A.Miller M771 Fall 2010

Homework problems are due in class one week from the day assigned (which is in parentheses).

1. (1-22 F) (Tarski) Suppose A is an infinite Dedekind finite set. For $n \in \omega^+$ define $A_n = \{s : n \to A : s \ 1-1\}$. Prove that

(a) A_n is Dedekind finite.

(b) For $X \subseteq \omega$ the set $A_X = \bigcup_{n \in X} A_n$ is Dedekind finite.

(c) There is a 1-1 map of A_n into A_m iff $n \leq m$.

(d) If $X \subseteq Y \subseteq \omega^+$ and there is a 1-1 map of A_X into A_Y , then X = Y.

(e) Show that if there is an infinite Dedekind finite cardinal then there are continuum many distinct infinite Dedekind finite cardinals.

2. (1-22 F) (a) Suppose L is a linear order and for every $X \subseteq L$ either $X \simeq L$ or $\overline{X} \simeq L$. (Overline denotes the complement.)

(b) Suppose α is ordinal. Show that (1) and (2) are equivalent.

(1) $X \simeq \alpha$ or $\overline{X} \simeq \alpha$ for every $X \subseteq \alpha$.

(2) There is a β with $\alpha = \omega^{\beta}$.

3. (1-27 W) Prove that the following are equivalent:

(1) There exists infinite sets $(A_{\alpha} \subseteq \omega_1 : \alpha < \omega_2)$ which are pairwise almost disjoint, i.e., $A_{\alpha} \cap A_{\beta}$ is finite whenever $\alpha < \beta < \omega_2$.

(2) CH is false.

4. (2-1 M) (Solomon) Prove that if $\mathfrak{b} > \omega_1$ and $\{a_\alpha \in [\omega]^\omega : \alpha < \omega_1\}$ are almost disjoint, then there exists $a \in [\omega]^\omega$ with $a \cap a_\alpha$ finite for every $\alpha < \omega_1$.

5. (2-5 F) (a) Let $\kappa > \omega$ be a regular cardinal. Prove that for every $(F_{\alpha} \in [\kappa]^{<\omega} : \alpha < \kappa)$ there exists $\Sigma \in [\kappa]^{\kappa}$ such that $(F_{\alpha} \in [\kappa]^{<\omega} : \alpha \in \Sigma)$ is a Δ -system. (b) Show that this fails for singular κ .

6. (2-8 M) Assume MA_{ω_1}. Prove that there exists $(A_\alpha \in [\omega_1]^{\omega_1} : \alpha < \omega_2)$ such that $A_\alpha \cap A_\beta$ is finite for every $\alpha < \beta < \omega_2$.

7. (2-10 W) Prove that MA_{ω_1} is equivalent to:

For every ccc \mathbb{P} and $(E_{\alpha} \subseteq \mathbb{P} : \alpha < \omega_1)$ there exists a \mathbb{P} -filter G such that for every $\alpha < \omega_1$ either $G \cap E_{\alpha}$ is nonempty or there exists $p \in G$ such that no $q \leq p$ is in E_{α} .

8. (2-12 F) Assume MA_{ω_1}. Prove there exists an almost disjoint family $\mathcal{A}\subseteq[\omega]^{\omega}$ of size ω_1 such that for every $\mathcal{A}_0\subseteq\mathcal{A}$ there exists $b\subseteq\omega$ such that $a\subseteq^*b$ for all $a\in\mathcal{A}_0$ and $a\subseteq^*\overline{b}$ for all $a\in\overline{\mathcal{A}_0}$.

9. (2-17 W) Let $T \subseteq \omega^{<\omega_1}$ be a Souslin subtree. (a) Suppose $f: T \to \mathbb{R}$ satisfies

$$\forall s, t \in T \ (s \subseteq t \to f(s) \le f(t))$$

Prove that the range of f is countable.

(b) Suppose $f: T \to \mathbb{R}$ is continuous. This means that for any $s \in T_{\lambda}$ for λ limit, $f(s \upharpoonright \alpha_n)$ converges to f(s) for any sequence α_n converging up to λ . Prove that the range of f is countable.

10. (2-19 F) Suppose $(C_{\alpha} : \alpha < \omega_1)$ is a ladder system. Show that for every $\Sigma \in [\omega_1]^{\omega_1}$ there exists $\Gamma \in [\Sigma]^{\omega_1}$ such that $(C_{\alpha} : \alpha \in \Gamma)$ is a Δ -system.

11. (2-19 F) (MA_{ω_1}) Suppose (C_α : $\alpha < \omega_1$) is a ladder system. Prove that for every ($f_\alpha : C_\alpha \to \omega : \alpha < \omega_1$) there exists $F : \omega_1 \to \omega$ such that $F \upharpoonright C_\alpha =^* f_\alpha$ for every $\alpha < \omega_1$.

12. (2-22 M) Suppose $T \subseteq (\omega + \omega^*)^{<\omega_1}$ is a subtree which is an Aronszajn tree and which has the property that for every $s \in T$ all immediate successors of s are in T. Let (T, \trianglelefteq) be the following ordering: $s \triangleleft t$ iff either

1. there exists $\alpha < |s|, |t|$ such that $s \upharpoonright \alpha = t \upharpoonright \alpha$ and $s(\alpha) < t(\alpha)$ or

2. $s \subset t$ with $|s| = \alpha < |t|$ and $t(\alpha) \in \omega^*$.

Prove:

(a) (T, \trianglelefteq) is a dense linear order.

(b) Neither ω_1 nor ω_1^* order embed into (T, \trianglelefteq) .

(c) If $X \subseteq \mathbb{R}$ and X order embeds into (T, \trianglelefteq) , then X is countable.

13. (2-26 F) For $A \subseteq \omega_1$ define the following linear order type,

$$L_A = \sum_{\alpha < \omega_1} L_A^{\alpha}.$$

$$L_A^{\alpha} = \left\{ \begin{array}{ll} \eta & \text{if } \alpha \notin A \\ 1 + \eta & \text{if } \alpha \in A \end{array} \right.$$

Here η stands for the order type of the rationals. Prove

 $L_A \simeq L_B$ iff $(A\Delta B)$ is nonstationary.

14. (3-1 M) Assume \diamond . Prove there exists a rigid Souslin tree.

15. (3-3 W) Suppose there exists $(S_{\alpha} \subseteq \alpha : \alpha < \omega_1)$ such that for every $X \subseteq \omega_1$ there exists a limit ordinal $\alpha < \omega_1$ with $X \cap \alpha = S_{\alpha}$. Prove that there exists a diamond sequence.

16. (3-5 F) Let $\alpha > \omega$ be a limit ordinal. Prove that (V_{α}, \in) is a model of ZFC minus the replacement axiom. Prove that $(V_{\omega+\omega}, \in)$ does not model ZFC.

17. (3-8 M) Let κ be an uncountable regular cardinal. Prove that (H_{κ}, \in) is a model of ZFC minus the power set axiom.

18. (3-10 W) Let ZC=ZFC minus the replacement axioms. Prove that (ZC plus the reflection schema) implies the replacement axioms.

19. (3-12 F) (Kumar) Prove that the Mostowski collapse of OD is HOD, if

$$f(x) = \{f(y) : y \in x \cap OD\}$$

then $HOD = \{f(x) : x \in OD\}.$

20. (3-15 M) Let M, N be standard models of ZFC with same ordinals and sets of ordinals. Prove that M = N.

21. (3-17 W) Suppose that $M \subseteq N$ are standard models of ZF and $\kappa, \lambda \in M$. Prove that if $N \models \kappa \to (\omega)_{\lambda}^{<\omega}$, then $M \models \kappa \to (\omega)_{\lambda}^{<\omega}$.

22. (3-19 F) (Kumar) Say that a limit ordinal α is weakly-reflecting iff for any sentence θ if $V_{\alpha} \models \theta$, then there are unboundedly many $\beta < \alpha$ such that $V_{\beta} \models \theta$. Prove that the set { $\alpha < \omega_1 : \alpha$ is not weakly-reflecting} is not stationary. Hence ZC+weakly reflecting does not imply ZFC. 23. (3-22 M) Suppose that κ is a strongly inaccessible cardinal. Prove that V_{κ} is a model of ZFC. Prove that $V_{\kappa} = H_{\kappa}$.

24. (3-22 M) Prove that the least κ (if it exists) such that V_{κ} is a model of ZFC is a strong limit cardinal with countable cofinality.

25. (3-24 W) Assume ZFC+V=L. Prove that for any regular κ that $L_{\kappa} = H_{\kappa}$.

26. (3-26 F) Assume ZFC+V=L. For any regular cardinal $\kappa > \omega$ let

$$Q_{\kappa} = \{ \alpha < \omega_1 : L_{\alpha} \equiv L_{\kappa} \}.$$

Prove that Q_{κ} is unbounded in ω_1 and Q_{κ} is stationary iff $\kappa = \omega_1$.

27. (4-6 M) Assume ZFC+V=L. Let κ be an uncountable regular cardinal. Let N be the elements of L_{κ} which are definable in L_{κ} without parameters. Prove that N is a countable elementary substructure of L_{κ} . Let α be minimal such that $L_{\alpha} \equiv L_{\kappa}$. Prove that $Th(L_{\kappa}) \notin L_{\alpha}$.

28. (4-16 F) (M a countable standard transitive model of ZFC.) Suppose G is \mathbb{P} -generic over M and for every $f \in M[G]$ if $M[G] \models f : \kappa \to \gamma$ where κ and γ are ordinals, there exists $g \in M$ such that $M \models g : \kappa \to [\gamma]^{\omega}$ with $f(\alpha) \in g(\alpha)$ for every $\alpha < \kappa$. Prove that there exists $p \in G$ such that $M \models \mathbb{P}_{\leq p}$ is ccc.

29. (4-23 F) Suppose $M \models \mathbb{P}_1 \subseteq \mathbb{P}$ is a dense suborder. Prove

- 1. If G_2 is \mathbb{P}_2 -generic over M, then $G_1 = G_2 \cap \mathbb{P}_1$ is \mathbb{P}_1 -generic over M.
- 2. If G_1 is \mathbb{P}_1 -generic over M, then $G_2 = \{p \in \mathbb{P}_2 : \exists q \in G_1 \mid q \leq p\}$ is \mathbb{P}_2 -generic over M.
- 3. In either case, $M[G_1] = M[G_2]$.

30. (4-23 F) Prove that if \mathbb{P} is a countable poset which is everywhere non-trivial ($\forall p \in \mathbb{P} \exists q_1, q_2 \leq p \ q_1 \perp q_2$), then $\omega^{<\omega}$ is isomorphic to a dense subset of \mathbb{P} .

31. (4-26 M) Suppose there is a standard model of ZFC. Prove there exists a countable standard model M such that

 $M \models ZFC + \forall n < \omega \ ZFC_n$ has a standard model

but $M \models "ZFC$ does not have a standard model".