A.Miller M773 Computability Theory Fall 2001

(9-5)

Def Turing machine, Turing computable functions.

(9-7)

Def Primitive recursive functions, Primitive recursive implies Turing computable.

1. Prove f(n) = 2n is Turing computable by constructing an actual Turing machine.

(9-10)

Def Partial recursive functions, Partial recursive implies Turing computable. Started on converse.

2. Define n is square-free iff $n \ge 2$ and no m^2 divides n for $m \ge 2$. Let S(n) be the sum of the first n square-free numbers. Prove S is a Primitive recursive function.

(9-12)

For any partial Turing computable f there exists primitive recursive g and R such that

$$f(\vec{n}) = g(\mu x \ R(x, \vec{n}))$$

3. Prove there is a total $f : \omega \to \omega$ such that the graph of f is a primitive recursive predicate but f is not primitive recursive.

(9-17)

Church-Turing Thesis, universal functions, halting problem, effective listing of all primitive recursive functions, a computable function which is not primitive recursive.

4. Prove that the halting problems for nonwritting Turing machines is decidable. A Turing machine m is nonwritting iff whenever m(s, a) = (s', a', d)then a = a'. It is decidable whether or not m halts when given input $x = \langle x_1, \ldots, x_n \rangle \in A^n$ started on x_1 in state s_0 . (9-19)

Padding Lemma, S-n-m Theorem, computably enumerable=range of computable function = Σ_1^0 , computable=ce and co-ce, K not computable.

5. Show there exists a uniformly computable listing of all partial computable functions, $\{\psi_e(x) : e \in \omega\}$, which fails the padding lemma. Hint: Obtain a listing so that the empty function only occurs once, say as ψ_0 .

(9-21)

every infinite ce set contains an infinite comp set, every inf ce set has a 1-1 enumeration, many-one reducibility, one-reducibility, K, W one-complete.

6. (a) Prove that every nonempty computably enumerable set has a primitive recursive enumeration.

*(b) Prove or disprove: Every infinite computably enumerable set has a one-one primitive recursive enumeration.

(9-24)

(Myhill) 1-1 equivalence iff computable permutation, (Rogers) if ψ_e unif enum of partial comp fcns satisfies padding, s-1-1, then there is a comp permutation π with $\psi_e = \phi_{\pi(e)}$ all e. Rice's index theorem.

7. In Roger's Theorem prove that s-1-1 implies padding. Hint: Soare I-5.9.

(9-26)

Post's construction of a simple set, (Myhill) 1-1 equivalence to K is the same as creative.

8. Define $V_e = \{n : < e, n > \in V\}$. Prove or disprove:

(a) $\exists V$ c.e. such $\{V_e : e \in \omega\}$ is the set of all computable sets.

(b) $\exists V$ computable such $\{V_e : e \in \omega\}$ is the set of all computable sets.

- (c) $\exists V$ c.e. such $\{V_e : e \in \omega\}$ is the set of all nonempty c.e. sets.
- (d) $\exists f$ computable function such that for all $e \quad W_e \neq \emptyset$ implies $f(e) \in W_e$.

(e) $\exists f$ partial computable such that for all $e \quad W_e \neq \emptyset$ implies $f(e) \downarrow \in W_e$.

(9-28)

Recursion Theorem, uniform recursion theorem, recursion theorem with parameters.

9. Prove

- (a) $\exists^{\infty} e \ W_e = \{0, 1, 2, \dots, e\}$
- (b) Suppose $V \subseteq \omega$ is c.e. $\exists e W_e = V_e$ (where $V_e = \{n : \langle e, n \rangle \in V\}$)
- (c) there exists e_1, e_2 with $e_1 \neq e_2$ and $W_{e_1} = \{e_2\}$ and $W_{e_2} = \{e_1\}$

(10-1)

Def Turing reducible, Dekker deficiency set is simple and Turing equivalent to the set.

10. Computable Skolem functions? Prove or disprove:

(a) Given a computable $R \subseteq \omega^2$ such that $\forall x \exists y \ R(x, y)$ there exists a computable f such that $\forall x \ R(x, f(x))$

(b) Given a computable $R \subseteq \omega^3$ such that $\forall x \exists y \forall z \ R(x, y, z)$ there exists a computable f such that $\forall x \forall z \ R(x, f(x), z)$

Hint: Think "Simple".

(10-3)

(Martin) A effectively simple implies $A \equiv_T K$. Def $A \oplus B$, A'.

11. Prove

(a) $A \leq_T A \oplus B$ and $B \leq_T A \oplus B$ (b) $A \oplus B \equiv_T B \oplus A$ (c) $(A \oplus B) \oplus C \equiv_T A \oplus (B \oplus C)$ (d) if $A \leq_T C$ and $B \leq_T C$, then $A \oplus B \leq_T C$

(e) if $A \leq_T \hat{A}$ and $B \leq_T \hat{B}$, then $A \oplus B \leq_T \hat{A} \oplus \hat{B}$

(10-5)

Def Turing jump, $A \equiv_T B$ implies $A' \equiv_T B'$, (Kleene-Post) there exists incomparable Turing degrees.

(10-8)

Kleene-Post. For every a > 0 there exists b incomparable to a. There exists a, b nonzero with infimum 0.

12. Prove

(a) there exists A such that for every n

 A_n is not Turing reducible to $\cup \{A_m : m \neq n\}$

(b) There exists Turing degrees a_r for $r \in \mathbf{Q}$ such that for all $r, s \in \mathbf{Q}$ $(r < s \text{ iff } a_r < a_s)$. Hint: use part (a).

(c)* Same as part (b) but also $a_r < 0'$ for all r.

(10-10)

(Kleene-Post-Spector) Given increasing degrees $\langle a_n : n \in \omega \rangle$ there are upper bounds b, c such that $d \leq b$ and $d \leq c$ implie for some n that $d \leq a_n$.

- 13. Show that for every nonzero degree a there is a no zero b such that 0 is the infimum of a and b.
- 14. Show that $0^{(\omega)}$ is not a minimal upper bound of $\{0^{(n)} : n \in \omega\}$. Hint: in theorem above get B, C computable in $0^{(\omega)}$.
 - (10-12)

(Friedberg) For every $B \ge_T 0'$ there exists A with $A' \equiv_T B$.

- 15. Prove there exists a degree a > 0 with a' = 0'.
 - (10-15)

(Spector) minimal degrees exist. (Sacks) minimal upper bounds exist.

16. Prove there exists a perfect tree T such that every branch thru T has minimal degree.

(10-17)

Def Σ_n^0 etc., simple closure properties, universal Σ_n^0 sets, limit lemma.

- 17. Find the natural arithmetic classes in which the following sets belong:
 - (a) $\{e: W_e = \emptyset\}$
 - (b) $\{e: W_e \text{ is simple }\}$
 - (c) $\{e: W_e \equiv_T K\}$
 - (d) $\{ \langle e_1, e_2 \rangle : W_{e_1} =^* W_{e_2} \}$ (equal mod finite)
 - (10-19)

 $\forall \infty = \exists \forall, A' \in \Sigma_1^0(A), A \leq_T 0^{(n)} \text{ iff } A \in \Delta_{n+1}^0, 0^{(n)} \in \Sigma_n^0, \text{ FIN } \Sigma_2^0\text{-complete}$

18. Prove that A is Σ_4^0 iff there exists a computable P(s, t, x) such that for every x

$$A(x) \equiv \forall^{\infty} s \; \forall^{\infty} t \; P(s, t, x)$$

(10-22) TOT is Π_2^0 -complete, REC is Σ_3^0 -complete.

19. Prove there is **no** Δ_2^0 -complete set A (i.e. A is Δ_2^0 and every Δ_2^0 is many-one reducible to A)

Hint: Consider $B = \{e : \varphi_e(e) \downarrow \text{ and } \varphi_e(e) \notin A\}.$

20. Prove of disprove:

(a) there exists a total $f \leq_T 0''$ such that for all e, if W_e is computable, then $W_{f(e)} = \overline{W_e}$.

(b) there exists a total $f \leq_T 0^{(3)}$ such that for all e, if W_e is computable, then $W_{f(e)} = \overline{W_e}$.

(10-24)

COF is complete Σ_3^0 , $\exists \forall \exists = \forall^{\infty} \exists$, started first priority argument: low simple set.

(10-26)

(Friedberg-Muchnik) There are Turing incomparable c.e. sets.

21. Prove that SIMP= { $e: W_e$ is simple} is a complete Π_3^0 set.

Hint: Like the proof for COF but also let W_e kick the e^{th} marker at most once to make A meet W_e if W_e infinite.

(10-29)

Every countable poset embedds into the computably enumerable degrees.

(10-31)

Friedberg Splitting Theorem, Corollaries of the Sack's Splitting Theorem.

22. (Trachtenbrock see p.121 2.5)

Define A is autoreducible iff there exists e such that for all x,

$$\{e\}^{A\setminus\{x\}}(x)\downarrow=\psi_A(x)$$

Prove

- (a) $\forall B \exists A \equiv_m B$ such that A is autoreducible.
- (b) there exist a ce A which is not autoreducible.
- (c) there exist a low ce A which is not autoreducible.
- (d)* there exist a ce $A \equiv_T K$ which is not autoreducible?

(11-2)

Sacks Splitting Theorem.

(11-5)

(Friedberg) Unique effective enumeration of all ce sets. Dekker deficiency set is hypersimple.

23. * Prove there is a partial computable ψ such that for every e there is a unique i such that $\varphi_e = \psi_i$.

(11-7)

Equivalent definitions of hypersimple:

for any computable sequence $\exists^{\infty}k$ with $[n_k, n_{k+1}) \subseteq A$,

if $\overline{A} = \{b_0 < b_1 < \cdots\}$ then for every computable $f \exists^{\infty} n f(n) < b_n$.

(Nerode) $A \leq_{tt} B$ iff Turing reducible by machine which always converges for any oracle iff Turing reducible by a computable time bounded oracle machine.

24. Prove or disprove:

- (a) there exists V ce such that $\{V_e : e \in \omega\}$ = set of simple sets.
- (b) there exists V ce such that $\{V_e : e \in \omega\}$ = set of ce nonsimple sets.
- (c) there exists V ce such that $\{V_e : e \in \omega\}$ = set of ce coinfinite sets.
- (d) there exists V ce such that $\{V_e : e \in \omega\} = \text{set of cofinite sets.}$

Extra credit: In case its true, show that there is a unique enumeration as in Friedberg's Theorem.

25. Prove that \leq_{tt} is transitive.

(Post) If $K \leq_{tt} A$, then A not hypersimple. Example of a simple A with $K \leq_{tt} A$. Equivalent definitions of hyperhypersimple.

26. Prove that for every A ce with \overline{A} infinite there exists a hypersimple $B \supseteq A$.

(11-12)

Examples of hypersimple but not hyperhypersimple sets, Maximal set is hyperhypersimple, (Friedberg) Maximal sets exist.

(11-14)

⁽¹¹⁻⁹⁾

There exists a maximal set $M \equiv_T K$. Example of h^2 -simple set which is not maximal: $M_1 \cap M_2$ where M_i maximal and $M_1 \neq^* M_2$.

- 27. Let A be h^2 -simple and $f : \omega \to A$ a computable 1-1 onto enumeration. Prove that $B = \{f(n) : n \in A\}$ is h^2 -simple but not maximal.
- 28. Let A_0, A_1 be a Friedberg splitting of a maximal set M, i.e., M is the disjoint union of the A_i and each A_i is ce but not computable. Prove that A_0 is nowhere simple, i.e. for any R computable if $R \cap \overline{A_0}$ is infinite, then it contains an infinite ce set.

(11-16)

Turing degree of a maximal set is high, a ce degree is high iff it contains a dominating function. Definable subsets of the lattice of ce sets, \mathcal{E} , eg. computable, finite, simple, maximal.

- 29. Suppose A is h^2 -simple and $\overline{A} = \{b_0 < b_1 < \cdots\}$. let f be a computable function. Prove that $\forall^{\infty} n \ f(n) < b_n$. See p.212 1.11
 - (11-19)

(Lachlan) A is h^2 -simple iff for all ce $B \supseteq A$ there exists ce $C \supseteq A$ with $B \cap C = A$ and $B \cup C = \omega$. Example of nontrivial automorphism of \mathcal{E} , i.e. π identity on maximal set.

30. (Martin p.198-5.5) Show there exists a nontrivial ce set with no maximal superset.

(11-21)

(Martin) There exists π an automorphism of \mathcal{E} and a hypersimple set A such that $\pi(A)$ is not hypersimple.

31. Prove or disprove: Suppose $\pi : \omega \to \omega$ is a bijection and $\pi^{-1}(C) \in \mathcal{E}$ for every $C \in \mathcal{E}$. Then $\pi(C) \in \mathcal{E}$ for every $C \in \mathcal{E}$, i.e. π gives an automorphism of \mathcal{E} .

Hint: Use a maximal set.

(11-26)

(Sacks) There exists a nontrivial high degree. (Shoenfield) Thickness Lemma.

(11-28)

True stages, window lemma. Sacks Jump Theorem.

(11-30)

Finish proof of Jump Theorem. Non-trivial L_n and H_n degrees, a ce set A such that $0^{(n)} <_T A^{(n)} <_T 0^{(n+1)}$ for all n.

(12-3)

Sacks Density Theorem.

(12-5)

Sacks Density Theorem (continued).

(12-7)

Final claim in proof of Sacks Density Theorem. Stated Robinson Jump Interpolation and derived some corollaries.

32. (Robinson) Prove that for any ce sets C, D with $D <_T C$ there exists ce sets A and B such that

(a) A and B are \leq_T incomparable, and

(b) $D <_T A <_T C$ and $D <_T B <_T C$.

The last three problems can be proved as Corollaries of (possibly relativized versions of) Sack's Splitting, Robinson Jump Interpolation, and the Recursion Theorem.

- 33. Prove that if A is ce and has low degree, then there exists ce sets B and C such that
 - (a) $A \leq_T B$ and $A \leq_T C$,
 - (b) B and C are \leq_T incomparable, and
 - (c) B' and C' are \leq_T incomparable
- 34. Prove that if A is ce and not computable there exists ce sets B and C such that
 - (a) $B \leq_T A$ and $C \leq_T A$,
 - (b) B and C are \leq_T incomparable, and
 - (c) $A' \equiv_T B' \equiv_T C'$.
- 35. Prove there exists a ce sets A and B such that for every n

(a) $A^{(n)} <_T 0^{(n+1)}$ and $B^{(n)} <_T 0^{(n+1)}$ and (b) $A^{(n)} \oplus B^{(n)} \equiv_T 0^{(n+1)}$

(12-10)

Friedberg-Muchnik on a tree. Lachlan-Yates minimal pair strategy for a single negative requirement.

(12-12)

Minimal pairs using trees.

(12-14)

Minimal pair of high degrees.

Handout: Bootleg copy of Julia Knight, Chris Ash, Computable structures and the hyperarithmetical hierarchy, Chapters 4-5. The remaining time was spent proving

$$\Delta_1^1 = HYP$$

Some details were omitted.

The same material is covered in the first 30 pages of Gerald Sacks book, Higher recursion theory. And also somewhere in Hartley Rogers book.