a1 is
b = o.

Proof

Requirements:

Pe,i ψe 6= Ai

Ne0,e1 ({e0}A0 = {e1}A1 = B)→ B computable.

Strategies:

For Pe,i wait for ψe,s(x) ↓= 0 for some follower x and then put x into Ai.

For Ne0,e1 restrain agreement to get (a) or (b):
(a) for some l < ω we have that {e0}A0�l ↓= {e1}A1�l ↓ and either

({e0}A0(l) ↑ or {e1}A1(l) ↑) or ({e0}A0(l) ↓6= {e1}A1(l) ↓)
(b) {e0}A0 = {e1}A1 = B and B is computable by virtue of our restraining

certain computations, that is, we can compute B by finding stages where we
can be sure the approximate computation at that stage is the final one.

Outcomes:

For Pe,i the outcomes are either to wait forever or to act at some time.
We order them by { act < wait }.

49

For Ne0,e1 the outcomes are either l < ω where l is the largest length of
agreement which we see at a true stage or {∞} if the length of agreement
has infinite limit. We use the ordering

∞ < · · · < l + 1 < l < · · · < 2 < 1 < 0

because it is traditional to take limit infimums (rather than limsups) in the
outcome tree to determine the truth path.

The outcomes are Λ = {act,wait }∪{∞}∪ω. The tree of outcomes is Λ<ω.
At each stage s in the construction we will have computably constructed
fs ∈ Λs which is an approximation to the true path, i.e., the eventually
correct outcomes.

If α ∈ Λn where n = 2〈e0, e1〉 then α works on the requirement Ne0,e1 . If
β ∈ Λn where n = 2m+ 1 and m = 2e+ i, then β works on the requirement
Pe,i.

Supplementary variables:

For each such β working on a positive requirement we have a restraint
variable Rβ ∈ ω. Also for each such β we let

Fβ = {〈β, x〉 : x ∈ ω}

be the followers of β. These could be any pairwise disjoint family of uniformly
computable infinite subsets of ω.

For each α working on a negative requirement we have two variables lα
and uα (length of agreement and the usage of some computations).

The Construction:

Stage s = 0. Put A0,0 = A1,0 = ∅ and f0 = 〈〉, and put all supplementary
variables, Rβ, lα, uα equal to zero.

Stage s+ 1. Given A0,s, A1,s, and fs ∈ Λs proceed as follows.

Action:
Look for the least β (fs working on a positive requirement Pe,i such that
(1) fs(|β|) =‘wait’ and
(2) there exist x > Rβ with x ∈ Fβ and x < s such that ψe,s(x) ↓= 0.

50

Put the least such x into Ai, i.e.,

Ai,s+1 = Ai,s ∪ {x}.

In this case we say that β and Pe,i acted at stage s+ 1. If no such β exists,
then no action is taken.

Update variables:
Define fs+1�n for n ≤ s+ 1 by induction on n. At the same time we may

update the supplementary variables for each γ ⊆ fs+1.

Case β = fs+1�n where β is working on Pê,̂i.
If Pê,̂i has acted at some stage ≤ s+1 then put fs+1(n) =‘act’. Otherwise

fs+1(n) =‘wait’.
Define Rβ to be the maximum of the following sets:

(1){uα : α <lex β} where α <lex β means that there exists k such that
α�k = β�k and α(k) < β(k) in the ordering of outcomes.
(2) {uα : α (β and β(|α|) 6=∞}.

Remarks. β preserves computations of αs which are lexicographically to
its left because α’s want β’s to their right to respect their computations. β
also respects computations directly below it except for those which β thinks
will have an infinite length of agreement.

Case α = fs+1�n and α is working on Ne0,e1 .

We begin by asking:
Does {e0}A0,s+1

s+1 (x) ↓= {e1}A1,s+1
s+1 (x) ↓ for every x ≤ lα?

If yes, we put fs+1(n) =∞ and we set:

uα := max{uα, use({ei}Ai,s+1(x)) : x ≤ lα, i = 0, 1}
lα := lα + 1

If no, we put fs+1(n) = lα and make no changes in the variables.

Remarks. If we see expansion in the length of agreement over what it was
when last we set it, we guess optimistically that the length of agreement will
expand forever. If we don’t see this expansion, we pessimistically guess we
will never see another expansion. (At least on the stages which go thru α.)

51

Verification.

We begin by defining the true path f ∈ Λω. We define f�n by induction
on n. First let

Tn = {s > n : f�n ⊆ fs}

these are the true stages and note that Tn ⊆ Tn−1. The set Tn is a computable
set which (by induction) is infinite. Define f(n) by

f(n) = lim inf
s∈Tn

fs(n).

If β = f�n is working on Pe,i, then f(n) =‘act’ if Pe,i every acts, and otherwise
f(n) =‘wait’, meaning we wait forever. In the case α = f�n is working on
a negative requirement f(n) will be ∞ if there are infinitely many s ∈ Tn in
which the length of agreement lα has been incremented and otherwise it will
be the final value of lα.

Claim. For each n the requirement that f�n is working on is met.
Proof

Case f�n = β is working on Pe,i.

If f(n) =‘act’, then for some x we put x into Ai at a stage s where we
saw ψe, s(x) ↓= 0. But then Ai(x) = 1 6= ψe(x).

If f(n) =‘wait’, let us first prove that Rβ does not change at any stage
s ≥ min(Tn). We first note that for every s > min(Tn) that it is not true that
fs <lex β. Why? Suppose fs�k = β�k and fs(k) < β(k). If β(k) =‘wait’ and
fs(k)=‘act’, then we get a contradiction, since then β is not on the true path
f . In the case of a negative requirement α = β�k then β(k) = l < ω (since
nothing is to the left of∞), but this would mean that the true path would go
to the left of β. It follows that for every s ∈ Tn the variables {uα : α <lex β}
will be what they were at the stage s = min(Tn). Similarly for any uα with
α ⊆ β and β(|α|) 6=∞ these variables will have also reached their maximum
since uα is only changed when lα is incremented.

To see that Pe,i is met in this case let R∗
β be this final value of Rβ. Let

x ∈ Fβ with x > R∗
β. It is not the case that ψe(x) ↓= 0, because if this ever

happened then for some large enough stage s ∈ Tn the worker β would have
acted (either putting this or some smaller x into Ai. Since x is never put
into Ai the requirement is met because ψe(x) 6= 0 = Ai(x).

52

Case f�n = α is working on Ne0,e1 .

If f(n) = l, then for every s ∈ Tn+1 the length of agreement was less than
l + 1, i.e. for some x ≤ l + 1 it was not true that:

{e0}A0,s(x) ↓= {e1}A1,s(x) ↓

otherwise we would have incremented lα. It follows that

¬({e0}A0 = {e1}A1 = B)

and so Ne0,e1 is satisfied.

If f(n) = ∞, then we claim that B is computable. To see this suppose
s1 < s2 are successive stages in Tn+1. Note that α = fs1�n = fs2�n and
fs1(n) = fs1(n) = ∞. This means that lα was incremented at each stage si,
say l − 1 to l at stage s1 and l to l + 1 at stage s2. At stage s1 before any
action the two computations agreed:

{e0}A0,s1
s1

�l ↓= {e1}A1,s1
s1

�l ↓ .

If β ⊆ fs1 is the node which acted at stage s1 (if any), then it must be
that α ⊆ β and β(n) = ∞. This action could destroy either the left side or
ride side of this agreement but not both, since some x may be put into A0

or A1 but not both. The variable uα is set to protect the surviving side in
subsequent stages. At stages s with s1 < s < s2 any acting node β must
be lexicographically to the right of αˆ∞ = f�(n + 1), i.e., f�(n + 1) <lex β.
But this means that Rβ ≥ uα and so the action at stage s cannot damage
the surviving side. At stage s2 we increment l to l+ 1 which means that the
destroyed side must have come back and equaled the surviving side. This
means that for each s ∈ Tn+1:

{e0}A0�lsα = {e0}A0,s
s �lsα

i.e., the final computation is the computation we see at this stage. Hence
to compute B(x) search for a stage s ∈ Tn+1 such that x < lα and then
B(x) = {e0}A0,s

s (x). It follows that B is computable. This proves the Claim
and the minimal pair theorem.
QED

Hmwk 23. (Fri Nov 5) Put the low simple non-auto reducible set construc-
tion on a tree of outcomes. Prove the construction works. Show that there
is no injury on the true path.

53

Theorem 73 (Friedberg, Enumeration without repetition) There exists an
c.e. set U such that

1. {Ue : e ∈ ω} is the set of all c.e. sets and

2. Ue1 6= Ue2 for all e1 6= e2

Proof
We will first construct an c.e. set V and then modify it to get U . The

requirements are:
Re ∀ê < e (Wê 6= We)→ We = Vx for some unique x.

The strategy for meeting this requirement is to appoint a follower x. As
long as it looks like ∀ê < e (Wê�x 6= We�x) keep enumerating We into Vx.
Otherwise make it a disloyal follower and put it into the garbage. What
do we do with Vx when x is a disloyal follower? We make it into an initial
segment.

Definition 74 A ⊆ ω is an initial segment iff A = ∅ or A = ω or there
exists n < ω such that A = [0, n] =def {i < ω : 0 ≤ i ≤ n}.

So our modified requirement is:

Re If ∀ê < e (Wê 6= We) and We is not an initial segment, then
We = Vx for some unique x.

At stage s+ 1 in our construction we have the following sets:

1. Fs the followers

2. a 1-1 mapping from Fs to ω which tells us that x is the follower of e,
say fs(x) = e

3. Ds the disloyal former followers

4. (Vx,s : x ∈ Fs ∪Ds)

5. a nondecreasing variable gs keeping track of last initial segment assigned
to a disloyal follower.

The sets Fs and Ds will be disjoint finite sets whose union is an initial
segment.

54

Construction

Stage s+ 1
Let s = 〈e, ?〉. (So we visit each e infinitely often.)
If no follower is assigned to Re, let x = min(Fs ∪Ds) and assign x to be

the follower of Re. Put Fs+1 = Fs ∪ {x} and end the stage.
If x is the follower of Re and

1. ∀ê < e
Wê,s+1 ∩ [0.x] 6= (We,s+1) ∩ [0, x]

2. We,s+1 ∩ [0, x] is not an initial segment

then put Vx,s+1 = Vx,s ∪ We,s+1 and end the stage. Actually in this case
Vx,s ⊆ We,s so we could have said put Vx,s+1 = We,s+1.

If x is the follower of Re and either of those two conditions fails then

1. change x into a disloyal follower, i.e., Fs+1 = Fs \ {x} and Ds+1 =
Ds ∪ {x},

2. let gs+1 be the minimum g > gs such that Ve,s ⊆ [0, g], and

3. permanently assign Vx to be [0, gs+1], i.e., set Vx,s+1 = [0, gs+1] and
never change Vx again.

End the stage.

Verification

Claim. The following are equivalent for any e:

1. For each e if We is not an initial segment of ω and We 6= Wê for each
ê < e.

2. Re obtains a permanent follower x and hence Vx = We.

Proof
Suppose condition 2 holds. Then Re obtains a permanent follower x. Then
for all stages s+1 after x is appointed and for which s = 〈e, ?〉, we have that
We,s ∩ [0, x] is not an initial segment and We,s ∩ [0, x] 6= Wê,s ∩ [0, x] for each
ê < e. Condition (1) follows since there are infinitely many such stages.

55

Suppose that condition 1 holds. Choose y so that We ∩ [0, y] is not an
initial segment and

We ∩ [0, y] 6= Wê ∩ [0, y]

for every ê < e. Go to some stage s0 where

We,s0 ∩ [0, y] = We ∩ [0, y]

and
Wê,s0 ∩ [0, y] = Wê ∩ [0, y]

for every ê < e. IfRe has no permanent follower then infinitely many followers
are appointed to it. Hence some follower x > y will be appointed after stage
s0. But such a follower will always remain loyal.
QED

Let D = ∪s∈ωDs be the set of disloyal followers. Then D is the set of
permanent followers.
Claim.

1. {Vx : x ∈ D} is the set of c.e. sets which are not initial segments.

2. There exist a computable set G such that

{[0, n] : n ∈ G} = {Vx : x ∈ D}.

3. Vx 6= Vx′ unless x = x′.

Proof
Part (1) follows from the first Claim.
For Part (2), since the sequence gs is non-decreasing we see that

G = {gs : s ∈ ω}

is computable.
For Part (3) note that there are two types of Vx. If x is a permanent

follower of some Re and then Vx = We where We is not an initial segment
and We is distinct from each Wê. Or x is a disloyal follower at some stage
s+ 1 and then Vx = [0, gs+1]. Since the sequence gs is bumped up each time
it is used we see that the Vx for disloyal followers are distinct finite initial
segments. This proves Claim.

56

QED
Let us show how to modify V to U to prove Friedberg’s enumeration

without repetition theorem. Note that V uniquely enumerates every c.e. set
except ω, ∅, and the finite initial segments of the form [0, n] where n /∈ G.
Let {xn : 1 < n < ω} be a 1-1 computable enumeration of G. Now define U
by U0 = ω, U2 = ∅, U2n = [0, xn] for n > 1, and U2n+1 = Vn.
QED

Hmwk 24. (Mon Nov 8)
(a) Prove there exists V c.e. such that

{Ve : e ∈ ω} = set of c.e. non-simple sets.
(b) Prove there exists U c.e. such that

{Ue : e ∈ ω} = set of c.e. non-simple sets and Ue1 6= Ue2 unless e1 = e2.

Definition 75 Coding finite sets. For D ⊆ ω let x =
∑

n∈D 2n. Write
Dx = D.

Definition 76 (Dx : x ∈ R) is a strong array iff R is an infinite computable
set and for every x, y ∈ R we have Dx ∩Dy = ∅ whenever x 6= y.

Definition 77 A set A ⊆ ω is hypersimple iff A is c.e. , A is infinite, and
for every strong array (Dx : x ∈ R) there exists x ∈ R such that Dx ⊆ A.

Proposition 78 (Post)
(1) Hypersimple implies simple.
(2) There is a simple set which is not hypersimple.
(3) There is a hypersimple set.

Proof
(1) If A is not simple, then there exists an infinite computable set R ⊆ A.
Then {D2x : x ∈ R} witnesses that A is not hypersimple.
(2) In Post’s original construction of a simple set A (see Theorem 35) we
constructed a simple set A by waiting until there was some x ∈ We,s with
x > 2e and We,s ∩As = ∅ and then putting x into A. The reason that A was
infinite was because for every e we had that |[0, 2e] ∩ A| ≤ e. This means
that for every a we have that

[a, 4a] ∩ A 6= ∅

57

because [a, 4a] is 3/4 of the interval [0, 4a]. So define a0 = 5 and an+1 =
4an + 1. Take xn so that Dxn = [an, 4an] and note that Dxn ∩ A 6= ∅ for
each n so the computable set R = {xn : n < ω} witnesses that A is not
hypersimple.
(3) This is a consequence of the following proposition, although originally
Post gave a construction similar to his construction of a simple set.
QED

Proposition 79 (Dekker) Deficiency sets are hypersimple.

Proof
See Theorem 37. Suppose that A = {as : s ∈ ω} is a 1-1 computable
enumeration of A and A is not computable. Define

D = {s : ∃t > s at < as}.

As we saw before A ≡T D and D is simple. A similar proof will show that
D is hypersimple.

Suppose for contradiction that there exists a strong array (Dx : x ∈ R)
such that Dx ∩D 6= ∅ for every x ∈ R.

Now we get a contradiction by showing that A is computable.
Input u. Find an x ∈ R such that

u < min{as : s ∈ Dx}.

Such an x exists, since as is a 1-1 enumeration and the Dx are pairwise
disjoint. But now at least one of t ∈ Dx is not deficient, so for all s > t we
have as > at. Hence u ∈ A iff u = as for some s ≤ maxDx.
QED

Hmwk 25. (Wed Nov 10) Define A to be bdd-hypersimple iff A is c.e. , A
is infinite, and for every strong array (Dx : x ∈ R) such that there exists
N < ω such that |Dx| ≤ N for all x ∈ R, there exists x ∈ R such that
Dx ⊆ A. Prove that bdd-hypersimple is equivalent to simple.

Definition 80 For any set A ⊆ ω such that A is infinite define gA ∈ ωω by
gA(n) is the (n+ 1)th element of A, i.e.,

A = {gA(0) < gA(1) < · · · < gA(n) < · · ·}

58

Proposition 81 For any c.e. set A with A infinite the following are equiv-
alent:

1. A is hypersimple.

2. For any computable increasing sequence nk < nk+1 there are infinitely
many k with [nk, nk+1) ⊆ A.

3. For any computable f ∈ ωω there are infinitely many k such that f(k) <
gA(k).

Proof
(1)→ (2). This is clear since if Dxk

= [nk, nk+1), then R = {xk : k < ω}
is a strong array. There are infinitely many since R(l) =def {xk : k > l} is a
strong array for any l.

(2) → (3). Given a computable f construct a computable sequence
nk+1 > nk with the property that f(nk + 1) < nk+1 for each k. For
any k such that [nk, nk+1) ⊆ A note that A ∩ [0, nk+1) ⊆ [0, nk) and so
gA(nk + 1) = (nk + 1)th element of A must be greater than nk+1. Hence
f(nk + 1) < gA(nk + 1).

(3)→ (1). Suppose A is not hypersimple and hence there exists a strong
array (Dx : x ∈ R) such that Dx ∩ A 6= ∅ for all x ∈ A. Let {xn : n ∈ ω)
be a 1-1 computable enumeration of R and define

f(n) = 1 + max(∪m≤nDxm)

Then |A ∩ [0, f(n))| > n and so f dominates gA.
QED

Hmwk 26. (Fri 11-12) Prove that for every c.e. set A ⊆ ω if A is infinite,
then there exists a hypersimple set B ⊇ A.

Consider propositional logic with the set of atomic letters

{Pn : n ∈}.

For any propositional sentence ψ and subset A ⊆ ω define

A |= ψ

inductively by
A |= Pn iff n ∈ A

59

A |= ¬ψ iff not A |= ψ

A |= (ψ ∨ θ) iff (A |= ψ or A |= θ)

and so forth for the other logical symbols.

By coding symbols as elements of ω and thinking of sentences as strings
of symbols or finite sequences of elements of ω, we identify the set of propo-
sitional sentences with a computable subset of ω, SENT. The details of this
coding are left to the reader.

The following notion is known as truth-table (tt) reducibility.

Definition 82 A ≤tt B iff there exists a computable sequence

(θn ∈ SENT : n ∈ ω)

such that for all n ∈ ω
n ∈ A iff B |= θn

Note: It is easy to see that A ≤tt C and B ≤tt C implies (A ∩ B) ≤tt C
and A ≤tt C. Hence the family of sets which are truth-table reducible to C is
closed under finite boolean combinations. It is easy to see that ≤m-reducible
is stronger than ≤tt, and ≤tt is stronger than ≤T .

Proposition 83 (Nerode) The following are equivalent:

1. A ≤tt B.

2. There exist e with the property that

∀X ∀x {e}X(x) ↓

and {e}B = A.

3. There exists e and f ∈ ωω computable such that

∀x {e}Bf(x)(x) ↓

and {e}B = A.

60

Proof
(1) → (2). Given (θn : n ∈ ω) witnessing that A ≤tt B, it is easy to

construct an oracle machine e such that for any input x and oracle X that
{e}X(x) ↓= 1, if X |= θx and {e}X(x) ↓= 0, if X |= ¬θx.

(2)→ (3). We show that the same e works. Input x and let

Tx = {σ ∈ 2<ω : {e}σ|σ|(x) ↑}.

The trees Tx are uniformly computable in x. By Konig’s tree lemma, since
Tx has no infinite branch, it is finite. Therefor we can compute the least n
such that for all σ ∈ 2n we have that σ /∈ Tx. Put f(x) = n.

(3) → (1). Input x. Compute a use bound ux so that for every possible
computation {e}?f(x)(x) the computation only asks about i < ux. (Since it

takes at least one step to ask the oracle anything there are at most 2f(x) such
simulations.)

Now define
tx = {R ⊆ [0, ux] : {e}Rf(x)(x) ↓= 1}.

Define
θx = ∨∨R∈tx(∧∧i∈R Pi ∧ ∧∧i∈[0,ux]\R ¬Pi)

Then for any x ∈ ω we have that

x ∈ A iff {e}Bf(x)(x) ↓= 1 iff B ∩ [0, ux] = R ∈ tx iff B |= θx.

QED

Proposition 84 (Post)

1. If A is simple, then A <m K.

2. If A is hypersimple, then A <tt K.

3. There exists a simple A with A ≡tt K.

Proof
(1) If K ≤m A then A is creative and hence not simple. (See Theorem

33.)
(2) Since every c.e. set is many-one reducible to K it is enough to see

that K ≤tt A implies A is not hypersimple.

Claim. Let Γ = {Pn : n ∈ A}. Then there exists a computable list (ρn : n <
ω) of propositional sentences such that for every n

61

1. A |= ρn and

2. Γ ∪ {ρm : m < n} 6` ρn.

Proof
Since K ≤tt A there exists a computable function θ : ω → SENT such that
n ∈ K iff A |= θ(n).

Now we effectively construct ρn as follows. Let

Σn = {ρ : Γ ∪ {ρm : m < n} ` ρ}.

Note that Σn is computably enumerable as a subset of SENT. Also A |= θ
for every θ ∈ Σn. It follows that θ−1(Σn) ⊆ K is c.e. By the S-n-m Theorem
there exists a computable function f such that

Wf(n) = θ−1(Σn)

and by the proof that K is creative we have that

f(n) ∈ K ∪ θ−1(Σn).

Take ρn = θ(f(n)).
QED

Let Sk be that set of all n such that the propositional letter Pn occurs in
the sentence ρk, i.e., Sk is the support of ρk.

Claim. For any n let

m = max
(⋃
{Sk : k ≤ 22n+1

+ 1}
)

then A ∩ [n,m) 6= ∅.
Proof
Suppose not and assume that [n,m) ⊆ A. Let ρ∗k be obtained from ρk by
replacing all propositional letters Pi for n < i < m by the letter Pn. Note
that Γ ` Pi for all these i and hence Γ ` ρ∗k ≡ ρk for every k ≤ 22n+1

+1. But
there are at most 22n+1

logically inequivalent propositional sentences with
atomic letters Pi for i ≤ n and so for some k < l we have that ρ∗k ≡ ρ∗l . But
this is a contradiction since then

Γ ` ρi ≡ ρj.

62

QED

Now it is an easy matter to construct a computable sequence nk < nk+1

so that A ∩ [nk, nk+1) 6= ∅ for each k. Hence A is not hypersimple.

(3) Let B be any simple set which is not hypersimple. By Proposition 81
there exists a computable increasing sequence (nk : k < ω) such that for all
k we have that B ∩ [nk, nk+1) 6= ∅. Now let

A = B ∪
⋃
k∈K

[nk, nk+1)

A is simple because it is a superset of the simple set B. A is infinite because
for each k ∈ K we have A ∩ [nk, nk+1) 6= ∅. We have that K ≤tt A because

k ∈ K iff A |= ∧∧nk≤i<nk+1
Pi

QED

Definition 85 V is a weak array iff V is c.e. and Vx ∩ Vy = ∅ whenever
x 6= y. As usual, Vx = {y : 〈x, y〉 ∈ V }.

Definition 86 A ⊆ ω is hyperhypersimple iff A is re, A is infinite, and for
every weak array V there exists x with Vx ⊆ A.

Proposition 87 For any A ⊆ ω for which A is c.e. and A is infinite the
following are equivalent:

1. A is hyperhypersimple

2. for every infinite c.e. set B such that Wx ∩ Wy = ∅ for all distinct
x, y ∈ B there exists x ∈ B with Wx ⊆ A

3. for every weak array V there exists an infinite computable set R such
that Vx ⊆ A for all x ∈ R

4. for every weak array V such that Vx is finite for all x there exists x
such that Vx ⊆ A

63

Proof

(1) iff (2) is true because the two types of arrays are the same.
(1)→ (3), The sequence (Rn = {〈n,m〉 : m ∈ ω} : n < ω) is a uniformly

computable partition of ω into infinite pieces. Take

Un = ∪e∈RnVe

Then U is weak array and so there exists n with Un ⊆ A.
(4) → (1). Given a weak array V such that Ve ∩ A 6= ∅ for all e we find

another weak array V ∗ such that V ∗
e finite and V ∗

e ∩A 6= ∅ for all e. For each
s define V ∗

e,s = Ve,s0+1 where s0 is the largest t ≤ s such that Ve,t ⊆ As.
QED

Hmwk 27. (Mon 11-15) Prove
(a) If A is simple and B is simple, then A ∩B is simple.
(b) If A is hypersimple and B is hypersimple, then A∩B is hypersimple.
(b) If A is hyperhypersimple and B is hyperhypersimple, then A ∩ B is

hyperhypersimple.

Example 88 There exists a hypersimple set A which is not hyperhypersim-
ple.

Proof
Let B ⊆ ω be any hypersimple set. Define A ⊆ ω by

A = {〈n,m〉 : n ∈ B or n ≤ m}.

A is not hyperhypersimple since each of the sets Vn =def {〈m,n〉 : m ∈ ω}
meets A. To see that A is hypersimple suppose we are given a strong array
(Dn : n ∈ R). Let pi(〈m,n〉) = m be projection to the first coordinate.
We can find an infinite computable subset S ⊆ R such that (π(Dx ∩ Q) :
x ∈ S) are pairwise disjoint where Q = {〈n,m〉 : m < n < ω}. Since B is
hypersimple, there exists x ∈ S with π(Dx ∩Q) ⊆ B and hence Dx ⊆ A.
QED

Example 89 Dekker deficiency sets are never hyperhypersimple.

Proof

64

Let A = {as : s ∈ ω} be a one-one computable enumeration of a non com-
putable set A. And D = {s : ∃t > s at < as}. We construct a weak array V
to meet the requirements:

Rx Vx ∩D 6= ∅

Stage s+1
Step (a). For any x ≤ s if Rx has a follower t such that as < at then

unappoint t so that now Rx has no follower.
Step(b). For the least x for which Rx has no follower, appoint s the

follower of Rx and put Vx,s+1 = Vx,s ∪ {s}.
This ends the stage and the construction. Note that V is a weak array.

Claim. Each Rx obtains a permanent follower s and for this s we have
s ∈ Vx ∩D.
Proof
This is by induction on x. So after some sufficiently large stage s0 no y < x
is appointed a new follower. Suppose for contradiction that Rx is appointed
a new follower at stages s1, s2, . . . where s0 < s1 < s2 < · · ·. Note that since
higher priority requirements don’t get new followers after s0 each time Rx

losses its follower it acquires the stage itself as its new follower. But this
means that

as1 > as2 > as3 > · · ·
which is a contradiction.
QED

Definition 90 A ⊆∗ B iff B \ A is finite.
A =∗ B iff A ⊆∗ B and B ⊆∗ A
∀∞ means ‘for all but finitely many’
∃∞ means ‘exists infinitely many’

Definition 91 M ⊆ ω is maximal iff M is c.e. , M is infinite, and for
every A c.e. if M ⊆ A then M =∗ A or A =∗ ω.

Proposition 92 Maximal implies hyperhypersimple.

Suppose V is a weak array such that Ve ∩ A 6= ∅ for all e. Define

B = A ∪
⋃
e<ω

V2e

65

then A 6=∗ B and B 6=∗ ω, so A is not maximal.
QED

Theorem 93 (Friedberg) Maximal sets exist.

Proof
We will construct the maximal set M as follows. We use the notation pn for
the nth element of the complement of M , i.e.,

M = {p0 < p1 < p2 < · · ·}

Are requirements are

Re (∀∞n pn ∈ We) or (∀∞n pn /∈ We)

This guarantees that M ∪We =∗ ω or M ∪We =∗ M ,
At stage s given Ms we let

Ms = {p0,s < p1,s < p2,s < · · ·}

The idea of this proof is called moving markers. We think of a marker
labeled n with position pn,s. As we slide the marker upward we put the
uncovered numbers into Ms. In order to get M infinite we want each marker
to eventually stop moving.

Definition 94 σ ∈ 2n is the n-state of x at stage s iff

for all e < n σ(e) =

{
1 if x ∈ We,s

0 if x /∈ We,s

Two easy facts about the n-state are the following:

(1) Suppose s1 ≤ s2,
σ1 ∈ 2n is the n-state of x at stage s1, and
σ2 ∈ 2n is the n-state of x at stage s2,

then σ1 ≤lex σ2.

(2) For fixed n and x there is σ ∈ 2n such that σ is the n-state of x for
all but finitely many stages s. We call this the final n-state of x.

Our strategy can be summarized simply as ‘maximize the lexicographic
order of the n-state of pn’.

66

Stage s+ 1.
Find the least n (if any) such that there exists m with n < m < s such that

if σ ∈ 2n is the n state of pn,s and
τ ∈ 2n is the n state of pm,s, then σ <lex τ .

For the least such n find the least m and shift the marker n to m:
Put pn+i,s+1 = pm+i,s for all i < ω. Equivalently put

Ms+1 = Ms ∪ {pj,s : n ≤ j < m}

Otherwise as usual if there are no such n,m just go to the next stage with
everything unchanged.

This ends the stage and the construction.

Claim. The markers eventually stop moving, i.e.,

lim
s→∞

pn,s = pn <∞

Proof
This is proved by induction on n. Note that the only way the marker n moves
is either that it is bumped up by some marker m < n or it moves to a higher
n-state. So consider some stage s0 so that no marker m < n moves after
stage s0. But it is impossible for pn to change infinitely many times after
this since its n-state would have to increase lexicographically infinitely many
times. (Note that in between moves its n-state might also change without
the marker moving but it can only increase if it doesn’t move.)
QED

Claim. For each n there exists τ ∈ 2n such that

∀∞m τ = the final n-state of pm.

Proof
Suppose not. Then there exists distinct τ1, τ2 ∈ 2n such that
∃∞m τ1 = the final n-state of pm and
∃∞m τ2 = the final n-state of pm.

Suppose τ1 <lex τ2. Then we can choose m1,m2 with n < m1 < m2 and the
final n-state of pmi

is τi. This is a contradiction, since for some large enough
stage s0 > m2 the markers pj for j ≤ m2 have stopped moving and their final
n-states are their states at stage s0. But by the construction some marker
≤ pm1 must move.

67

QED
This final claim proves the Theorem, since if n = e+ 1 we have that

τ(e) = 1 implies ∀∞m pm ∈ We

and
τ(e) = 0 implies ∀∞m pm /∈ We

QED

Example 95 There exists a hyperhypersimple set which is not maximal.

Proof
First we note that it easy to get M1 and M2 maximal so that M1 6=∗ M2.
Take any maximal set M and let R ⊆M to be an infinite computable subset.
Let π : ω → ω be a computable bijection which takes R to R. Let M1 = M
and let M2 = π(M1).

Now let A = M1 ∩M2. Then A is hyperhypersimple (see exercise) but
not maximal since A ⊆M1 ⊆ ω and A 6=∗ M1 and M1 6=∗ ω.
QED

Remark. Yates noted that we can add to the maximal set construction
an extra ‘kick’ to the pe marker to ensure that {e}(e) ↓ iff {e}pe(e). Then
the maximal set constructed will be Turing equivalent to K.

Hmwk 28. (Wed 11-17) Suppose A = {an : n < ω} is a 1-1 computable
enumeration of a hyperhypersimple set A. Let B = {aan : n < ω}. Prove
that B is hyperhypersimple but not maximal.

Hmwk 29. (Fri 11-19) An c.e. set A ⊆ ω is simple in R where R is an infinite
computable set iff A ∩ R is infinite but contains no infinite c.e. subset. Is
every c.e. set which is not computable simple in some infinite computable
set? Hint: Consider a Friedberg splitting of a Maximal set.

Definition 96 The lattice of c.e. sets is E = (c.e.sets,⊆). A subset X ⊆ E
is definable iff there is a first order formula θ(v) in the language of ⊆ such
that

X = {A ∈ E : E |= θ(A)}.

Similarly for X ⊆ E2 or X ⊆ E3.

Example 97 The following are definable in E.

1. {(A,B,C) ∈ E3 : A ∪B = C}

68

2. {(A,B,C) ∈ E3 : A ∩B = C}

3. {∅}

4. {ω}

5. computable sets

A is computable iff E |= ∃B B ∩ A = ∅ and B ∪ A = ω

6. c.e. but not computable sets

7. infinite c.e. sets

A is infinite c.e. iff E |= ∃B B ⊆ A and B is not computable

8. finite sets

9. cofinite

10. simple sets

11. maximal sets

Definition 98 π is an automorphism of E iff π : E → E is a bijection such
that for every A,B ∈ E

A ⊆ B iff π(A) ⊆ π(B).

Note that for any first-order formula θ(v1, . . . , vn) in the language of E ,
i.e., ⊆, that for any π ∈ aut(E) and A1, . . . , An ∈ E we have that

E |= θ(A1, . . . , An) iff E |= θ(π(A1), . . . , π(An))

Hence definable sets are closed under automorphisms.

Example 99 If A ∈ E, then {A} is definable in E iff A = ∅ or A = ω.

Proof
If A is neither ∅ or ω, then we can choose n,m < ω such that n ∈ A and
m /∈ A. Let π : ω → ω be the identity except π(n) = m and π(m) = n.
Define π : P (ω) → P (ω) by π(A) = {π(n) : n ∈ A}. Then since π is
computable it is clear that π ∈ aut(E). But since

π(A) = (A \ {n}) ∪ {m}

69

we see that {A} is not closed under automorphisms and hence cannot be
definable.
QED

Proposition 100 1. For every π ∈ aut(E) there exists a bijection π̂ of ω
such that π(A) = {π̂(n) : n ∈ A}.

2. Not every bijection π : ω → ω induces an automorphism of E.

3. There are continuum many bijections π : ω → ω which induce an
automorphism of E.

Proof

(1) It is easy to see that the set of singletons

{{n} : n ∈ ω} ⊆ E

is definable in E . Hence any automorphism π : E → E must permute the
singletons. Define π̂(n) so that π({n}) = {π̂(n)}. But now for every n ∈ ω

n ∈ A iff {n} ⊆ A iff π({n}) ⊆ π(A) iff π̂(n) ∈ π(A)

Hence π(A) = {π̂(n) : n ∈ A}.
(2) Take any bijection which maps the even integers to some non com-

putable infinite coinfinite set.
(3) Let M be a maximal set. Let π : ω → ω be any bijection such

that π�M = id. There are continuum many such bijections, one for each
permutation of M . But for any A ∈ E we have that A ∩ M is finite or
A ∩M = ∗M . But this gives us that π(A) =∗ A. Similarly π−1(A) =∗ A.
QED

The following theorem shows that the family of hyperhypersimple sets is
definable in E .

Theorem 101 (Lachlan) A is hyperhypersimple iff A is c.e. , A is infinite,
and

E |= ∀B ⊇ A ∃C ⊇ A B ∩ C = A and B ∪ C = ω

Proof

70

Suppose A is not hyperhypersimple and V is a weak array such that Ve∩A 6= ∅
for all e. Define

B = A ∪
⋃
e∈ω

(Ve ∩We)

Suppose for contradiction that C satisfies B ∩C = A and B ∪C = ω. Then
for some e we have that C = We. Let x ∈ Ve ∩A. If x ∈ We then x ∈ C ∩B
but this contradicts B ∩ C = A. If x /∈ We then x /∈ C and x /∈ B but this
contradicts B ∪ C = ω.

Conversely suppose there exists B as above for which there is no C.
We must show there is a weak array V such that Ve ∩ A 6= ∅ for all e.
So let B = {bs : s ∈ ω} be a 1-1 computable enumeration of B and put
Bs = {bt : t < s}. Similarly, let As be a computable enumeration of A.

We will construct Ve,s pairwise disjoint subsets of B and meet the require-
ments:

Re Ve ∩ A 6= ∅

We will carry along g(e, s) a gate which we use to let elements into each
Ve. At stage s = 0 as usual we put Ve,s = ∅.

Stage s+ 1.
First define

g(e, s+ 1) =

{
g(e, s) if Ve,s ∩ As 6= ∅
s+ 1 otherwise

Look for the least e < s such that bs ≤ g(e, s+ 1) and put bs into Ve, i.e.,

Ve,s+1 = Ve,s ∪ {bs}

Claim. lims→∞ g(e, s) = g(e) <∞ and Re is met.
Proof
This is proved by induction on e. Choose s0 so that for all ê < e and s > s0

we have that g(ê, s) = g(ê) and

bs > max{g(ê) : ê < e}

Suppose for contradiction that

lim
s→∞

g(e, s) =∞

71

Define
C = A ∪

⋃
s≥s0

([0, g(e, s+ 1)] ∩Bs

Suppose x ∈ A. Then we claim that

x ∈ C iff x ∈ B

This is a contradiction since then C ∩B = A and C ∪B = ω.
Suppose x ∈ B. This implies that x ∈ Bs for all s. But if g(e, s) → ∞

we have that x ∈ C.
Suppose x ∈ C. Then for some s ≥ s0 we have that x ∈ [0, g(e, s)] ∩ Bs

(since we are assuming x /∈ A.) If x /∈ B then x ∈ B \ Bs. Hence x = bt for
some t ≥ s. But notice that bt = x ≤ g(e, s) ≤ g(e, t + 1). By our choice
of s0 we have that bt > g(ê) for all ê < e and so bt will be put into Ve. But
x = bt was assumed to be an element of A. This means that g(e, t) will never
increase again which contradicts it going to ∞.

The reason Re is met is because if g(e, s) stops growing then eventually
we stop putting bs’s into Ve. Hence Ve is finite and so it is impossible that
Ve ⊆ A.

This proves the Claim and the Theorem.
QED

The following shows that the family of hypersimple sets is not definable
in E .

Theorem 102 (Martin) There exists a hypersimple set A and π ∈ aut(E)
such that π(A) is not hypersimple.

Proof
We will construct the c.e. set A as usual by constructing a computable
increasing sequence As. We will construct a computable sequence πs of bi-
jections of ω with the property that πs(n) = n for every n ≥ s. So each πs is
really a finite permutation. π will be the limit of πs.

Let W ∗
e,s be defined as follows:

W ∗
e,s = We,s0 where s0 ≤ s is the largest t ≤ s with the property that for

distinct x, y ∈ We,t we have that Dx ∩Dy = ∅.
The list W ∗

e automatically contains all strong arrays. Our requirements
for this construction include:

Re W ∗
e infinite → ∃x ∈ W ∗

e Fx ⊆ A

72

The strategy for making sure that A is a variant on the Post 2e strategy.
At stage s = 0 in our construction we have As = ∅ and πs the identity.

Stage s+ 1.
Given πs and As. We say that e < s requires attention iff

1. ¬∃n ∈ W ∗
e,s Dn ⊆ As

2. ∃x, y ∈ W ∗
e,s such that

(a) x, y /∈ As
(b) ∃n ∈ W ∗

e,s x ∈ Fn
(c) e < x < y < s, e < πs(x), e < πs(y)

(d) i. e-state of x at stage s = e-state of y at stage s

ii. e-state of πs(x) at stage s = e-state of πs(y) at stage s

(e) 2x < πs(y).

The action at this stage is the following. For the least e < s (if any) which
requires attention we choose the least x for which there is a y and then we
choose the least y. For this choice (e, x, y) = (es, xs, ys) we

(a) put x into A, As+1 = As ∪ {xs}
(b) put πs+1 = πs◦swap(x, y) where swap(x, y) refers to the transposition

which interchanges x and y.
As usual if there is no e which requires attention we do nothing and go onto
the next stage.

This ends the construction. Let Q denote the stages s where action takes
place at stage s+ 1. Then

A = {xs : s ∈ Q}

We define
π(u) = lim

s→∞
πs(u)

although at this point we have not proved that this limit always exists. Note
the pointwise limit of 1-1 functions must be 1-1 where it is defined.

Note that for s ∈ Q we have that πs+1(xs) = πs(ys). Since xs enters
A we have (by 2a) that xs will never be a xt or yt latter. It follows that
π(xs) = πs+1(xs). Hence

B =def {πs+1(xs) : s ∈ Q} = {π(xs) : s ∈ Q}

73

is well defined and c.e.

Claim (1) for any n we have that |B ∩ [0, 2n]| ≤ n.
Proof
Note that (by 2e) we have that π(xs) = πs(ys) > 2xs. Since each xs is distinct
the Claim follows.
QED

As we have seen before this implies that B is not hypersimple. (Proposi-
tion 78).

Claim (2) lims→∞ πs(u) = π(u) <∞ for every u.
Proof
Fix s0 so that A∩ [0, u] = As0∩ [0, u]. Now the only way that πs+1(u) 6= πs(u)
for some s > s0 is if u = xs or u = ys. But in either case since xs < ys and
xs enters A we have A changes in the interval [0, u] which is a contradiction.
QED

We don’t know yet that π is onto.

Claim (3) For each e
(a) Re is met.
(b) ∃s0 ∀s > s0 es > e

Proof
This is proved by induction on e.

(a) We may suppose by induction that there exists s0 such that es ≥ e for
all s > s0. Suppose Re is not met. Then W ∗

e is infinite and for all n ∈ W ∗
e

we have that Fn ∩ A 6= ∅. For each n ∈ W ∗
e define

xn = min(Fn ∩ A)

Since the Fn are pairwise disjoint all of the xn are distinct. Note there exist
σ, τ ∈ 2e such that
∃∞n ∈ W ∗

e σ = final e-state of xn and τ = final e-state of π(xn).
Choose xn and xm such that

1. n,m ∈ W ∗
e

2. e < xn < xm

3. 2xn < π(xm)

74

4. σ is the final e-state of xn and xm, and

5. τ is the final e-state of π(xn) and π(xm).

Increase s0 (if necessary) so that not only is es ≥ e for all s ≥ s0 but also
so that

1. n,m ∈ W ∗
e,s0

2. xn < xm < s0 and π(xn) < s0 and π(xm) < s0

3. πs(xn) = π(xn) and πs(xm) = π(xm) all s > s0

4. σ is the e-state of xn and xm at stage s0,

5. τ is the e-state of π(xn) and π(xm) at stage s0 and

6. As0 ∩ [0, xm] = A ∩ [0, xm]

Recall that we chose xn, xm ∈ A. It is easy to check that e requires
attention at stage s0 and xn and xm witness this fact. But this means that
xn or some smaller x enters A. But this contradicts the condition that A
does not change below xm.

(b) Suppose that es ≥ e for all s > s0 and Re is met. If W ∗
e is infinite,

then for some x ∈ W ∗
e we have that Fx ⊆ A. But this will be seen at some

stage and so e will not require attention after that. If W ∗
e is finite, then

suppose that
∪{Fx : x ∈ W ∗

e } ⊆ [0, n].

After we reach a stage s > s0 where As ∩ [0, n] = A∩ [0, n], then e will never
again require attention because then A would change beneath n.
QED

Claim (4) π is onto.
Proof
Given z choose s0 so that es > z for all s ≥ s0. If πs0(u) = z, then u will
never be either xs or ys for any s ≥ s0. This is because we required that
πs(xs) > es > z and πs(xs) > es > e. Hence π(u) = z.
QED

Claim (5)
(a) ∀C ∈ E π(C) ∈ E

75

(b) ∀C ∈ E π−1(C) ∈ E
Proof

(a) Fix s0 so that for all s > s0 we have that es > e. Then we show that

π(We) =
⋃
s>s0

πs(We,s)

To see this first suppose y ∈ π(We). Then there exists x ∈ We with π(x) = y
but for all sufficiently large s we have that x ∈ We,s and πs(x) = π(x) and
thus y ∈ πs(We,s).

To see the other inclusion, suppose that y ∈ πs(We,s) for some s > s0.
We claim that for every t > s that y ∈ πt(We,t). This is proved by induction
on t. Suppose that πt(u) = y for some u ∈ We,t. Then πt+1(u) = πt(u) unless
u = xt or u = yt and then πt+1(xt) = πt(yt) and πt+1(yt) = πt(xt). But since
xt and yt have the same et-type and et > e, if one is in We,t so is the other.
In either case we have that there exists v ∈ We,t+1 with πt+1(v) = y. Now
to see that y ∈ π(We) suppose that π(u) = y and choose sufficiently large
t > s0 such that πt(u) = π(u) = y. Since πt is a bijection and y ∈ πt(We,t),
it must be that u ∈ We,t and hence u ∈ We.

(b) This is similar, except we use that πt(xt) and πt(yt) have the same
et-type.
QED

Hmwk 30. (Wed 11-24) Prove that there exists a bijection π : ω → ω such
that π(A) ∈ E for all A ∈ E but π /∈ aut(E). (Hint: use a maximal set.)

Definition 103 For A and B predicates over subsets of ω or finite products
of ω we define:

Π0
0 = Σ0

0 = the computable predicates.
A is Σ0

n+1 iff there exists B which is Π0
n and A(x) ≡ ∃y B(x, y).

A is Π0
n+1 iff there exists B which is Σ0

n and A(x) ≡ ∀y B(x, y).
A is ∆0

n iff A is Σ0
n and A is Π0

n.

Note that by DeMorgan’s Laws

Π0
n = {¬A : A ∈ Σ0

n}.

∆0
n is closed under complementation.

76

Proposition 104 Suppose Γ is Σ0
n, Π0

n, or ∆0
n. Then Γ is closed under

≤m, i.e., A ≤m B ∈ Γ implies A ∈ Γ. This implies that if the predicate
B(x, y) is in Γ and f is a computable function, then A(x, y) ≡ B(x, f(x)) is
in Γ. Also, if A,B ∈ Γ, then A ∧ B and A ∨ B are both in Γ. Finally, Γ
predicates are closed under bounded quantification, e.g., ∃u < x A(u, x, . . .)
and ∀u < x A(u, x, . . .).

Proposition 105 If B(x, y) in Σ0
n, then A(x) ≡ ∃y B(x, y) is in Σ0

n. If
B(x, y) in Π0

n, then A(x) ≡ ∀y B(x, y) is in Π0
n.

Proposition 106 Σ0
n ∪ Π0

n ⊆ ∆n+1 = Σ0
n+1 ∩ Π0

n+1

Definition 107 We say that A is universal for Γ iff

Γ = {B : ∃x B = Ax}.

We say that A is m-complete for Γ iff

Γ = {B : B ≤m A}

Note that universal for Γ implies m-complete for Γ. Also, the complement
of a set universal for Γ is universal for Γ̃ and the same for m-completeness.

Proposition 108 For each n > 0 there is a universal Σ0
n set.

Proposition 109 For each n > 0 we have Red(Σ0
n), Sep(Π

0
n), ¬Sep(Σ0

n),
and ¬Red(Π0

n).

Proof
See definitions 20. We first show Red(Σ0

n). Let

A(x) ≡ ∃y R(x, y) and B(x) ≡ ∃y S(x, y)

where R and S are ∆0
n. Reduce A and B by

A0(x) ≡ ∃y (R(x, y) ∧ ∀z < y ¬S(z, x))

and
B0(x) ≡ ∃y (S(x, y) ∧ ∀z ≤ y ¬R(z, x))

Since Red(Γ)→ Sep(Γ̃) Proposition 22, it follows that Sep(Π0
n) holds.

77

To see ¬Sep(Σ0
n), first construct a doubly universal pair A and B. These

are Σ0
n sets such that for every pair C and D of Σ0

n sets there exists a u with
C = Au and D = Bu. To get A and B let U be a universal Σ0

n set. Then
define

A = {(〈x, y〉, z) : 〈x, z〉 ∈ U}

and
B = {(〈x, y〉, z) : 〈y, z〉 ∈ U}

then u = 〈x, y〉 codes the pair Ux and Uy. Now applying reduction to A and
B we get A0 ⊆ A and B0 ⊆ B. Note that this simultaneously reduces all
cross sections Au and Bu. Assuming for contradiction that separation holds,
let C be ∆0

n such that A0 ⊆ C and B0 ⊆ C. We get a contradiction since,
then C would be a universal ∆0

n set. This is because if P is ∆0
n then there

exists u with Au = P and Bu = P . But the reduction followed by separation
can’t effect the u cross section, so Cu = P .
QED

Hmwk 31. (Mon 11-29) Prove there does not exist a universal ∆0
n set.

Lemma 110 A ⊆ ω is Π0
2 iff there exists P computable such that

A(x) iff ∃∞s P (s, x)

Proof
(←) ∃∞s P (s, x) iff ∀t ∃s > t P (s, x)
(→) Suppose

A(x) iff ∀n ∃m R(n,m, x)

where R is ∆0
1. Define P ⊆ ω<ω × ω by

P (σ, x) iff ∀i < |σ| [R(i, σ(i), x) and ∀j < i ¬R(i, j, x)]

QED

Theorem 111 (Post) Suppose A ⊆ ω. Then A is ∆0
2 iff A ≤T 0′

Proof
Suppose A is ∆0

2. Then by Lemma 110 there exists computable P (u, x) and
Q(v, x) such that

A(x) ≡ ∃∞u P (u, x)

78

¬A(x) ≡ ∃∞v Q(v, x)

Now define g(x, s) as follows. Input x, s and let us be the maximum u ≤ s
such that P (u, x) (zero if no such u). Similarly define vs to be the maximum
v ≤ s such that Q(v, x). Define

g(x, s) =

{
1 if us ≥ vs
0 if us < vs

It is easy to check that

A(x) = lim
s→∞

g(x, s)

and so by the Limit Lemma 62 we have that A ≤T 0′.

Conversely if A ≤T 0′ then by the Limit Lemma we have g computable
such that

A(x) = lim
s→∞

g(x, s)

but then

A(x) ≡ ∀∞s g(x, s) = 1 ≡ ∃∞s g(x, s) = 1

so A is ∆0
2.

QED

Lemma 112 (1) A ⊆ ω is Σ0
1(B) iff A ≤m B′.

(2) A is ∆0
2(B) iff A ≤T B′.

Proof

A is Σ0
1(B) iff there exists a predicate R ≤T B such that

A(x) iff ∃y R(x, y)

(1) is just a relativization of the standard result that 0′ is Σ0
1-m-complete.

(2) is just the relativization of Post’s Theorem 111.

QED

Theorem 113 (Post)

(1) A ≤T 0(n) iff A is ∆0
n+1.

(2) 0(n) is an m-complete Σ0
n-set.

79

Proof
(1) for n = 2:

A ≤T 0′′ iff A ≤T (0′)′ iff A is ∆0
2(0

′).
A is ∆0

2(0
′) iff there exists R1, R2 ≤T 0′ such that

A(x) iff ∃n ∀m R1(n,m)

¬A(x) iff ∃n ∀m R2(n,m)

but since R1, R2 ≤T 0′ iff R1 and R2 are ∆0
2, we have that

A is ∆0
2(0

′) iff A is ∆0
3.

(2) for n = 2:
0′′ is Σ0

1(0
′) and m-complete for Σ0

1(0
′). But Σ0

1(0
′) is Σ0

2. This is because
B is Σ0

1(0
′) iff there exists R ≤T 0′ such that

B(x) iff ∃y R(x, y)

But R ≤T 0′ iff R is ∆0
2. Hence B is Σ0

2 iff B is Σ0
1(0

′).

The proofs for n > 2 are analogous.
QED

Hmwk 32. (Wed 12-1) Prove there does not exist A which is m-complete
for ∆0

2.

Proposition 114 EMP =def {e : We = ∅} is Π0
1-m-complete.

Proof

e ∈ EMP iff ∀x, s x /∈ We,s

so EMP is Π0
1. Let A be Π0

1, then there is R computable so that

A(x) iff ∀y R(x, y).

Using S-n-m Theorem get f computable so that for every x

Wf(x) = {y : ¬R(x, y)}

Then A(x) iff f(x) ∈ EMP .
QED

80

Proposition 115 TOT =def {e : We = ω} is Π0
2-m-complete.

FIN =def {e : We is finite} is Σ0
2-m-complete.

Proof
e ∈ TOT iff ∀x ∃s x ∈ We,s

e ∈ FIN iff ∃x ∀y, s (y ∈ We,s → y < x)

so TOT is Π0
2 and FIN is Σ0

2. Now suppose that A is Π0
2 we show that

(A,A) ≤m (TOT, FIN)

which simultaneously shows that TOT is Π0
2-m-complete and FIN is Σ0

2-m-
complete. Suppose

A(x) iff ∃∞s P (s, x)

where P is ∆0
1. Using S-n-m find a computable function f so that

Wf(x) = {t : ∃s > t P (s, x)}

Hence A(x)→ Wf(x) = ω while ¬A(x)→ Wf(x) is finite.
QED

Proposition 116 COF =def {e : We is finite } is Σ0
3-m-complete.

Proof
e ∈ COF iff ∃n ∀m > n ∃s m ∈ We,s

Now suppose that A is Σ0
3. Then there exists P which is ∆0

1 such that

A(x) iff ∃n ∃∞m P (n,m, x)

Input x and describe the c.e. set Bx by using a moving marker construction
similar to the construction of a maximal set but simpler. At any stage s we
have that

Bx,s = {p0,s < p1,s < p2,s < · · ·}

We look for the least n < s (if any) such that P (n, s, x) and bump the nth

marker, i.e., enumerate pn,s into Bx, i.e., Bx,s+1 = Bx,s ∪ {pn,s}. Note that if
A(x) is true then there exist n so that the nth marker is bumped infinitely
often and so Bx is cofinite. On the other hand if ¬A(x), then each marker
eventually stops moving and so Bx is coinfinite.

81

By the usual S-n-m argument we can find a computable function f so
that Bx = Wf(x) for all x and so

A(x) iff f(x) ∈ COF

QED

Proposition 117 REC =def {e : We is computable } is Σ0
3-m-complete.

Proof

e ∈ REC iff ∃e′ (We ∪We′ = ω and We ∩We′ = ∅)

and We∪We′ = ω is Π0
2 and We∩We′ = ∅ is Π0

1. To see that it is m-complete,
use a moving marker argument as above. Just add an additional reason to
bump the eth marker to make sure that if Bx is coinfinite, then for each e

ψe(e) ↓ → ψe,pe(e) ↓

This guarantees that if Bx is coinfinite, then K ≤T Bx.

QED

Hmwk 33. (Fri 12-3)

(a) Let A be an infinite c.e. set. Let

QA = {e : We = A}

Prove that QA is Π0
2-m-complete.

(b) Let A be a finite nonempty set. Prove that

QA = {e : We = A}

is D(Σ0
1)-m-complete, where

D(Σ0
1) = {A ∩B : A,B ∈ Σ0

1}.

Lemma 118 Suppose A is Σ0
k+1 then there exists B Π0

k such that

A(x) iff ∃y B(x, y) iff ∃!y B(x, y)

82

Proof
Suppose

A(x) iff ∃y P (x, y)

where P is Π0
k. Then

A(x) iff ∃y (P (x, y) ∧ ∀z < y ¬P (x, z)

Define
C(x, y) iff ∀z < y ¬P (x, z)

In case k+ 1 = 1 then C is ∆0
1. In case k+ 1 > 1 then since C is Σ0

k we have
by induction a Π0

k−1 predicate D so that

C(x, y) iff ∃u D(x, y, u) iff ∃!u D(x, y, u)

Hence

A(x) iff ∃y ∃u (P (x, y) ∧D(x, y, u)) iff ∃!y ∃!u (P (x, y) ∧D(x, y, u))

so taking B(x, 〈y, u〉) ≡ P (x, y) ∧D(x, y, u) does the trick.
QED

Proposition 119 (a) A is Π0
3 iff there exists B which is ∆0

1 such that

A(u) ≡ ∃∞s ∀n B(s, n, u)

(b) A is Π0
4 iff there exists B which is ∆0

1 such that

A(x) ≡ ∃∞s ∃∞t B(s, t, x)

Proof
(a) Suppose

A(u) ≡ ∀x ∃y ∀z R(x, y, z, u)

where R is ∆0
1. Define

Q(x, u) ≡ ∃y ∀z R(x, y, z, u)

Then by Lemma 118 there is a C which is Π0
1 and

Q(x, u) ≡ ∃y C(x, y, u) ≡ ∃!y C(x, y, u)

83

Hence

A(u) ≡ ∀x∃!y C(x, y, u)

A(u) ≡ ∃∞σ ∈ ω<ω ∀i < |σ| C(i, σ(i), u)

Note that ∀i < |σ| C(i, σ(i), u) is Π0
1 and so there is B computable so that

∀n B(σ, n, u) ≡ ∀i < |σ| C(i, σ(i), u)

(b) Suppose

A(u) ≡ ∀x ∃y R(x, y, u)

where R is Π0
2. By Lemma 118 applied to ∃y R(x, y, u) we may assume that

A(u) ≡ ∀x ∃!y R(x, y, u)

Hence

A(u) ≡ ∃∞σ ∀i < |σ| R(i, σ(i), u)

but the predicate

Q(σ, u) ≡ ∀i < |σ| R(i, σ(i), u)

is Π0
2 so there exists a computable B so that

Q(σ, u) ≡ ∃<∞τ B(σ, τ, u)

Hence

A(u) ≡ ∃∞σ ∃∞τ B(σ, τ, u)

QED

Hmwk 34. (Mon 12-6)
Let PTIME = {e : ψe runs in polynomial time }, i.e., there exists a

polynomial p(x) such that ψe(x) halts in less than p(x) steps for every x.
Prove that PTIME is Σ0

2-m-complete.

Hmwk 35. (Wed 12-8) For each e let Qe = { n
m+1

: 〈n,m〉 ∈ We} ⊆ Q.
Define

Ω = {e : Qe is order isomorphic to ω}.
Prove that Ω is Π0

3-m-complete.

84

Definition 120 A ⊆ ωω is Σ1
1 iff there exists a computable R ⊆ ω<ω × ω<ω

such that
x ∈ A ≡ ∃y ∈ ωω ∀n ∈ ω R(x�n, y�n).

Similarly A ⊆ ω is Σ1
1 iff there exists a computable R ⊆ ω × ω<ω such that

k ∈ A ≡ ∃y ∈ ωω ∀n ∈ ω R(k, y�n).

Π1
1 sets are the complements of Σ1

1 sets and ∆1
1 = Π1

1 ∩ Σ1
1.

We can give similar definitions of Σ1
1 and Σ0

n and Π0
n for X any finite

product X =
∏

i<N Xi where each Xi is either ω or ωω.

Proposition 121 1. Π0
1 ⊆ Σ1

1

2. If A ⊆ X × ωω is Σ1
1 then B is Σ1

1 where

B(x) iff ∃y A(x, y)

3. If A and B are Σ1
1 then A ∧B and A ∨B are Σ1

1.

4. If A ⊆ ω ×X is Σ1
1 then both

(a) B(x) ≡ ∃n ∈ ω A(n, x) and

(b) C(x) ≡ ∀n ∈ ω A(n, x)

are Σ1
1.

Proof
(1) trivial
(2) Suppose X = ωω and

A(x, y) ≡ ∃z ∀n R(x�n, y�n, z�n)

define
R∗(σ, τ) iff R(σ, τ0, τ1) where τ(i) = 〈τ0(i), τ1(i)〉

Then
B(x) ≡ ∃u ∀n R∗(x�n, u�n)

(3) Suppose
A(x) ≡ ∃y C(x, y)

85

B(x) ≡ ∃z D(x, z)

where C and D are Π0
1. Then

A(x) ∨B(x) ≡ ∃w (C(x,w) ∨D(x,w))

and
A(x) ∧B(x) ≡ ∃y ∃z (C(x, y) ∧D(x, z))

(4a) Suppose

A(n, x) ≡ ∃y ∀m R(n, x�m, y�m)

Define

R∗(x�n, y�n) iff R(y(0), x�(n− 1), y∗�(n− 1)) where y∗(i) = y(i+ 1)

Then
B(x) ≡ ∃n A(n, x) ≡ ∃y ∀m R∗(x�m, y�m)

(4b) Suppose

A(n, x) ≡ ∃y ∀m R(n, x�m, y�m)

Define
R∗(x�m, z�m) iff R(i, x�j, yi�j) for each 〈i, j〉 < m and yi(j) = z(〈i, j〉).
Then

C(x) ≡ ∀n A(n, x) ≡ ∃z ∀m R∗(x�m, z�m)

QED

Proposition 122 Universal Σ1
1 sets exists, hence Σ1

1 6= Π1
1.

Proof
Let U ⊆ ω ×X × ωω be a universal Π0

1 set for subsets of X × ωω, then

V (n, x) ≡ ∃y A(n, x, y)

is Universal Σ1
1.

QED

Theorem 123 (Tennenbaum) There exists a computable linear order (ω,�)
which is isomorphic to ω + ω∗ with the property that every nonempty c.e.
subset of ω has a �-least and �-greatest element.

86

Proof
Note that ω∗ stands for reverse ω or equivalently the order type of the neg-
ative integers. Let

L = {x ∈ ω : |{y : y � x}| < ω} and R = {x ∈ ω : |{y : x� y}| < ω}

In our construction we make sure that ω = L ∪ R and each is infinite. At
stage s we assume that we have (effectively) determined the finite linear order
��(s× s) and just decide where to put the new element, s, of

s+ 1 = {0, 1, 2, . . . , s}.

Our requirements are:

Re We infinite → We ∩ L 6= ∅ and We ∩R 6= ∅.

We assume at stage s in our construction that some requirements Re, say
e ∈ Fs ⊆ s, have followers le < s and re < s which satisfy:

if e < e′ and e, e′ ∈ Fs, then le � le′ � re′ � re.
At stage s+ 1 we look for the smallest e < s (if any) such that

1. e /∈ Fs (or equivalently Re has no followers)

2. there exists l, r ∈ We,s such that for every e′ < e with e′ ∈ Fs we have
that

le′ � l � r � re′

For the smallest such e and smallest such pair l, r we appoint l = le and
r = re the followers of Re and put

Fs+1 = {e′ < e : e′ ∈ Fs} ∪ {e}

i.e., we unappoint all followers for e′ > e. If there is no such e we do not
change any followers.

In either case, we put s into the ordering ��(s× s) in the first gap above
all the le for e ∈ Fs+1 (and therefore, below all the re for e ∈ Fs+1.)

Claim. For each e if We is infinite, then Re obtains permanent followers le
and re and is met.
Proof

87

Suppose the Claim is true for all e′ < e. Suppose s0 is a large enough stage
so that no e′ < e acts after stage s0. Let e0 be the maximum element of Fs0
below e. Then since s > s0 are put between le0 and re0 and We is infinite, it
must be that some followers are appointed to Re if it doesn’t already have
them. These followers are permanent.
QED

Since infinitely many We are infinite and hence acquire permanent fol-
lowers, it must be that L and R are infinite and therefore the order type we
construct is ω + ω∗.
QED

Corollary 124 (Jockusch) There exists a computable function f : [ω]2 →
2 such that there is no infinite computable H ∈ [ω]ω such that f�[H]2 is
constant.

Proof
Define

f(x, y) =

{
1 if x < y → x� y
0 if x < y → y � x

QED

Definition 125 T ⊆ ω<ω is a well-founded tree iff
(a) ∀σ, τ σ ⊆ τ ∈ T → σ ∈ T
(b) T has no infinite branch, i.e., [T] = ∅ where

[T] =def {x ∈ ωω : ∀n x�n ∈ T}.

Definition 126 (Kleene-Brouwer ordering) For σ, τ ∈ ω<ω

σ <KB τ iff σ) τ or ∃n < min(|σ|, |τ |) σ�n = τ�n and σ(n) < τ(n)

σ ≤KB τ iff σ <KB τ or σ = τ

Proposition 127 ≤KB is a computable linear ordering of ω<ω.

Theorem 128 (Kleene-Brouwer) Given a tree T ⊆ ω<ω

T is well-founded iff (T,≤KB) is a well-ordering.

88

Proof
Suppose that T is not well-founded and x ∈ [T]. Then for each n

x�(n+ 1) <KB x�n

and so (T,≤KB) is not a well-ordering.
Conversely, suppose that (T,≤KB) is not a well-ordering and (σn ∈ T :

n < ω) is <KB-descending, i.e.,

σn+1 <KB σn.

Then an easy induction produces x ∈ ωω with the property that

∀n ∀∞m x�n ⊆ σm.

It follows that x ∈ [T] and so T is not well-founded.
QED

Definition 129 For T ⊆ ω<ω a tree and α an ordinal we define Tα ⊆ T as
follows:

(a) σ ∈ T0 iff σ ∈ T and ∀n σn /∈ T . (Terminal nodes of T .)
(b) σ ∈ Tα iff σ ∈ T and ∀n (σn ∈ T → σn ∈ T<α).
(c) T<α =def ∪β<αTβ.

Definition 130 For σ ∈ T
(a) rankT (σ) = α where α is the smallest ordinal with σ ∈ Tα.
(b) rankT (σ) =∞ if there is no such α.

Proposition 131 For T ⊆ ω<ω a tree, T is well-founded iff rankT (〈〉) <∞,
i.e., its an ordinal.

Proof
Note that if rankT (σ) = ∞, then there exists n such that rankT (σn) = ∞.
Hence, rankT (〈〉) = ∞ implies that T has an infinite branch. On the other
hand if rankT (σ) <∞, then for every n with σn ∈ T we have that

rankT (σn) < rankT (σ)

Hence T cannot have an infinite branch.
QED

89

Definition 132 c : T → ω is a hypcode iff T ⊆ ω<ω is a computable well-
founded tree and c is partial computable map with domain T . Given a hy-
pecode c we define the sets H(c, σ) as follows by induction on the rank of σ.
Fix U ⊆ ω ×X a universal Σ0

1 set.

(a) for σ ∈ T0 a terminal node of T

H(c, σ) = Uc(σ)

(b) for σ ∈ T not terminal and c(σ) = 0

H(c, σ) = ∪n,σn∈TH(c, σn)

(c) for σ ∈ T not terminal and c(σ) > 0

H(c, σ) = ∩n,σn∈TH(c, σn)

A ⊆ X is hyperarithmetic (HYP) iff there exists a hypcode c and

A = H(c) =def H(c, 〈〉).

Proposition 133 HYP ⊆ ∆1
1.

Proof
x ∈ H(c) iff there exists f : T → {0, 1} such that

1. ∀σ ∈ T0

f(σ) = 1 iff x ∈ Uc(σ)

2. ∀σ ∈ T \ T0 if c(σ) = 0 then

f(σ) = 1 iff ∃n (σn ∈ T ∧ f(σn) = 1)

3. ∀σ ∈ T \ T0 if c(σ) > 0 then

f(σ) = 1 iff ∀n (σn ∈ T → f(σn) = 1)

4. f(〈〉) = 1

90

It is easy to check that 1− 4 are all arithmetic predicates and so H(c) is Σ1
1.

To see that the complement of H(c) is also Σ1
1 just note that

x /∈ H(c) iff there exists f : T → {0, 1} such that
1,2,3, and
4′. f(〈〉) = 0.

QED

Theorem 134 (Kleene-Souslin)
Suppose A and B are disjoint Σ1

1 sets. Then they can be separated by a
hyperarithmetic set C. Hence HYP = ∆1

1.

Proof
To simplify the notation we assume that A,B ⊆ ωω although essentially the
same proof will work for A,B ⊆ ω or any X . Since A,B are Σ1

1 there are
computable trees

TA, TB ⊆ ∪n<ωωn × ωn

such that
x ∈ A iff ∃y ∀n (x�n, y�n) ∈ TA

x ∈ B iff ∃z ∀n (x�n, z�n) ∈ TB

The fact that A and B are disjoint implies that it is impossible to find (x, y, z)
such that (x�n, y�n) ∈ TA and (x�n, z�n) ∈ TB for all n. This tells us how
to find our computable well-founded tree T .

Given ρ ∈ ω<ω we determine a triple trip(ρ) = (σ, τ1, τ2) by the rule that
σ(i) = ρ(3i), τ1(i) = ρ(3i + 1), and τ2(i) = ρ(3i + 2). We take the natural
length functions, namely

• |σ| = |τ1| = |τ2| = n if |ρ| = 3n,

• |σ| = n+ 1, |τ1| = |τ2| = n if |ρ| = 3n+ 1, and

• |σ| = |τ1| = n+ 1, |τ2| = n if |ρ| = 3n+ 2.

Now we define the computable well-founded tree T ⊆ ω<ω and hypcode
c : T → ω as follows:

1. for ρ ∈ ω<ω with length |ρ| = 3n+ 2 and trip(ρ) = (σ, τ1, τ2) if

(a) (σ�n, τ1�n) ∈ TA,

91

(b) (σ�n, τ2) ∈ TB, and

(c) (σ, τ1) /∈ TA,

then ρ is a terminal node of T and put c(ρ) = n0 where

Un0 = ∅.

2. for ρ ∈ ω<ω with length |ρ| = 3(n+ 1) and trip(ρ) = (σ, τ1, τ2) if

(a) (σ, τ1) ∈ TA,

(b) (σ�n, τ2�n) ∈ TB, and

(c) (σ, τ2) /∈ TB,

then ρ is a terminal node of T and put c(ρ) = n1 where

Un1 = [σ] =def {x ∈ ωω : σ ⊆ x}.

3. For any other ρ we put ρ into T iff it is a proper subset of a terminal
node of T . For these ρ we put c(ρ) = 0 if |ρ| = 3n or |ρ| = 3n+ 1 and
put c(ρ) = 1 if |ρ| = 3n+ 2.

Now given trip(ρ) = (σ, τ1, τ2) define the following sets:

Aρ = {x ∈ [σ] : ∃y ⊇ τ1 ∀n (x�n, y�n) ∈ TA}

Bρ = {x ∈ [σ] : ∃z ⊇ τ2 ∀n (x�n, z�n) ∈ TB}

To finish the proof we verify the following:

Claim. For each ρ ∈ T let trip(ρ) = (σ, τ1, τ2) then

Aρ ⊆ H(c, ρ) ⊆ [σ]

and
Bρ ⊆ [σ] \H(c, ρ)

Proof

Case ρ a terminal node of T .

92

Note that in case 1 of the definition of T , we have that Aρ is the empty set
and c(σ) is a code for the empty set and so its OK. In case 2 of the definition
of T , we have that Bρ is the empty set and c(σ) is a code for [σ] and so its
OK.

Case |ρ| = 3n and ρ not terminal.
Note that for nonterminal nodes ρ we have that for every k that ρk ∈ T . In
this case trip(ρk) = (σk, τ1, τ2).

Aρk = [σk] ∩ Aρ

Bρk = [σk] ∩Bρ

and by induction

Aρ = ∪k<ωAρk ⊆ ∪k<ωH(c, ρk) =def H(c, ρ) ⊆ [σ]

(c(ρ) = 0, so we take unions)

Bρ = ∪k<ωBρk ⊆ ∪k<ω([σk] \H(c, ρk)) = [σ] \H(c, ρ)

The last equality holds because each H(c, ρk) ⊆ [σk] and ([σk] : k < ω) is a
partition of [σ].

Case |ρ| = 3n+ 1 and ρ not terminal.
In this case trip(ρk) = (σ, τ1k, τ2), and also c(ρ) = 0, i.e., we take unions.
Note that for every k that Bρk = Bρ since neither σ nor τ2 change. Also, by
the definition of Aρ note that

Aρ = ∪k<ωAρk.

Now by inductive hypothesis we have that

Aρ = ∪k<ωAρk ⊆ ∪k<ωH(c, ρk) =def H(c, ρ)

Bρ ⊆ [σ] \H(c, ρk)

for every k so
Bρ ⊆ [σ] \H(c, ρ)

as was to be proved.

93

Case |ρ| = 3n+ 2 and ρ not terminal.
In this case trip(ρk) = (σ, τ1, τ2k), and c(ρ) = 1, i.e., take intersections.
Note that for every k that Aρk = Aρ since neither σ nor τ1 change. Now by
inductive hypothesis we have that

Aρ ⊆ ∩k<ωH(c, ρk) =def H(c, ρ)

Bρ = ∪k<ωBρk ⊆ ∪k<ω[σ] \H(c, ρk) = [σ] \H(c, ρ)

as was to be proved.
This proves the Claim. However since A〈〉 = A and B〈〉 = B the Theorem

follows.
QED

94

