A.Miller M771 Fall 2011

Homework problems are due in class one week from the day assigned (which is in parentheses).

1. (1-19 W) Prove that for ordinals if $0 < \alpha \leq \beta$, then there are unique γ, δ with $\beta = \alpha \cdot \gamma + \delta$ and $0 \leq \delta < \alpha$.

2. (1-19 W)[Kunen] Prove that if α , β are non-zero ordinals, then there is a largest ordinal which divides both of them. Here, δ divides α iff $\alpha = \delta \xi$ for some ξ .

3. (1-21 F) Prove that there are unboundedly many cardinals κ with $\aleph_{\kappa} = \kappa$.

4. (1-24 M) Prove that $[\aleph_{\omega}]^{\omega}$ has cardinality strictly larger than \aleph_{ω} .

$$[X]^{\kappa} = \{ A \subseteq X : |A| = \kappa \}.$$

5. (1-24 M) Assume the continuum hypothesis. Prove that $[\aleph_n]^{\omega} = \aleph_n$ for every n with $1 \le n < \omega$.

6. (1-26 W) Suppose for all $n < \omega$ that $2^{\aleph_n} = \aleph_{n+1}$. Prove that $\aleph_{\omega}^{\omega} = 2^{\aleph_{\omega}}$.

7. (1-26 W) Suppose there exists α such that for all $n < \omega$ that $2^{\aleph_n} = \aleph_{\alpha}$. Prove that $2^{\aleph_{\omega}} = \aleph_{\alpha}$.

8. (1-28 F) Let INV stand for the property that every onto function has an inverse, i.e., if $f : A \to B$ is onto, then there exists $g : B \to A$ such that f(g(b)) = b for every $b \in B$. Prove that INV is equivalent to AC (the axiom of choice).

9. (1-28 F) Prove there exists a pairwise disjoint family $\{X_{\alpha} \subseteq 2^{\omega} : \alpha < \mathfrak{c}\}$ of Bernstein sets.

10. (1-28 F) Prove there exists a family $\{X_{\alpha} \subseteq 2^{\omega} : \alpha < 2^{\mathfrak{c}}\}$ of Bernstein sets which are distinct, i.e., $X_{\alpha} \neq X_{\beta}$ whenever $\alpha \neq \beta$.

11. (1-31 M) Prove there exists a subset X of the plane which meets every line in exactly two points.

12. (2-4 F) Assume MA. Prove there exists (f_α ∈ ω^ω : α < c) such that
(a) α < β < c implies f_α <* f_β
(b) for every g ∈ ω^ω there exists α < c such that g <* f_α

13. (2-7 M) Assume MA. Prove there exists an ultrafilter $\mathcal{U} \subseteq [\omega]^{\omega}$ such that for every $f \in \omega^{\omega}$ there exists $X \in \mathcal{U}$ such that $f \upharpoonright X$ is either constant or one-to-one.

14. (2-9 W) For $x \in 2^{\omega}$ let $b_x = \{x \mid n : n < \omega\}$ be the infinite branch thru $2^{<\omega}$ determined by x. Let $\mathcal{A} = \{b_x \subseteq 2^{<\omega} : x \in 2^{\omega}\}$ be the almost disjoint family of infinite paths.

Given $\mathcal{A}_0, \mathcal{A}_1 \subseteq \mathcal{A}$ with $\mathcal{A}_0 \cap \mathcal{A}_1 = \emptyset$ define the poset \mathbb{P} as follows:

 $(A_0, A_1) \in \mathbb{P}$ iff $A_0 \cap A_1 = \emptyset$ and there exists finite $F_0 \subseteq \mathcal{A}_0$ and $F_1 \subseteq \mathcal{A}_1$ such that $A_0 =^* \cup F_0$ and $A_1 =^* \cup F_1$.

Order \mathbb{P} by $(A_0, A_1) \leq (B_0, B_1)$ iff $A_0 \supseteq B_0$ and $A_1 \supseteq B_1$. Prove that \mathbb{P} has ccc.

15. (2-9 W) Assume MA. Prove that if $\mathcal{A}_0, \mathcal{A}_1 \subseteq \mathcal{A}$ with $\mathcal{A}_0 \cap \mathcal{A}_1 = \emptyset$ and $|\mathcal{A}_0 \cup \mathcal{A}_1| < |2^{\omega}|$, then there are disjoint a_0 and a_1 such that $b \subseteq *a_0$ for every $b \in \mathcal{A}_0$ and $b \subseteq *a_1$ for every $b \in \mathcal{A}_1$.

16. (2-11 F) Assume MA. Suppose $\mathcal{F} \subseteq \omega^{\omega}$ and $|\mathcal{F}| < |2^{\omega}|$. Prove there exists $g \in \omega^{\omega}$ such that for every $f \in \mathcal{F} \quad \exists^{\infty} n \in \omega \quad g(n) = f(n)$.

17. (2-14 M) Suppose $D \subseteq 2^{\kappa}$ is an open dense set. Prove there exists $E \subseteq D$ a dense open set which is countably supported, i.e., there exists a countable $S \subseteq \kappa$ such that for every $x, y \in 2^{\kappa}$ if $x \upharpoonright S = y \upharpoonright S$, then $(x \in E \text{ iff } y \in E)$.

18. (2-14 M) For each $\alpha < \omega_1$ define

$$C_{\alpha} = \{ x \in 2^{\omega_1} : \forall n \in \omega \ x(\alpha + n) = 0 \}.$$

(a) Prove that C_{α} is closed nowhere dense in 2^{ω_1} .

(b) Prove that $\bigcup_{\alpha < \omega_1} C_{\alpha}$ is not meager in 2^{ω_1} .

19. (2-16 W) Suppose $A_{\alpha} \subseteq \alpha$ for α a countable limit ordinal has order type ω and is an unbounded subset of α . Prove that $(A_{\alpha} : \alpha^{lim} < \omega_1)$ contains an

uncountable Δ -system, i.e., there exists an uncountable set Σ of countable limit ordinals and a finite R such that $A_{\alpha} \cap A_{\beta} = R$ for every pair of distinct $\alpha, \beta \in \Sigma$.

20. (2-18 F) Prove that 2^{ω} is compact.

21. (2-21 M) Suppose that T is a Souslin tree and $D \subseteq T$ is dense open. Prove that there exists $\alpha < \omega_1$ such that $T_{\alpha} \subseteq D$.

22. (2-23 W) Let T be a tree of height ω_1 such that T_{α} is finite for every $\alpha < \omega_1$. Prove that T must contain a chain of size ω_1 .

Bonus Problem: Show that a tree of height ω_2 and countable width must have a chin of size ω_2 .

23. (2-25 F) Suppose $f: \omega_1 \to \omega_1$. Define

$$C_f = \{ \alpha < \omega_1 : \forall \beta < \alpha \ f(\beta) < \alpha \}$$

Prove that C_f is a closed unbounded subset of ω_1 (club). Prove that for every club $C \subseteq \omega_1$ there exists f with $C_f \subseteq C$.

Bonus Problem: Suppose M is structure in a countable language and M has universe ω_1 . Prove that the set

$$\{\alpha < \omega_1 : M \cap \alpha \preceq M\}$$

is a club. The symbol \leq stands for elementary substructure.

24. (2-28 M) Assume CH. Given $\{A_{\alpha} \in [\omega_2]^{\leq \omega} : \alpha < \omega_2\}$ prove there exists a stationary $S \subseteq \omega_2$ such that $\{A_{\alpha} : \alpha \in S\}$ is a Δ -system.

25. (3-2 W) Assume \diamond . Prove there exists $(A_{\alpha} : \alpha < 2^{\omega_1})$ such that each A_{α} is a stationary subset of ω_1 and $A_{\alpha} \cap A_{\beta}$ is countable whenever $\alpha \neq \beta$.

26. (3-7 M) Let $\alpha > \omega$ be a limit ordinal. Prove that (V_{α}, \in) is a model of ZC, i.e., ZFC minus the replacement axioms.

27. (3-9 W) For κ an uncountable regular cardinal, define H_{κ} to the family of all sets X whose transitive closure has cardinality less than κ , $|TC(X)| < \kappa$. Prove that (H_{κ}, \in) is a model of ZFC\Powerset Axiom. 28. (3-11 F) Prove that the following are equivalent:

(a) x is an ordinal

(b) x and every element of x is transitive

(c) x is transitive and (x, \in) is a strict linear order

29. (3-21 M) (Ashutosh Kumar) Say that a limit ordinal α is weakly-reflecting iff for any sentence θ if $V_{\alpha} \models \theta$, then there are unboundedly many $\beta < \alpha$ such that $V_{\beta} \models \theta$.

(a) Prove that the set { $\alpha < \omega_1 : \alpha$ is weakly-reflecting} contains a closed unbounded set.

(b) Show that ZC+weakly-reflecting schema does not imply ZFC.

30. (3-23 W) Assume ZFC+V=L. Prove that $L_{\omega_1} = H_{\omega_1}$.

31. (3-25 F) Assume ZFC+V=L. Suppose that $Q \subseteq \omega_1$ is a stationary set. Prove that $\Diamond(Q)$ holds. This means that there exists $(S_\alpha \subseteq \alpha : \alpha \in Q)$ such that for every $X \subseteq \omega_1$

$$\{\alpha \in Q : S_{\alpha} = X \cap \alpha\}$$

is stationary.

32. (3-28 M) Assume there is a standard model of ZFC. Prove that there is a model of ZFC + Con(ZFC) + there is no standard model of ZFC.

33. (3-30 W) Assume that \mathbb{P} is a poset in M a transitive standard model of ZFC and $G \subseteq \mathbb{P}$ is a \mathbb{P} -filter. Prove that the following are equivalent:

- 1. G is \mathbb{P} -generic over M.
- 2. For every $A \in M$ if

 $M \models A \subseteq \mathbb{P}$ is a maximal antichain in \mathbb{P}

then $G \cap A \neq \emptyset$.

3. For every $E \subseteq \mathbb{P}$ with $E \in M$ there exists $p \in G$ such that either $p \in E$ or no $q \leq p$ is in E.

34. (4-1 F) Given \mathbb{P} -names τ and σ construct a \mathbb{P} -name ρ such that for every G \mathbb{P} -generic over M

$$\rho^G = \tau^G \times \sigma^G$$

Do not use \Vdash in your construction.

35. (4-4 M) Suppose \mathcal{F} is a family of subsets of \mathbb{P} . Define

 $D = \{ p \in \mathbb{P} : (\forall E \in \mathcal{F} \ E \text{ is dense beneath } p) \text{ or } (\exists E \in \mathcal{F} \ \forall q \le p \ q \notin E) \}$

Prove that D is dense in \mathbb{P} .

36. (4-4 M) Suppose G is \mathbb{P} -generic over M and $p \in \mathbb{P}$. Prove that either $p \in G$ or there exists $q \in G$ with $p \perp q$.

37. (4-4 M) Suppose $G \subseteq \mathbb{P} \in M$ satisfies

- 1. $\forall p, q \in G \quad p \text{ and } q \text{ are compatible}$
- 2. $\forall p \leq q \text{ if } p \in G \text{ then } q \in G$
- 3. $G \cap D \neq \emptyset$ for all $D \in M$ which are dense in \mathbb{P}

Prove that G is a \mathbb{P} filter, i.e., $\forall p, q \in G \ \exists r \in G \text{ with } r \leq p \text{ and } r \leq q$.

38. (4-8 F) Suppose $\mathbb{P} \in M$ and \mathbb{P} is everywhere non-trivial:

$$\forall p \in \mathbb{P} \; \exists q, r \leq p \; q \perp r$$

Prove that $G \notin M$ for every G \mathbb{P} -generic over M.

39. (4-11 M) Suppose G is \mathbb{P} -generic over M and for all κ, γ ordinals in M if $f \in \kappa^{\gamma} \cap M[G]$ there exists $g \in M$ such that $M \models g : \gamma \to [\kappa]^{\omega}$ and $\forall \alpha < \gamma \ f(\alpha) \in g(\alpha)$. Prove that there exists $p \in G$ such that

$$M \models \mathbb{P}_{\leq p}$$
 has ccc.

40. (4-15 F) Suppose M is a countable transitive standard model satisfying

$$M \models ZFC + \neg CH + \mathbb{P} = 2^{<\omega_1}$$

and G is \mathbb{P} -generic over M. Prove that

- (a) $M \cap \mathcal{P}(\omega) = M[G] \cap \mathcal{P}(\omega)$ and (b) $M[G] \models CH$.
- 41. (4-18 M) In a countable transitive model M of ZFC+GCH define \mathbb{P} by: $p \in \mathbb{P}$ iff there exists $\alpha < \omega_1$ such that $p = (S_\beta \subseteq \beta : \beta < \alpha)$. Define $p \le q$ iff $\alpha_p \ge \alpha_q$ and $S^q_\beta = S^p_\beta$ for all $\beta < \alpha_q$.

Prove that if G is \mathbb{P} -generic over M then

- (a) M and M[G] have the same cardinals and
- (b) $M[G] \models \diamondsuit$

42. (4-20 W) Suppose that M is a countable transitive model of ZFC,

$$M \models \mathbb{P} = Fn(\omega_2, 2, \omega)$$

G is \mathbb{P} -generic over M, and $x \in \mathcal{P}(\omega) \cap M[G]$ is definable in M[G] with parameters from M. Prove that $x \in M$.

43. (4-25 M) Suppose that M is a countable transitive model of ZFC and $\alpha \in ORD^M$. Prove that there is a symmetry model \mathcal{N} with $M \subseteq \mathcal{N} \subseteq M[G]$ and

(a) $\mathcal{N} \models ZF + \neg AC$ (b) $V^{\mathcal{N}}_{\alpha} = V^{M}_{\alpha}$

44. (4-27 W) Suppose that \mathcal{N} is Cohen Basic model for $\neg AC$ and $X \in \mathcal{N}$ is the Dedekind-finite dense subset of 2^{ω} . Prove that \mathcal{N} satisfies:

$$\forall Y \subseteq X \exists U \subseteq 2^{\omega} \text{ open such that } Y =^* X \cap U$$

where $=^*$ means equal mod finite.

45. (4-28 F) Let \mathcal{N} be same model as in (44), i.e., $M \subseteq \mathcal{N} \subseteq M[G]$ where $X = \{x_n : n < \omega\}$ and x_n is the n^{th} column of G. Working in \mathcal{N} define

$$\mathbb{P}_0 = \{ s : \exists n < \omega \ s : n \to X \text{ is one-to-one } \}$$

where $s \leq t$ iff $s \supseteq t$. Working in M[G] define $G_0 = \{s_n : n < \omega\}$ where $s_n : n \to X$ is defined by $s_n(i) = x_i$. Prove that G_0 is \mathbb{P}_0 -generic over \mathcal{N} and $\mathcal{N}[G_0] = M[G]$.