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Computability Theory
Fall 2001

(9-5)
Def Turing machine, Turing computable functions.

(9-7)
Def Primitive recursive functions, Primitive recursive implies Turing com-

putable.

1. Prove f(n) = 2n is Turing computable by constructing an actual Turing
machine.

(9-10)
Def Partial recursive functions, Partial recursive implies Turing com-

putable. Started on converse.

2. Define n is square-free iff n ≥ 2 and no m2 divides n for m ≥ 2. Let S(n) be
the sum of the first n square-free numbers. Prove S is a Primitive recursive
function.

(9-12)
For any partial Turing computable f there exists primitive recursive g

and R such that
f(~n) = g(µx R(x, ~n))

3. Prove there is a total f : ω → ω such that the graph of f is a primitive
recursive predicate but f is not primitive recursive.

(9-17)
Church-Turing Thesis, universal functions, halting problem, effective list-

ing of all primitive recursive functions, a computable function which is not
primitive recursive.

4. Prove that the halting problems for nonwritting Turing machines is decid-
able. A Turing machine m is nonwritting iff whenever m(s, a) = (s′, a′, d)
then a = a′. It is decidable whether or not m halts when given input
x =< x1, . . . , xn >∈ An started on x1 in state s0.
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(9-19)
Padding Lemma, S-n-m Theorem,

computably enumerable=range of computable function = Σ0
1,

computable=ce and co-ce, K not computable.

5. Show there exists a uniformly computable listing of all partial computable
functions, {ψe(x) : e ∈ ω}, which fails the padding lemma. Hint: Obtain a
listing so that the empty function only occurs once, say as ψ0.

(9-21)
every infinite ce set contains an infinite comp set, every inf ce set has a 1-1

enumeration, many-one reducibility, one-reducibility, K, W one-complete.

6. (a) Prove that every nonempty computably enumerable set has a primitive
recursive enumeration.

*(b) Prove or disprove: Every infinite computably enumerable set has a
one-one primitive recursive enumeration.

(9-24)
(Myhill) 1-1 equivalence iff computable permutation, (Rogers) if ψe unif

enum of partial comp fcns satisfies padding, s-1-1, then there is a comp
permutation π with ψe = φπ(e) all e. Rice’s index theorem.

7. In Roger’s Theorem prove that s-1-1 implies padding. Hint: Soare I-5.9.

(9-26)
Post’s construction of a simple set, (Myhill) 1-1 equivalence to K is the

same as creative.

8. Define Ve = {n :< e, n >∈ V }. Prove or disprove:
(a) ∃V c.e. such {Ve : e ∈ ω} is the set of all computable sets.
(b) ∃V computable such {Ve : e ∈ ω} is the set of all computable sets.
(c) ∃V c.e. such {Ve : e ∈ ω} is the set of all nonempty c.e. sets.
(d) ∃f computable function such that for all e We 6= ∅ implies f(e) ∈ We.
(e) ∃f partial computable such that for all e We 6= ∅ implies f(e) ↓∈ We.

(9-28)
Recursion Theorem, uniform recursion theorem, recursion theorem with

parameters.
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9. Prove
(a) ∃∞e We = {0, 1, 2, . . . , e}
(b) Suppose V ⊆ ω is c.e. ∃∞e We = Ve (where Ve = {n :< e, n >∈ V })
(c) there exists e1, e2 with e1 6= e2 and We1 = {e2} and We2 = {e1}

(10-1)
Def Turing reducible, Dekker deficiency set is simple and Turing equiva-

lent to the set.

10. Computable Skolem functions? Prove or disprove:
(a) Given a computable R ⊆ ω2 such that ∀x∃y R(x, y) there exists a

computable f such that ∀x R(x, f(x))
(b) Given a computable R ⊆ ω3 such that ∀x∃y∀z R(x, y, z) there exists

a computable f such that ∀x∀z R(x, f(x), z)
Hint: Think ”Simple”.

(10-3)
(Martin) A effectively simple implies A ≡T K. Def A⊕B, A′.

11. Prove
(a) A ≤T A⊕B and B ≤T A⊕B
(b) A⊕B ≡T B ⊕ A
(c) (A⊕B)⊕ C ≡T A⊕ (B ⊕ C)
(d) if A ≤T C and B ≤T C, then A⊕B ≤T C
(e) if A ≤T Â and B ≤T B̂, then A⊕B ≤T Â⊕ B̂

(10-5)
Def Turing jump, A ≡T B implies A′ ≡T B′, (Kleene-Post) there exists

incomparable Turing degrees.

(10-8)
Kleene-Post. For every a > 0 there exists b incomparable to a. There

exists a, b nonzero with infimum 0.

12. Prove
(a) there exists A such that for every n

An is not Turing reducible to ∪{Am : m 6= n}
(b) There exists Turing degrees ar for r ∈ Q such that

for all r, s ∈ Q (r < s iff ar < as). Hint: use part (a).
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(c)* Same as part (b) but also ar < 0′ for all r.

(10-10)
(Kleene-Post-Spector) Given increasing degrees 〈an : n ∈ ω〉 there are

upper bounds b, c such that d ≤ b and d ≤ c implie for some n that d ≤ an.

13. Show that for every nonzero degree a there is a no zero b such that 0 is the
infimum of a and b.

14. Show that 0(ω) is not a minimal upper bound of {0(n) : n ∈ ω}.
Hint: in theorem above get B,C computable in 0(ω).

(10-12)
(Friedberg) For every B ≥T 0′ there exists A with A′ ≡T B.

15. Prove there exists a degree a > 0 with a′ = 0′.

(10-15)
(Spector) minimal degrees exist. (Sacks) minimal upper bounds exist.

16. Prove there exists a perfect tree T such that every branch thru T has
minimal degree.

(10-17)
Def Σ0

n etc., simple closure properties, universal Σ0
n sets, limit lemma.

17. Find the natural arithmetic classes in which the following sets belong:
(a) {e : We = ∅}
(b) {e : We is simple }
(c) {e : We ≡T K}
(d) {< e1, e2 >: We1 =∗ We2} (equal mod finite)

(10-19)
∀∞ = ∃∀, A′ ∈ Σ0

1(A), A ≤T 0(n) iff A ∈ ∆0
n+1, 0(n) ∈ Σ0

n, FIN Σ0
2-

complete

18. Prove that A is Σ0
4 iff there exists a computable P (s, t, x) such that for

every x
A(x) ≡ ∀∞s ∀∞t P (s, t, x)
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(10-22)
TOT is Π0

2-complete, REC is Σ0
3-complete.

19. Prove there is no ∆0
2-complete set A (i.e. A is ∆0

2 and every ∆0
2 is many-one

reducible to A)
Hint: Consider B = {e : ϕe(e) ↓ and ϕe(e) /∈ A}.

20. Prove of disprove:
(a) there exists a total f ≤T 0′′ such that for all e, if We is computable,

then Wf(e) = We.
(b) there exists a total f ≤T 0(3) such that for all e, if We is computable,

then Wf(e) = We.

(10-24)
COF is complete Σ0

3, ∃∀∃ = ∀∞∃, started first priority argument: low
simple set.

(10-26)
(Friedberg-Muchnik) There are Turing incomparable c.e. sets.

21. Prove that SIMP= { e : We is simple} is a complete Π0
3 set.

Hint: Like the proof for COF but also let We kick the eth marker at most
once to make A meet We if We infinite.

(10-29)
Every countable poset embedds into the computably enumerable degrees.

(10-31)
Friedberg Splitting Theorem, Corollaries of the Sack’s Splitting Theorem.

22. (Trachtenbrock see p.121 2.5)
Define A is autoreducible iff there exists e such that for all x,

{e}A\{x}(x) ↓= ψA(x)

Prove
(a) ∀B ∃A ≡m B such that A is autoreducible.
(b) there exist a ce A which is not autoreducible.
(c) there exist a low ce A which is not autoreducible.
(d)* there exist a ce A ≡T K which is not autoreducible?
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(11-2)
Sacks Splitting Theorem.

(11-5)
(Friedberg) Unique effective enumeration of all ce sets. Dekker deficiency

set is hypersimple.

23. * Prove there is a partial computable ψ such that for every e there is a
unique i such that ϕe = ψi.

(11-7)
Equivalent definitions of hypersimple:
for any computable sequence ∃∞k with [nk, nk+1) ⊆ A,
if A = {b0 < b1 < · · ·} then for every computable f ∃∞n f(n) < bn.

(Nerode) A ≤tt B iff Turing reducible by machine which always converges
for any oracle iff Turing recucible by a computable time bounded oracle
machine.

24. Prove or disprove:
(a) there exists V ce such that {Ve : e ∈ ω} = set of simple sets.
(b) there exists V ce such that {Ve : e ∈ ω} = set of ce nonsimple sets.
(c) there exists V ce such that {Ve : e ∈ ω} = set of ce coinfinite sets.
(d) there exists V ce such that {Ve : e ∈ ω} = set of cofinite sets.

Extra credit: In case its true, show that there is a unique enumeration as
in Friedberg’s Theorem.

25. Prove that ≤tt is transitive.

(11-9)
(Post) If K ≤tt A, then A not hypersimple. Example of a simple A with

K ≤tt A. Equivalent definitions of hyperhypersimple.

26. Prove that for every A ce with A infinite there exists a hypersimple B ⊇ A.

(11-12)
Examples of hypersimple but not hyperhypersimple sets, Maximal set is

hyperhypersimple, (Friedberg) Maximal sets exist.

(11-14)
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There exists a maximal set M ≡T K. Example of h2-simple set which is
not maximal: M1 ∩M2 where Mi maximal and M1 6=∗ M2.

27. Let A be h2-simple and f : ω → A a computable 1-1 onto enumeration.
Prove that B = {f(n) : n ∈ A} is h2-simple but not maximal.

28. Let A0, A1 be a Friedberg splitting of a maximal set M , ie., M is the
disjoint union of the Ai and each Ai is ce but not computable. Prove that
A0 is nowhere simple, ie. for any R computable if R ∩ A0 is infinite, then it
contains an infinite ce set.

(11-16)
Turing degree of a maximal set is high, a ce degree is high iff it contains

a dominating function. Definable subsets of the lattice of ce sets, E , eg.
computable, finite, simple, maximal.

29. Suppose A is h2-simple and A = {b0 < b1 < · · ·}. let f be a computable
function. Prove that ∀∞n f(n) < bn. See p.212 - 1.11

(11-19)
(Lachlan) A is h2-simple iff for all ce B ⊇ A there exists ce C ⊇ A with

B ∩ C = A and B ∪ C = ω. Example of nontrivial automorphism of E , i.e.
π identity on maximal set.

30. (Martin p.198-5.5) Show there exists a nontrivial ce set with no maximal
superset.

(11-21)
(Martin) There exists π an automorphism of E and a hypersimple set A

such that π(A) is not hypersimple.

31. Prove or disprove: Suppose π : ω → ω is a bijection and π−1(C) ∈ E for
every C ∈ E . Then π(C) ∈ E for every C ∈ E , ie. π gives an automorphism
of E .

Hint: Use a maximal set.

(11-26)
(Sacks) There exists a nontrivial high degree. (Shoenfield) Thickness

Lemma.
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(11-28)
True stages, window lemma. Sacks Jump Theorem.

(11-30)
Finish proof of Jump Theorem. Non-trivial Ln and Hn degrees, a ce set

A such that 0(n) <T A
(n) <T 0(n+1) for all n.

(12-3)
Sacks Density Theorem.

(12-5)
Sacks Density Theorem (continued).

(12-7)
Final claim in proof of Sacks Density Theorem. Stated Robinson Jump

Interpolation and derived some corollaries.

32. (Robinson) Prove that for any ce sets C,D with D <T C there exists ce
sets A and B such that

(a) A and B are ≤T incomparable, and
(b) D <T A <T C and D <T B <T C.

The last three problems can be proved as Corollaries of (possibly rela-
tivized versions of) Sack’s Splitting, Robinson Jump Interpolation, and the
Recursion Theorem.

33. Prove that if A is ce and has low degree, then there exists ce sets B and C
such that

(a) A ≤T B and A ≤T C,
(b) B and C are ≤T incomparable, and
(c) B′ and C ′ are ≤T incomparable

34. Prove that if A is ce and not computable there exists ce sets B and C such
that

(a) B ≤T A and C ≤T A,
(b) B and C are ≤T incomparable, and
(c) A′ ≡T B′ ≡T C ′.

35. Prove there exists a ce sets A and B such that for every n
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(a) A(n) <T 0(n+1) and B(n) <T 0(n+1) and
(b) A(n) ⊕B(n) ≡T 0(n+1)

(12-10)
Friedberg-Muchnik on a tree. Lachlan-Yates minimal pair strategy for a

single negative requirement.

(12-12)
Minimal pairs using trees.

(12-14)
Minimal pair of high degrees.

Handout: Bootleg copy of Julia Knight, Chris Ash, Computable struc-
tures and the hyperarithmetical hierarchy, Chapters 4-5. The remaining time
was spent proving

∆1
1 = HY P

Some details were omitted.
The same material is covered in the first 30 pages of Gerald Sacks book,

Higher recursion theory. And also somewhere in Hartley Rogers book.

9


