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(9-5)
Def Turing machine, Turing computable functions.

(9-7)
Def Primitive recursive functions, Primitive recursive implies Turing com-
putable.

1. Prove f(n) = 2n is Turing computable by constructing an actual Turing
machine.

(9-10)
Def Partial recursive functions, Partial recursive implies Turing com-
putable. Started on converse.

2. Define n is square-free iff n > 2 and no m? divides n for m > 2. Let S(n) be
the sum of the first n square-free numbers. Prove S is a Primitive recursive
function.

(9-12)
For any partial Turing computable f there exists primitive recursive g
and R such that

f(7i) = g(px R(x,n))

3. Prove there is a total f : w — w such that the graph of f is a primitive
recursive predicate but f is not primitive recursive.

(9-17)

Church-Turing Thesis, universal functions, halting problem, effective list-
ing of all primitive recursive functions, a computable function which is not
primitive recursive.

4. Prove that the halting problems for nonwritting Turing machines is decid-
able. A Turing machine m is nonwritting iff whenever m(s,a) = (¢, d’,d)
then a = d'. It is decidable whether or not m halts when given input

r=<x,...,T, >€ A" started on x; in state sg.



(9-19)

Padding Lemma, S-n-m Theorem,
computably enumerable=range of computable function = XY,
computable=ce and co-ce, K not computable.

5. Show there exists a uniformly computable listing of all partial computable
functions, {¢.(x) : e € w}, which fails the padding lemma. Hint: Obtain a
listing so that the empty function only occurs once, say as 1.

(9-21)
every infinite ce set contains an infinite comp set, every inf ce set has a 1-1
enumeration, many-one reducibility, one-reducibility, K, W one-complete.

6. (a) Prove that every nonempty computably enumerable set has a primitive
recursive enumeration.
*(b) Prove or disprove: Every infinite computably enumerable set has a
one-one primitive recursive enumeration.

(9-24)

(Myhill) 1-1 equivalence iff computable permutation, (Rogers) if ¢, unif
enum of partial comp fens satisfies padding, s-1-1, then there is a comp
permutation 7w with 1, = ¢r() all e. Rice’s index theorem.

7. In Roger’s Theorem prove that s-1-1 implies padding. Hint: Soare I-5.9.

(9-26)
Post’s construction of a simple set, (Myhill) 1-1 equivalence to K is the
same as creative.

8. Define V., = {n :< e,n >€ V}. Prove or disprove:

(a) AV c.e. such {V, : e € w} is the set of all computable sets.
(b) 3V computable such {V, : e € w} is the set of all computable sets.
(c) IV c.e. such {V, : e € w} is the set of all nonempty c.e. sets.
(d) 3f computable function such that for alle W, # () implies f(e) € WL,
(e) 3f partial computable such that for all e W, # @) implies f(e) |€ WL,

(9-28)
Recursion Theorem, uniform recursion theorem, recursion theorem with
parameters.



9. Prove
(a) 3°e W, ={0,1,2,...,¢}
(b) Suppose V C w is c.e. I°e W, =V, (where V, = {n:<e,n > V})
(c) there exists e, eq with ey # es and W, = {ex} and W, = {e;}

(10-1)
Def Turing reducible, Dekker deficiency set is simple and Turing equiva-
lent to the set.

10. Computable Skolem functions? Prove or disprove:
(a) Given a computable R C w? such that Vx3y R(x,y) there exists a
computable f such that Vx R(zx, f(z))
(b) Given a computable R C w? such that Vz3yVz R(z,y, ) there exists
a computable f such that VaVz R(z, f(z), 2)
Hint: Think ”Simple”.

(10-3)
(Martin) A effectively simple implies A =r K. Def A® B, A’.

11. Prove
(a) A<r A@Band B<pr A¢ B
(b)) A B=r B A
(c)(AeB)eC=rA®(Ba ()
(d) 1fA<TC'andB<TC’ then A® B <rC
(e) if A<r Aand B<r B, then A® B<r A® B

(10-5)
Def Turing jump, A =7 B implies A" = B’, (Kleene-Post) there exists
incomparable Turing degrees.

(10-8)
Kleene-Post. For every a > 0 there exists b incomparable to a. There
exists a, b nonzero with infimum 0.

12. Prove
(a) there exists A such that for every n
A,, is not Turing reducible to U{A,, : m # n}
(b) There exists Turing degrees a, for r € Q such that
forallm,s € Q (r < siff a, < as). Hint: use part (a).



(c¢)* Same as part (b) but also a, < 0" for all r.

(10-10)
(Kleene-Post-Spector) Given increasing degrees (a, : n € w) there are
upper bounds b, ¢ such that d < b and d < ¢ implie for some n that d < a,,.

13. Show that for every nonzero degree a there is a no zero b such that 0 is the
infimum of a and 0.

14. Show that 0« is not a minimal upper bound of {0 : n € w}.
Hint: in theorem above get B, C' computable in 0.

(10-12)
(Friedberg) For every B > (' there exists A with A’ =¢ B.

15. Prove there exists a degree a > 0 with o’ = 0.

(10-15)
(Spector) minimal degrees exist. (Sacks) minimal upper bounds exist.

16. Prove there exists a perfect tree T such that every branch thru T has
minimal degree.

(10-17)
Def X0 etc., simple closure properties, universal 39 sets, limit lemma.

17. Find the natural arithmetic classes in which the following sets belong:
(a) {e: W, =0}
(b) {e: W, is simple }
(c){e: W.=r K}
(d) {< e1,e9 > W,, =* W,,} (equal mod finite)

(10-19)
ve =3V, A e B)(A4), A <7 0™ iff A e AV, 0 € 20 FIN %9-
complete

18. Prove that A is X iff there exists a computable P(s,t,z) such that for
every x

A(z) =V>*s V*t P(s,t,x)



(10-22)
TOT is [I-complete, REC is ¥.3-complete.

19. Prove there is no AJ-complete set A (i.e. Ais A and every AY is many-one
reducible to A)

Hint: Consider B = {e : p.(e) | and p.(e) ¢ A}.

20. Prove of disprove:
(a) there exists a total f <r 0” such that for all e, if W, is computable,
then Wf(e) =W.,.
(b) there exists a total f <7 0©) such that for all e, if W, is computable,
then Wf(e) =W..

(10-24)
COF is complete 39, V3 = V>3, started first priority argument: low
simple set.

(10-26)
(Friedberg-Muchnik) There are Turing incomparable c.e. sets.

21. Prove that SIMP= { e : W, is simple} is a complete I3 set.
Hint: Like the proof for COF but also let W, kick the e marker at most
once to make A meet W, if W, infinite.

(10-29)

Every countable poset embedds into the computably enumerable degrees.

(10-31)
Friedberg Splitting Theorem, Corollaries of the Sack’s Splitting Theorem.

22. (Trachtenbrock see p.121 2.5)
Define A is autoreducible iff there exists e such that for all x,

{e}MH (@) = ya(2)

Prove
(a) VB JA =,, B such that A is autoreducible.
(b) there exist a ce A which is not autoreducible.
(c) there exist a low ce A which is not autoreducible.
(d)* there exist a ce A =p K which is not autoreducible?
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(11-2)
Sacks Splitting Theorem.

(11-5)
(Friedberg) Unique effective enumeration of all ce sets. Dekker deficiency
set is hypersimple.

23. * Prove there is a partial computable ¢ such that for every e there is a
unique ¢ such that ¢, = ;.

(11-7)
Equivalent definitions of hypersimple:
for any computable sequence 3%k with [ng, ng+1) C A4,
if A={by <b <---} then for every computable f 3°n f(n) <b,.
(Nerode) A <;; B iff Turing reducible by machine which always converges

for any oracle iff Turing recucible by a computable time bounded oracle
machine.

24. Prove or disprove:

(a) there exists V' ce such that {V, : e € w} = set of simple sets.
(b) there exists V' ce such that {V, : e € w} = set of ce nonsimple sets.
(c) there exists V' ce such that {V, : e € w} = set of ce coinfinite sets.
(d) there exists V' ce such that {V, : e € w} = set of cofinite sets.

Extra credit: In case its true, show that there is a unique enumeration as
in Friedberg’s Theorem.

25. Prove that <;; is transitive.

(11-9)
(Post) If K <y A, then A not hypersimple. Example of a simple A with
K <, A. Equivalent definitions of hyperhypersimple.

26. Prove that for every A ce with A infinite there exists a hypersimple B D A.

(11-12)
Examples of hypersimple but not hyperhypersimple sets, Maximal set is
hyperhypersimple, (Friedberg) Maximal sets exist.

(11-14)



There exists a maximal set M =, K. Example of h?-simple set which is
not maximal: M; N M, where M; maximal and M; #* M.

27. Let A be h%-simple and f : w — A a computable 1-1 onto enumeration.
Prove that B = {f(n) : n € A} is h?-simple but not maximal.

28. Let Ag, Ay be a Friedberg splitting of a maximal set M, ie., M is the
disjoint union of the A; and each A; is ce but not computable. Prove that
Ay is nowhere simple, ie. for any R computable if R N Ay is infinite, then it
contains an infinite ce set.

(11-16)

Turing degree of a maximal set is high, a ce degree is high iff it contains
a dominating function. Definable subsets of the lattice of ce sets, &, eg.
computable, finite, simple, maximal.

29. Suppose A is h%-simple and A = {by < by < ---}. let f be a computable
function. Prove that V*n f(n) < b,. See p.212 - 1.11

(11-19)

(Lachlan) A is h%-simple iff for all ce B 2 A there exists ce C' 2 A with
BNC = A and BUC = w. Example of nontrivial automorphism of &, i.e.
7 identity on maximal set.

30. (Martin p.198-5.5) Show there exists a nontrivial ce set with no maximal
superset.

(11-21)
(Martin) There exists m an automorphism of £ and a hypersimple set A
such that 7(A) is not hypersimple.

31. Prove or disprove: Suppose 7 : w — w is a bijection and 7—}(C) € & for
every C' € €. Then 7(C) € &€ for every C' € &, ie. 7 gives an automorphism
of £.

Hint: Use a maximal set.

(11-26)
(Sacks) There exists a nontrivial high degree. (Shoenfield) Thickness
Lemma.



(11-28)
True stages, window lemma. Sacks Jump Theorem.

(11-30)
Finish proof of Jump Theorem. Non-trivial L, and H,, degrees, a ce set
A such that 0 < A™ <, 00+ for all n.

(12-3)
Sacks Density Theorem.

(12-5)
Sacks Density Theorem (continued).

(12-7)
Final claim in proof of Sacks Density Theorem. Stated Robinson Jump
Interpolation and derived some corollaries.

32. (Robinson) Prove that for any ce sets C, D with D <7 C there exists ce
sets A and B such that
(a) A and B are <p incomparable, and
(b) D<TA<TCandD<TB<TC'.

The last three problems can be proved as Corollaries of (possibly rela-
tivized versions of) Sack’s Splitting, Robinson Jump Interpolation, and the
Recursion Theorem.

33. Prove that if A is ce and has low degree, then there exists ce sets B and C'
such that
(a) A<r Band A <7 C,
(b) B and C are <p incomparable, and
(c) B' and C" are <7 incomparable

34. Prove that if A is ce and not computable there exists ce sets B and C such
that
(a) B<p Aand C <r A,
(b) B and C are <p incomparable, and
(c) A= B =7 C".

35. Prove there exists a ce sets A and B such that for every n
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(a) A™ <5 0+ and BM™ <5 0+ and
(b) A @ B0 = ((n+D)

(12-10)
Friedberg-Muchnik on a tree. Lachlan-Yates minimal pair strategy for a
single negative requirement.

(12-12)

Minimal pairs using trees.

(12-14)
Minimal pair of high degrees.

Handout: Bootleg copy of Julia Knight, Chris Ash, Computable struc-
tures and the hyperarithmetical hierarchy, Chapters 4-5. The remaining time
was spent proving

Al = HY P

Some details were omitted.
The same material is covered in the first 30 pages of Gerald Sacks book,
Higher recursion theory. And also somewhere in Hartley Rogers book.



