
MATH 770 : Foundations of Mathematics

—

Fall 2005

Itay Ben-Yaacov

Itay Ben-Yaacov, University of Wisconsin – Madison, Department of
Mathematics, 480 Lincoln Drive, Madison, WI 53706-1388, USA

URL: http://www.math.wisc.edu/~pezz

3

• Instructor: Itay Ben-Yaacov, Office: Van Vleck 617.
• Office hours: Tuesday 14:00-15:00, Wednesday 14:00-15:00.
• Class: Tuesday, Thursday 11:00 – 12:15, Van Vleck B211.
• Grading: 60% homework, 40% take-home final exam.

c©Itay Ben-Yaacov 2005. All rights reserved.
Registered students of Math 770, Fall 2005, UW-Madison may reproduce verbatim

copies of these class notes, or of parts thereof, solely for the purpose of participating in
the said class.

The author’s consent is required for all other uses covered by copyrights.

Contents

Chapter 1. Propositional Logic 7
1.1. Syntax 7
1.2. Semantics 9
1.3. Syntactic deduction 16

Chapter 2. First order Predicate Logic 23
2.1. Syntax 23
2.2. Semantics 25
2.3. Substitutions 28
2.4. Syntactic deduction 32
Exercises 41

Chapter 3. Model Theory 45
3.1. Elementary extensions and embeddings 46
3.2. Quantifier elimination 52
Exercises 57

Chapter 4. Incompleteness 59
4.1. Recursive functions 60
4.2. Coding syntax in Arithmetic 65
4.3. Representation of recursive functions 70
4.4. Incompleteness 75
4.5. A “physical” computation model: register machines 77
Exercises 81

Chapter 5. Set theory 83
5.1. Axioms for set theory 83
5.2. Well ordered sets 86
Exercises 92

5

CHAPTER 1

Propositional Logic

Basic ingredients:

• Propositional variables, which will be denoted by capital letters P,Q,R, . . ., or
sometimes P0, P1, P2, These stand for basic statements, such as “the sun
is hot”, “the moon is made of cheese”, or “everybody likes math”. The set of
propositional variables will be called vocabulary. It may be infinite.

• Logical connectives: ¬ (unary connective), →, ∧, ∨ (binary connectives), and
possibly others.

Each logical connective is defined by its truth table:

A ¬A
T F
F T

A B A→ B A ∧B A ∨B
T T T T T
T F F F T
F T T F T
F F T F F

Thus:

• The connective ¬ means “not”: ¬A means “not A”.
• The connective ∧ means “and”.
• The connective ∨ means “inclusive or”: A ∨B means “A, or B, or both”.
• The connective → means “if . . . then . . . ”: A→ B means “if A then B (but if

not A then anything goes)”.

We can always define new connectives by specifying their truth tables.

1.1. Syntax

We will define propositional formulae as finite sequences of symbols. The allowable
symbols are usually grouped in two:

(i) Logical symbols: parentheses and connectives (,),¬,→,∧,∨.
(ii) Nonlogical symbols: The propositional variables, each viewed as a single symbol

(even if we denote it by P13).

The propositional formulae (sometimes simply called propositions) are constructed
inductively:

• Each propositional variable is a formula. These are the atomic formulae.

7

8 1. PROPOSITIONAL LOGIC

• If ϕ and ψ are formulae, so are (¬ϕ), (ϕ∧ψ), (ϕ∨ψ) and (ϕ→ ψ). These are
the compound formulae.

Formally: we let S0 be the set of all propositional variables. For each n, given Sn
define

Sn+1 = Sn ∪ {(¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) : ϕ, ψ ∈ Sn}.
Then S =

⋃
n∈N Sn is the set of all formulae.

We call Sn the set of formulae constructed in n steps.
For example, (P → Q) and (R∨(P ∧(¬Q))) are formulae, but (∧P) and ¬Q) are not.

With time we will allow ourselves to omit some parentheses if the meaning remains clear:
for example, instead of (¬((¬P) → (¬Q))) we will write ¬(¬P → ¬Q) (we convene that
¬ binds more strongly than the binary connectives).

When wanting to prove that all formulae have a certain property, we usually use
“proof by induction on the construction of the formula”:

Theorem 1.1.1 (Proof by induction on the structure). Let X is a property that a
formula may or may not have. Assume that:

(i) All atomic formulae have property X.
(ii) If ϕ and ψ are formulae which have property X then so do (¬ϕ), (ϕ → ψ),

(ϕ ∧ ψ), (ϕ ∨ ψ).

Then all formulae have property X.

Proof. Let C ⊆ N be the set of all natural numbers n such that there exists ϕ ∈ Sn
which does not have property X. Assume first that C 6= ∅. Then there is a minimal
n ∈ C. Since all atomic formulae have property X: n > 0. But then all formulae in Sn−1

have property X, whereby all formulae in Sn must have it, so n /∈ C. This contradiction
shows that C = ∅. Therefore all formulae have property X. qed1.1.1

We can similarly prove:

Theorem 1.1.2 (Proof by induction on the structure). Let X is a property that a
formula may or may not have. Assume that for every formula ϕ, if all shorter formulae
have property X then so does ϕ. Then every formula has property X.

Proof. Same idea: if not all formulae have property X then there is a shortest one
which doesn’t, and we get a contradiction. qed1.1.2

The connectives give rise to functions E¬ : S → S and E→, E∧, E∨ : S2 → S:

E¬(ϕ) = (¬ϕ),

E�(ϕ, ψ) = (ϕ�ψ) � ∈ {→,∨,∧}.
We call these functions construction operations.

Theorem 1.1.3 (Unique reading). (i) The ranges of the construction opera-
tions E� : � ∈ {¬,→,∨,∧} are disjoint from each other and from S0.

1.2. SEMANTICS 9

(ii) All the construction operations are injective (= one-to-one).

Proof. In the exercises. qed1.1.3

We may say that the set S is freely generated from S0 by the operations E� : � ∈
{¬,→,∧,∨}.

Exercises.

Exercise 1.1.4. Let α be any finite sequence of symbols. Define:

len(α) = 〈length of α〉,
k(α) = 〈number of left parentheses in α〉 − 〈number of right parentheses in α〉,

and assuming n ≤ len(α):

α�n = 〈first n symbols of α〉.
Prove that:

(i) For every ϕ ∈ S: k(ϕ) = 0, and if 0 < n < len(ϕ) then k(ϕ�n) > 0.
(ii) If ϕ = E�(ψ, χ), where � ∈ {→,∨,∧} and ψ, χ ∈ S, then len(ψ) is the minimal

n such that 0 < n < len(ϕ) and and k(ϕ�n+1) = 1.

Exercise 1.1.5. Using the previous exercise, prove Theorem 1.1.3.

Exercise 1.1.6 (Polish notation). The syntax we defined above is called infix nota-
tion, since the binary connectives come between the two formulae which they connect.
We can also defined prefix notation sometimes better known as Polish notation.

The set S ′ of Polish formulae is defined as the set of finite sequences of symbols
generated from S0 by the following construction operators:

E ′¬(ϕ) = ¬ϕ,
E ′�(ϕ, ψ) = �ϕψ � ∈ {∧,∨,→}.

This notation has several advantages over standard notation: it does not require
parentheses, and it accommodates more easily higher-arity connectives. For example, we
can introduce a new ternary connective ∗ through E ′∗(ϕ, ψ, χ) = ∗ϕψχ. On the other
hand, it is less natural to read.

Prove the unique readability theorem for Polish notation. (Hint: you may want to
replace the parentheses counting function k with an appropriate auxiliary function k′.
Since it cannot count parentheses, what should it count?)

1.2. Semantics

1.2.1. Truth assignments and truth values. We interpret a propositional lan-
guage by assigning a truth value T or F (True or False, respectively) to the propositional
variables (whence their name).

10 1. PROPOSITIONAL LOGIC

Definition 1.2.1. A truth assignment is a mapping v0 : S0 → {T, F}.

Theorem 1.2.2. Let v0 be a truth assignment. Then there is a unique mapping
v : S → {T, F} such that:

(i) v�S0
= v0 (i.e., v(P) = v0(P) for all P ∈ S0).

(ii) For all ϕ, ψ ∈ S, the values of v(¬ϕ) and v(ϕ�ψ) for � ∈ {→,∧,∨} are
determined from v(ϕ) and v(ψ) by the truth tables.

(So if v(ϕ) = T and v(ψ) = F then v(¬ϕ) = F , v(ϕ∨ψ) = T , v(ϕ∧ψ) = F ,
v(ϕ→ ψ) = F .)

Proof. We define by induction on n mappings vn : Sn → {T, F} extending v0. We
are already given v0. Given vn : Sn → {T, F}, we extend it to vn+1 : Sn+1 → {T, F}
according to the truth tables. By the unique reading theorem, there is no ambiguity.
Then v =

⋃
n∈N vn is as required.

If v′ is another such mapping, then we show that v(ϕ) = v′(ϕ) for all ϕ by induction
on the structure of ϕ, whence uniqueness. qed1.2.2

Since v0 uniquely determines v we will not bother too much to distinguish between
them and call either one a truth assignment. We call v(ϕ) the truth value of ϕ under the
assignment v.

Definition 1.2.3 (Satisfaction). (i) Let ϕ be a formula and v a truth assign-
ment. If v(ϕ) = T we say that v satisfies or models ϕ, in symbols v � ϕ.

(ii) Let Γ be a set of formulae and v a truth assignment. We say that v satisfies or
models Γ if v � ϕ for all ϕ ∈ Γ.

(iii) A model of a formula ϕ (or set of formulae Γ) is a truth assignment v which
satisfies ϕ (or Γ).

Definition 1.2.4 (Logical consequence and equivalence). Let ϕ be a formula, Γ a
set of formulae. If every model of Γ is also a model of ϕ then ϕ is a logical consequence
of Γ, or that Γ logically implies ϕ, in symbols Γ � ϕ.

In case Γ = {ψ} we say that ψ implies ϕ, etc.
If ϕ and ψ are two formulae such that ϕ � ψ and ψ � ϕ we say that ϕ and ψ are

logically equivalent, denoted ϕ ≡ ψ.

Example 1.2.5. P implies P ∨Q and Q∧P implies P . P ∧Q, Q∧P and (P ∧Q)∧P
are all equivalent.

For our purposes logically equivalent formulae are indeed the same and we will allow
ourselves to identify them. For example for every three formulae ϕ, χ, ψ we have:

(ϕ ∧ ψ) ∧ χ ≡ ϕ ∧ (ψ ∧ χ),

ϕ ∧ ψ ≡ ψ ∧ ϕ.
Therefore, up to logical equivalence, conjunction is commutative and associative. This
allows us to write

∧
i<n ϕi instead of ϕ0∧(ϕ1∧(ϕ2∧ . . .)). The same holds for disjunction.

1.2. SEMANTICS 11

Definition 1.2.6 (Tautologies). We say that a formula ϕ is valid, or that it is a
tautology, if it is satisfied by every truth assignment.

Example 1.2.7. P ∨ ¬P is a tautology. Also, ϕ implies ψ if and only if ϕ→ ψ is a
tautology. All tautologies are equivalent.

Let ϕ be a formula and n ∈ N such that all the propositional variables appearing in ϕ
are among P0, . . . , Pn−1. Then for every truth assignment v, the truth value v(ϕ) depends
only on v(P0), . . . , v(Pn−1). Thus ϕ determines a function gϕ,n : {T, F}n → {T, F} defined
by the property:

gϕ,n(v(P0), . . . , v(Pn−)) = v(ϕ).

(A function g : {T, F}n → {T, F} is called a Boolean function.)
Also, if ψ is another formula which only involves P0, . . . , Pn−1, then ϕ ≡ ψ if and

only if gϕ,n = gψ,n. Thus, up to logical equivalence, the mapping sending ϕ to gϕ,n is
one-to-one. Is it onto?

The positive answer is a corollary of a result which is interesting in itself:

Definition 1.2.8. (i) A literal is an atomic proposition or its negation, i.e.,
something of the form ¬P or Q. It is sometimes convenient to denote a literal
by P e, where e ∈ {T, F}: P T is P , and P F is ¬P .

(ii) A (conjunctive) clause is a conjunction of several literals, i.e., something of
the form P ∧ Q ∧ ¬R, or more generally, of the form

∧
i<n P

ei
i where ē =

(e0, . . . , en−1) ∈ {T, F}n.
(iii) A formula in disjunctive normal form (DNF) is a disjunction of clauses, i.e.,

something of the form
∨
i<m γi where each γi is a clause.

Proposition 1.2.9. For every Boolean function g : {T, F}n → {T, F} there is a
formula ϕ in disjunctive normal form such that ϕ only involves P0, . . . , Pn−1, and g =
gϕ,n.

Proof. Each possible input of g is a tuple ē ∈ {T, F}n. For each such possible input
define γē =

∧
i<n P

ei
i . Then γē is a clause, and a truth assignment v satisfies γē if and

only if v(Pi) = ei for all i < n.
Let W ⊆ {T, F}n be non-empty, and let ϕW =

∨
ē∈W γē. Then v � ϕW if and only if

(v(P0), . . . , v(Pn−1)) ∈ W .
Therefore, if there is at least one possible input for g such that g(ē) = T we can define

ϕ = ϕ{ē∈{T,F}n : g(ē)=T}. If, on the other hand, g(ē) = F for all ē ∈ {T, F}n, let us just
take ϕ = P0 ∧ ¬P0. In either case ϕ is in DNF and g = gϕ,n. qed1.2.9

Corollary 1.2.10. Every formula is equivalent to a formula in DNF.

Exercises.

Exercise 1.2.11. In the same way we defined the connectives ¬,→,∨,∧ we can
define other connectives, specifying their arity (i.e., no. of arguments) and truth table. If

12 1. PROPOSITIONAL LOGIC

C is any family of connectives, we can the define SC as the family of formulae generated
from S using the connectives in C (so S defined earlier is just S{¬,→,∨,∧}).

Satisfaction is defined again according to the truth tables.
We say that a system of connectives C is full if every ϕ ∈ S is logically equivalent to

some ϕ′ ∈ SC.
For example Corollary 1.2.10 says in particular that the system {¬,∨,∧} is full.

(i) Prove that the system {¬,→} is full. (To simplify life, show that it is enough
to prove that each of the formulae P ∧Q and P ∨Q has a logically equivalent
counterpart in S{¬,→}.)

(ii) We define a new connective, called the Sheffer stroke, or NAND (“not and”):

A B A | B
T T F
T F T
F T T
F F T

Show that {|} is a full system of connectives.

Exercise 1.2.12 (Boolean algebras). A Boolean algebra is a set A equipped with
constants 0, 1 ∈ A , a unary operation ¬, and binary operations ∧,∨, satisfying for all
a, b, c ∈ A :

¬¬a = a

¬0 = 1 ¬1 = 1

¬(a ∨ b) = ¬a ∧ ¬b ¬(a ∧ b) = ¬a ∨ ¬b (de Morgan’s laws)

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c (associativity)

a ∨ b = b ∨ a a ∧ b = b ∧ a (commutativity)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distributivity)

a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a (absorption)

a ∨ ¬a = 1 a ∧ ¬a = 0 (complements)

(Notice that modulo the first two lines, each of the two columns of axioms follows from
the other.) Show that the following identities hold in every Boolean algebra:

a ∨ a = a a ∧ a = a

a ∨ 0 = a a ∧ 1 = a

a ∨ 1 = 1 a ∧ 0 = 0

1.2. SEMANTICS 13

Exercise 1.2.13. Let X be a set and let P(X) be the family of subsets of
X (called the power set of X). Let 0P(X) = ∅, 1P(X) = X, ¬P(X) be com-
plement, and ∨P(X),∧P(X) be union and intersection, respectively. Show that
〈P(X), 0P(X), 1P(X),¬P(X),∨P(X),∧P(X)〉 is a Boolean algebra.

Exercise 1.2.14. Let T be a set of formulae. Say that ϕ and ψ are equivalent modulo
T , in symbols ϕ ≡T ψ, if T � ϕ→ ψ and T � ψ → ϕ.

(i) Show that ≡T is an equivalence relation.
(ii) Show that it is a congruence relation with respect to the connectives, i.e., that

if ϕ ≡T ϕ
′ and ψ ≡T ψ

′ then ¬ϕ ≡T ¬ϕ′, ϕ ∧ ψ ≡T ϕ
′ ∧ ψ′, etc.

(iii) Define [ϕ]T as the equivalence of ϕ modulo ≡T , and AT as the family of all such
equivalence classes:

[ϕ]T = {ψ ∈ S : ϕ ≡T ψ},
AT = {[ϕ]ψ : ϕ ∈ S}.

We define the following operations on A :

¬[ϕ]T = [¬ϕ]T ,

[ϕ]T ∧ [ψ]T = [ϕ ∧ ψ]T ,

[ϕ]T ∨ [ψ]T = [ϕ ∨ ψ]T .

Show that these operations are well-defined: namely, if a ∈ A , then ¬a does
not depend on the particular choice of ϕ such that a = [ϕ]T , etc.

(iv) Show that with these operations AT is a Boolean algebra (what should 0 and
1 be?) It is called the Lindenbaum (or Lindenbaum-Tarski) algebra of T .

1.2.2. Compactness.

Definition 1.2.15 (Satisfiability).
We say that a set of formulae Γ is satisfiable if it has a model. A formula ϕ is satisfiable
if {ϕ} is.
We say that Γ is finitely satisfiable if every finite subset Γ0 ⊆ Γ is satisfiable.

Fact 1.2.16. Assume that the set of propositional variables is countable, i.e., it is
finite, or we can enumerate it (without repetitions) as S0 = {P0, P1, P2, . . . , Pn, . . . : n ∈
N}.

Then the set of all formulae is countable.

Proof. Define an order on the symbols: first come (,),¬,∧,∨,→ in this order, then
P0, P1, For every n, list, in lexicographic order, all formulae of length ≤ n in which
only P0, . . . , Pn−1 may appear. Each such list is finite, and every formula appears on
some list. Concatenate these lists, omitting all but the first occurrence of each formula,
to obtain an enumeration S = {ϕn : n ∈ N} as required. qed1.2.16

14 1. PROPOSITIONAL LOGIC

Lemma 1.2.17. Let Γ be a finitely satisfiable set of formulae and ϕ a formula. Then
at least one of Γ ∪ {ϕ} or Γ ∪ {¬ϕ} is finitely satisfiable.

Proof. Assume for a contradiction that neither is. Then there are finite subsets
Γ0,Γ1 ⊆ Γ such that neither Γ0∪{ϕ} nor Γ1∪{¬ϕ} are satisfiable. But Γ0∪Γ1 is a finite
subset of Γ, and therefore satisfiable. Let v be a model of Γ0 ∪ Γ1. Then either v � ϕ or
v � ¬ϕ, so it is a model of Γ0 ∪ {ϕ} or of Γ1 ∪ {¬ϕ}, a contradiction. qed1.2.17

Lemma 1.2.18. Let Γ be a finitely satisfiable set of formulae. Then there exists a
finitely satisfiable set of formulae ∆ ⊇ Γ such that in addition, for all ϕ ∈ S either
ϕ ∈ ∆ or ¬ϕ ∈ ∆.

Proof. We will assume that S0 is countable: if not, we need tools from set theory
we do not yet have (Zorn’s Lemma). We can therefore enumerate S = {ϕn : n ∈ N}. We
define a sequence (∆n : n ∈ N) by induction:

• ∆0 = Γ.
• If ∆n ∪ {ϕn} is finitely satisfiable then ∆n+1 = ∆n ∪ {ϕn}. Otherwise ∆n+1 =

∆n ∪ {¬ϕn}.
We claim first that ∆n is finitely satisfiable for all n. This is proved by induction on

n: For n = 0 this is given. The passage from ∆n to ∆n+1 is by the previous Lemma.
Note that by construction Γ = ∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆n ⊆ . . ., and define ∆ =

⋃
n ∆n.

We claim that ∆ is finitely satisfiable. Indeed, if Γ0 ⊆ ∆ is finite, then there is some
n ∈ N such that Γ0 ⊆ ∆n, and then Γ0 is satisfiable since ∆n is finitely satisfiable.

Therefore ∆ is as required. qed1.2.18

Theorem 1.2.19 (Compactness Theorem for Propositional Logic). (i) A set
of formulae Γ is satisfiable if and only if it is finitely satisfiable.

(ii) Let Γ be a set of formulae and ϕ a formula. Then Γ � ϕ if and only if there is
a finite subset Γ0 ⊆ Γ such that Γ0 � ϕ.

Proof. I will only prove the first item. The equivalence of the two items is left as
an exercise.

Assume Γ is finitely satisfiable. By Lemma 1.2.18 there is ∆ ⊇ Γ which is finitely
satisfiable and in addition for all ϕ either ϕ ∈ ∆ or ¬ϕ ∈ ∆. Define a truth assignment
v by:

v(P) =

{
T if P ∈ ∆

F if ¬P ∈ ∆.

We claim that for all ϕ: v(ϕ) = T ⇐⇒ ϕ ∈ ∆. We prove this by induction on the
construction of ϕ. For ϕ atomic, this is by definition of v. Assume now that ϕ is
compound, say ϕ = ψ ∧ χ. If v(ϕ) = T , we must have v(ψ) = v(χ) = T , so by the
induction hypothesis ψ, χ ∈ ∆. Since {ψ, χ,¬ϕ} is not satisfiable and ∆ is finitely
satisfiable we cannot have ¬ϕ ∈ ∆, whereby ϕ ∈ ∆. Conversely, assume that ϕ ∈ ∆.
Then {¬ψ, ϕ} is not satisfiable, so ψ ∈ ∆, and similarly χ ∈ ∆. By the induction

1.2. SEMANTICS 15

hypothesis v(ψ) = v(χ) = T , whereby v(ϕ) = T . The other cases of compound formulae
are treated similarly.

In particular, v � ∆, and a fortiori v � Γ. qed1.2.19

Exercise 1.2.20. Show that the two statements in Theorem 1.2.19 are equivalent.

All rings considered here have units.

Exercise 1.2.21. Let R be a commutative ring. An ideal I CR is proper if it is not
equal to R, or equivalently, if 1 /∈ I. An ideal I C R is prime if it is proper and for all
a, b ∈ R, if ab ∈ I then at least one of a, b belongs to I. We denote by (a, b, . . .) the ideal
generated in R by {a, b, . . .}.

(i) Show that if I is a proper ideal and ab ∈ I then at least one of I + (a) and
I + (b) is proper.

(ii) Use compactness of Propositional Logic to show that if I CR is proper then it
is contained in a prime ideal.

Note: If R is uncountable you may need to use the Compactness Theorem for uncountably
many propositional variables. Even though we only gave a direct proof for countably
many propositional variables, the general case is a corollary of the Completeness Theorem
proved in the next section (and a direct proof of the general case of the Compactness
Theorem can also be deduced from that proof).

Exercise 1.2.22 (Boolean rings). A Boolean ring is a ring R all of whose elements
are idempotent: a2 = a for all a ∈ R.

(i) Let R be a Boolean ring. Show that R is commutative or characteristic 2 (i.e.,
a+ a = 0 for all a ∈ R). Define operations on R as follows:

¬a = 1 + a,

a ∧ b = ab,

a ∨ b = a+ b+ ab.

Prove that (R, 0, 1,¬,∨,∧) is a Boolean algebra.
(ii) Let (A , 0, 1,¬,∨,∧) be a Boolean algebra. Define:

ab = a ∧ b,
a+ b = (a ∧ ¬b) ∨ (b ∧ ¬a),

−a = a.

Show that (A , 0, 1,−,+, ·) is a Boolean ring.
(iii) Show that these operations are one the inverse of the other.

Exercise 1.2.23. Let A be a Boolean algebra. Show that the relation a ≤ b ⇐⇒
a ∧ b = a is a partial ordering. Show that 0 is the least element, 1 is the greatest, ∨ and
∧ preserve the order (in both arguments) and ¬ inverses it.

16 1. PROPOSITIONAL LOGIC

Exercise 1.2.24 (Filters). Let A be a Boolean algebra. A filter is a subset F ⊆ A
satisfying:

(i) F 6= ∅.
(ii) If a, b ∈ F then a ∧ b ∈ F .
(iii) If a ∈ F and b ≥ a then b ∈ F .

It is proper if 0 /∈ F . It is an ultrafilter if it is proper, and in addition:

(iv) For all a ∈ A either a ∈ F or ¬a ∈ F .

Show that:

(i) Let F ⊆ A and IF = {¬a : a ∈ F}. Then F is a filter if and only if IF is an
ideal of the corresponding Boolean ring.

(ii) Show that F is an ultrafilter if and only if IF is a prime ideal, if and only if it
is a maximal (proper) ideal.

(iii) Show that if F is a proper filter on a Boolean algebra A then it extends to an
ultrafilter U on A .

Exercise 1.2.25 (Stone duality). Let A be a Boolean algebra. Let S(A) be the set
of all ultrafilters on A . For a ∈ A , let [a] = {x ∈ S(A) : a ∈ x}.

The space S(A) is called the Stone space of A , and we equip it with the Stone
topology :

(i) Show that the family of sets {[a] : a ∈ A } is a basis for a topology on S(A).
(ii) Show that the topology from the previous item is compact and totally discon-

nected (i.e., the only connected subsets of S(A) are single points; and no, the
empty space is not connected).

(iii) Show that A is naturally isomorphic to the Boolean algebra of clopen subsets
of S(A).

(iv) Conversely, show that if S is a totally disconnected compact space and A is
the Boolean algebra of clopen subsets of S, then S ≈ S(A).

The last two items say that we can go back and forth between Boolean algebras and totally
disconnected compact topological spaces without losing any essential information. This
is usually referred to as the Stone duality. It is frequently use in Mathematical Logic
(e.g., in Model Theory).

1.3. Syntactic deduction

The notion of logical consequence introduced earlier is a form of semantic deduction.
Consider for example an extremely simple instance of logical consequence, such as:

ϕ � ψ → ϕ.

In order to verify that ψ → ϕ is indeed a logical consequence of ϕ we need to understand
semantic notions such as truth assignments and truth tables, and then go through the
process of checking all possible truth assignments to the propositional variables appearing
in ϕ and ψ and verifying such for every such assignment, if ϕ is true, then so is ψ → ϕ.

1.3. SYNTACTIC DEDUCTION 17

This is bothersome: after all, just “by looking” on ϕ and ψ → ϕ we can see that the
latter is a consequence of the former, without needing any semantic notions. This is a
special case of syntactic deduction: with no more than simple syntactic manipulations
we will be able to deduce (or “prove”) formulae from other formulae. Indeed, in real-life
Mathematics, a proof is merely a sequence of assertions (alas, in an informal natural
language such as English, Hebrew or French) such that each statement seems to follow
from the previous ones (and sometimes, unfortunately, not even that).

Here we will define formal proofs, or deductions, which will follow very strict rules that
ensure that no mistake is possible. Throughout this course we will consider more than
one logic, and therefore more than one deduction systems. Still, all the deduction systems
we will consider have similar structure. For our purposes (more general definitions can
be given):

Definition 1.3.1. A deduction system D consists of:

(i) A family of formulae which we call the logical axioms.
(ii) A single inference rule saying that from ϕ and ϕ → ψ we may infer ψ. This

inference rule is called Modus Ponens.

Thus for our purposes a deduction system is given by its set of logical axioms.

Definition 1.3.2 (Formal deduction). Let D be a deduction system (i.e., a set of
logical axioms), and Γ a set of formulae. A D-deduction sequence from Γ is a finite
sequence of formulae (ϕi : i < n) such that for each i < n at least one of the following
holds:

(i) ϕi is a logical axiom of D .
(ii) ϕi ∈ Γ (we then say that ϕi is a premise).
(iii) There are j, k < i such that ϕk = ϕj → ϕi. In other words, ϕi can be inferred via

Modus Ponens from the formulae ϕj and ϕk appearing earlier in the sequence.

We say that a formula ϕ can be deduced (or inferred, or proved) from Γ in D , in
symbols Γ `D ϕ, if there exists a D-deduction sequence from Γ ending with ϕ.

We said that a formal deduction allows no mistake. Of course, this depends on the
deduction system: false logical axioms could clearly lead to fallacious deductions. We
will therefore restrict our consideration to sound deduction systems:

Definition 1.3.3. A deduction system D is sound if for every set of formulae Γ and
formula ϕ, if Γ `D ϕ then Γ � ϕ.

Lemma 1.3.4. A deduction system is sound if and only if all its logical axioms are
valid.

Proof. Clearly, if ϕ is a logical axiom of D and D is sound then `D ϕ whereby � ϕ,
i.e., ϕ is valid. Conversely, assume all the logical axioms of D are valid, and that Γ `D ϕ.
Let (ϕi : i < n) be the deduction sequence witnessing this. We will show by induction on
i < n that Γ � ϕi. For each i there are three cases to be considered:

18 1. PROPOSITIONAL LOGIC

(i) If ϕi is a logical axioms then it is valid, and in particular Γ � ϕi.
(ii) If ϕi ∈ Γ then Γ � ϕi.
(iii) The last case is that there are j, k < i such that ϕk = ϕj → ϕi. By the induction

hypothesis Γ � ϕj and Γ � ϕj → ϕi. Thus every models of Γ models ϕj and
ϕj → ϕi, and therefore ϕi. In other words, Γ � ϕi.

We conclude that Γ � ϕn−1, i.e., Γ � ϕ. qed1.3.4

The converse property is more interesting, and less easy to characterise:

Definition 1.3.5. A deduction system D is complete if it is sound, and for every set
of formulae Γ and formula ϕ, if Γ � ϕ then Γ `D ϕ.

Our task here will be to produce a complete proof system for Propositional Logic.
To simplify notation we will restrict now the connectives to ¬ and →. We thus redefine,
until further notice, S = S{¬,→}, and by a formula we mean ϕ ∈ S{¬,→}. Since the system
of connectives {¬,→} is full (see Exercise 1.2.11), there is no semantic loss, and we gain
in syntactic simplicity.

Our deduction system will consist of the following logical axiom schemes:

ϕ→ (ψ → ϕ),(A1)

((ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))),(A2)

((¬ϕ→ ψ) → ((¬ϕ→ ¬ψ) → ϕ)).(A3)

These being schemes means that we have such logical axioms for every possible choice
of formulae ϕ, ψ and χ.

We will prove:

Completeness Theorem for Propositional Logic. The deduction system
consisting of the logical axiom schemes above is sound and complete.

Soundness will be left as an easy exercise, while completeness will occupy the rest
of this section. Since we work with a fixed deduction system we will omit it: we will
therefore speak of deduction sequences, write Γ ` ϕ, etc.

Let us start with a few warm-up exercises:

Lemma 1.3.6. (i) The concatenation of deduction sequences is a deduction se-
quence.

(ii) Assume ϕ0, . . . , ϕn−1 is a deduction sequence and i < n. Then ϕ0, . . . , ϕn−1, ϕi
is also a deduction sequence.

(iii) Assume Γ ` ϕi for i < n and {ϕ0, . . . , ϕn−1} ` ψ. Then Γ ` ψ.
(iv) If Γ ⊆ Γ′ and Γ ` ϕ then Γ′ ` ϕ.
(v) Assume Γ ` ϕ. Then there is a finite subset Γ0 ⊆ Γ (namely, the set of premises

used in a deduction of ϕ from Γ) such that Γ0 ` ϕ.

Lemma 1.3.7. For every formulae ϕ, ψ:

1.3. SYNTACTIC DEDUCTION 19

(i) ` (ϕ→ ϕ)
(ii) ϕ ` (ψ → ϕ)
(iii) ¬¬ϕ ` ϕ

Proof. (i) The following is a deduction sequence from the empty set:
1. (ϕ→ (ϕ→ ϕ)) A1 with ψ = ϕ.
2. (ϕ→ ((ϕ→ ϕ) → ϕ)) A1 with ψ = (ϕ→ ϕ).
3. ((ϕ→ ((ϕ→ ϕ) → ϕ)) → ((ϕ→ (ϕ→ ϕ)) → (ϕ→ ϕ)))

A2 with χ = ϕ, ψ = (ϕ→ ϕ).
4. ((ϕ→ (ϕ→ ϕ)) → (ϕ→ ϕ)) MP from 2 and 3.
5. (ϕ→ ϕ) MP from 1 and 4.

(ii) The following is a deduction sequence from ϕ:
1. ϕ premise.
2. (ϕ→ (ψ → ϕ)) A1.
3. (ψ → ϕ) MP 1,2.

(iii) There is a deduction sequence from ¬¬ϕ containing:
1. (¬ϕ→ ¬ϕ) previous result.
2. (¬ϕ→ ¬¬ϕ) provable from ¬¬ϕ.
3. ((¬ϕ→ ¬ϕ) → ((¬ϕ→ ¬¬ϕ) → ϕ)) A3.
4. ((¬ϕ→ ¬¬ϕ) → ϕ) MP 1,3.
5. ϕ MP 2,4. qed1.3.7

Proposition 1.3.8 (The Deduction Theorem). For every set of formulae Γ and
formulae ϕ, ψ: Γ, ϕ ` ψ ⇐⇒ Γ ` ϕ→ ψ.

Proof. Right to left is clear: first deduce ϕ→ ψ then apply MP to obtain ψ.
Let us prove left to right. We assume that Γ, ϕ ` ψ, so there is a deduction sequence

ϕ0, . . . , ϕn−1 from Γ, ϕ and ψ = ϕn−1. We will prove by induction on i < n that Γ `
ϕ → ϕi. At each step we consider several cases, according to the manner in which ϕi
was added to the original sequence:

(i) If ϕi is either an axiom or a premise of Γ then Γ ` ψi, and as ψi ` ϕ → ψi we
conclude that Γ ` ϕ→ ψi.

(ii) If ϕi = ϕ, we know that ` ϕ→ ϕ whereby Γ ` ϕ→ ϕ.
(iii) The last case is that ϕi is obtained by Modus Ponens. Then there are j, k < i

such that ϕk = ϕj → ϕi. Then by the induction hypothesis we have Γ ` ϕ→ ϕj
and Γ ` ϕ→ (ϕj → ϕi). We use the following instance of A2:

(ϕ→ (ϕj → ϕi)) → ((ϕ→ ϕj) → (ϕ→ ϕi)).

Put together and applying MP twice we obtain Γ ` ϕ→ ϕj.

Since ψ = ϕn−1, we obtain a deduction of ϕ→ ψ from Γ. qed1.3.8

Definition 1.3.9. A set of formulae Γ is consistent if there exists a formula ϕ such
that Γ 0 ϕ. Otherwise it is contradictory.

20 1. PROPOSITIONAL LOGIC

Lemma 1.3.10. For every formulae ϕ, ψ:

(i) ϕ,¬ϕ ` ψ (i.e., {ϕ,¬ϕ} is contradictory).
(ii) ¬ϕ ` (ϕ→ ψ).

Proof. (i) We can prove from ϕ,¬ϕ:
1. (¬ψ → ϕ) provable from ϕ.
2. (¬ψ → ¬ϕ) provable from ¬ϕ.
3. ((¬ψ → ϕ) → ((¬ψ → ¬ϕ) → ψ)) A3.
4. ψ MP (twice) 1,2,3.

(ii) By the Deduction Theorem.
qed1.3.10

Lemma 1.3.11. If Γ is contradictory then there is a finite subset Γ0 ⊆ Γ which is.

Proof. Let ϕ be a formula. Then Γ ` ϕ and Γ ` ¬ϕ. Therefore there are finite
subsets Γ1,Γ2 ⊆ Γ such that Γ1 ` ϕ and Γ2 ` ¬ϕ. Then Γ0 = Γ1 ∪ Γ2 is contradictory.

qed1.3.11

Lemma 1.3.12. (i) Assume that Γ,¬ϕ is contradictory. Then Γ ` ϕ.
(ii) Assume that Γ is consistent. Then at least on of Γ ∪ {ϕ} or Γ ∪ {¬ϕ} is

consistent.

Proof. (i) Assuming that Γ,¬ϕ is contradictory we have Γ,¬ϕ ` ϕ, and we
can deduce from Γ:
1. (¬ϕ→ ϕ) By the Deduction Theorem.
2. (¬ϕ→ ¬ϕ) By a previous result.
3. ((¬ϕ→ ϕ) → ((¬ϕ→ ¬ϕ) → ϕ)) A3.
4. ϕ MP 1,2,3.

(ii) If Γ,¬ϕ is consistent, fine. If it is contradictory then Γ ` ϕ, and as Γ is assumed
to be consistent, so is Γ ∪ {ϕ}.

qed1.3.12

Definition 1.3.13. Let (X,≤) be a partially ordered set.

(i) A subset C ⊆ X is a chain if for all a, b ∈ C either a ≤ b or b ≤ a.
(ii) We say that (X,≤) is inductive if it is non-empty, and every chain in X is

bounded from above, i.e., if for every chain C ⊆ X there is a ∈ X such that for
all b ∈ C: b ≤ a.

(iii) A maximal member of (X,≤) is a member a ∈ X such that for all b ∈ X, if
b ≥ a then b = a (i.e., no b ∈ X may be strictly greater than a, but they may
be incomparable).

Fact 1.3.14 (Zorn’s Lemma). Let (X,≤) be an inductive partially ordered set. Then
X contains a maximal element.

Lemma 1.3.15. Let Γ be a consistent set of formulae. Then:

1.3. SYNTACTIC DEDUCTION 21

(i) The following set is inductive when ordered by inclusion:

X = {Γ′ : Γ ⊆ Γ′ ⊆ S and Γ′ is consistent}.
It therefore contains a maximal member.

(ii) Let ∆ be a maximal consistent set of formulae containing Γ. Then for every ϕ
either ϕ ∈ ∆ or ¬ϕ ∈ ∆, and ϕ ∈ ∆ if and only if ∆ ` ϕ.

Proof. We only prove the first item, the second being quite easy. Since Γ ∈ X it is
non-empty. Let C ⊆ X be a (non-empty) chain, and let Γ′ =

⋃
C. Clearly Γ′′ ⊆ Γ′ for

all Γ′′ ∈ C, so all we need to show is that Γ′ ∈ X. First, Γ ⊆ Γ′. Second, assume that Γ′

is contradictory. Then there is a finite subset Γ′0 ⊆ Γ′ which is contradictory. But since
Γ′0 is finite and Γ′ is the union of the chain C, there is Γ′′ ∈ C such that Γ′0 ⊆ Γ′′, so Γ′0
cannot be contradictory. This contradiction shows that Γ′ is consistent, and therefore
belongs to X. qed1.3.15

Theorem 1.3.16 (Completeness Theorem for Propositional Logic). Let Γ be a set of
formulae and ϕ a formula (in which the only connectives are ¬ and →).

(i) The set Γ is satisfiable if and only if it is consistent (in the deduction system
given above).

(ii) Γ � ϕ⇐⇒ Γ ` ϕ.

Proof. We only prove the first item. The equivalence of the two items is left as an
exercise.

If Γ is satisfiable then it is consistent by soundness (for example Γ 0 ¬(P → P)).
Conversely, assume that Γ is consistent, and we need to show it is satisfiable. By

Lemma 1.3.15, there exists a maximal consistent set of formulae ∆ ⊇ Γ. For every
formula ϕ we have ϕ ∈ ∆ or ¬ϕ ∈ ∆, and ϕ ∈ ∆ ⇐⇒ ∆ ` ϕ.

Define a truth assignment v by:

v(P) =

{
T if P ∈ ∆

F if P /∈ ∆.

We claim that for all ϕ: v � ϕ⇐⇒ ϕ ∈ ∆. We prove this by induction on the construction
of ϕ. There are three cases to be considered:

(i) For ϕ atomic, this is by definition of v.
(ii) If ϕ = ¬ψ, we have by the induction hypothesis:

v � ϕ⇐⇒ v 6� ψ ⇐⇒ ψ /∈ ∆ ⇐⇒ ϕ = ¬ψ ∈ ∆.

(iii) Finally, assume that ϕ = ψ → χ. If v � ψ → χ then either v � χ or v � ¬ψ (or
both). By the induction hypothesis, either χ ∈ ∆ or ¬ψ ∈ ∆. In either case,
∆ ` ψ → χ, whereby ψ → χ ∈ ∆.

If v 6� ψ → χ then necessarily v � ψ and v � ¬χ. By the induction
hypothesis ψ,¬χ ∈ ∆, and since {ψ,¬χ, ψ → χ} is contradictory: ψ → χ /∈ ∆.

In particular, v � ∆, and a fortiori v � Γ. qed1.3.16

22 1. PROPOSITIONAL LOGIC

Remark 1.3.17. The Compactness Theorem is also a consequence of the Complete-
ness Theorem: if Γ is finitely satisfiable then it is consistent by soundness (and the fact
that deductions are finite) and therefore satisfiable by completeness.

Exercises.

Exercise 1.3.18. By the Completeness Theorem we have ϕ ` ¬¬ϕ for all ϕ. Show
this directly (i.e., give a deduction sequence).

Exercise 1.3.19. Show that the two items of Theorem 1.3.16 are equivalent.

CHAPTER 2

First order Predicate Logic

Consider the following reasoning:

Socrates is a dog.
Every dog likes the circus.
Therefore, Socrates likes the circus.

This is a valid logical argument, given in a natural language. However, we cannot trans-
late this to propositional logic, since it lacks the ability to express that some property
holds for a individual, or to say something like “for every individual”. We could partially
formalise the reasoning above as follows:

Dog(Socrates).
For all x (Dog(x) → LikesTheCircus(x)).
Therefore LikesTheCircus(Socrates).

Here Dog() and LikesTheCircus() are what we call predicates, and saying “for all” is
a quantifier. The symbol x is a variable which varies over a space of possible individuals.

Let us look at another example:

The sum of every two positive numbers is positive.
a and b are positive.
Therefore a+ b is positive.

To formalise this example we also need a notion of functions (addition, in this case).
These are the essential ingredients of predicate logic. We will only study first order

predicate logic, meaning we only quantify over individuals (and not, say, over sets of
individuals).

2.1. Syntax

In order to define first order formulae we need to fix a vocabulary:

Definition 2.1.1. A signature (sometimes called language) is a triplet L =
{R,F , ν}, where R∩ F = ∅ and ν : R∪ F → N.

We call the members of R predicate symbols or relation symbols and the members of
F function symbols. For R ∈ R (or f ∈ F), ν(R) (or ν(f)) is the number of arguments
the symbol takes, also called its arity. (So we have unary, binary, ternary, and in general
n-ary symbols.)

23

24 2. FIRST ORDER PREDICATE LOGIC

Unless said otherwise, every signature contains a distinguished binary relation symbol
for equality, denoted =.

A constant symbol is just another name for a 0-ary function symbol.

Informally, we will usually identify L with R∪F : so a signature is simply a collection
of symbols, and we assume it is known for each symbol whether it is a predicate symbol
of a function symbol, and what its arity is.

We also fix a set of variables. This will usually be a countable set denoted V . Variables
will be denoted by x, y, z, etc.

Syntactic objects will be finite sequences of symbols in an alphabet consisting of:

• Logical symbols: parentheses, connectives, the two quantifiers ∀, ∃ and the
variables. Sometimes the equality relation symbol is also considered a logical
symbol.

• Non-logical symbols (depending on the signature L): all relation and function
symbols (except for equality).

Fix a signature L. We first define L-terms by induction:

Definition 2.1.2. We define L-terms recursively:

(i) A variable x is a term.
(ii) If t0, . . . , tn−1 are terms, and f is an n-ary function symbol then ft0 . . . tn−1 is

a term.

Note that this means that a constant symbol c is a term.

The set of all L-terms will be denoted by TL.
Now we define L-formulae:

Definition 2.1.3. (i) If t0, . . . , tn−1 are terms, and R is an n-ary predicate
symbol, then Rt0 . . . tn−1 is an atomic formula.

(ii) If ϕ and ψ are formulae, then so are (¬ϕ), (ϕ→ ψ), (ϕ ∧ ψ) and (ϕ ∨ ψ).
(iii) If ϕ is a formula and x a variable then (∀xϕ) and (∃xϕ) are formulae. The

symbols ∀ and ∃ are called the universal and existential quantifiers, respectively.
The set of all L-formulae is denoted by Lω,ω.

What we defined above is the formal notation, for which we prove unique reading
etc. Note that it uses Polish (i.e., prefix) notation for function and predicate symbols.
In real life it may be convenient to divert somewhat from formal notation, as long as no
ambiguities arise:

• We may add parentheses, and write f(t0, t1, . . .) instead of fx0x1
• If f is a binary function symbol we may write (t1 f t2) rather than ft1t2, and

similarly for relation symbols (so we write (t0 + t1), (t0 = t1), etc.)
• If R is a binary relation symbol, we may further write (t0 6R t1) as shorthand

for ¬Rt0t1.

2.2. SEMANTICS 25

Example 2.1.4. The signature (or language) of rings is Lring = {0, 1,−,+, ·}, where
0 and 1 are constant symbols, − is a unary function symbol, and + and · are binary
function symbols.

In this language x + y and (x · x) · (−y) are terms, and x · x = y, ∃y y · y = −1 are
formulae.

An occurrence of a variable in a formula can be either a part of a quantifier (∀x or ∃x)
or a part of a term. An occurrence of the second kind is either bound to a corresponding
quantifier, or else it is free.

Definition 2.1.5. • If ϕ is an atomic formula, all occurrences of variables in
ϕ are free.

• If ϕ = ψ → χ then all bound variable occurrences in either ψ or χ are bound
in ϕ to the same quantifier, and all free occurrences in ψ or χ are free in ϕ.
Similarly with other connectives.

• If ϕ = ∀xψ (or ∃xψ) then all bound variables in ψ are also bound in ϕ to the
same quantifier. All free occurrences of x in ψ are bound in ϕ to the outermost
quantifier. All free occurrences of other variables in ψ are free in ϕ.

A variable x is free in ϕ if it has a free occurrence in ϕ; it is bound in ϕ if a quantifier
∀x or ∃x appears in ϕ. The sets of free and bound variables of ϕ are denoted by fvar(ϕ)
and bvar(ϕ), respectively.

A formula without free variables is called a sentence.

Note that while an occurrence of a variable in ϕ is either free, bound, or part or a
quantifier, a variable may be both free and bound, or neither.

If t is a term we may use fvar(t) to denote the set of all the variables occurring in t
(which are by convention all free).

A finite tuple of variables x0, . . . , xn−1 may be denoted by x̄, or more explicitly by
x<n.

Notation 2.1.6. Let x̄ = x0, . . . , xn−1 be a tuple of distinct variables. When we write
a formula ϕ as ϕ(x̄), this means that all the free variables of ϕ are among x0, . . . , xn−1.

Similar notation holds for terms.

Thus “let ϕ(x̄) ∈ Lω,ω” is a short way of saying “let ϕ be a formula all of whose free
variables belong to the tuple x̄”.

If we write a formula as ϕ(x0, . . . , xn−1), it may happen that some of the xi are not
free in ϕ, in which case they are called dummy variables.

2.2. Semantics

In the same manner that a truth assignment was an interpretation of a propositional
vocabulary, we would like to define interpretations of signatures in predicate logic. Such
an interpretation will consist of two parts: First, we need to interpret the quantifiers,

26 2. FIRST ORDER PREDICATE LOGIC

i.e., say what is the universe of possible “individuals”. Then we need to interpret each
predicate (function) symbol as an actual predicate (function) on this universe.

Fix a signature L.

Definition 2.2.1. An L-structure M consists of:

(i) A non-empty set M called its domain.
(ii) For every n-ary predicate symbol R ∈ L, an n-ary relation RM ⊆ Mn. (We

understand RM as the set of n-tuples in M which satisfy the predicate R.)
The predicate symbol = is always interpreted as equality in M , so =M is

always the diagonal {(a, a) : a ∈M}.
(iii) For every n-ary predicate symbol f ∈ L, an n-ary function fM : Mn →M .

We will usually use uppercase Gothic letters M, N, etc., to denote structures, and
the corresponding Roman letters M , N , etc., to denote their domains.

Also, having enumerated a signature as L = {R0, R1, . . . , f0, f1, . . .}, it is common to
write L-structures explicitly as M = 〈M,RM

0 , R
M
1 , . . . , f

M
0 , fM

1 , . . .〉.

Example 2.2.2. Here are a few common mathematical structures, written as struc-
tures in the sense of predicate logic.

(i) The field of real numbers: 〈R, 0, 1,−,+, ·〉 give as an Lring-structure.
(ii) The ordererd field of real numbers: 〈R, 0, 1,−,+, ·,≤〉. This is an Loring-

structure, where Loring = Lring ∪ {≤}.
(iii) The natural numbers: 〈N, 0, s,+, ·〉: here s the unary successor function. This

structure will be of great interest to us later on in the course.
(iv) A module space over a fixed ring R: 〈M, 0,−,+,ma : a ∈ R〉. Here ma is the

unary function of scalar multiplication by a. Notice that the ring is part of the
language.

Definition 2.2.3. Let M be an L-structure, and let V denote the set of variables. An
assignment to the variables in M, or simply an M-assignment, is a mapping σ : V →M .

Definition 2.2.4. If σ is an M-assignment, x is a variable and and a ∈M , we define
an M-assignment σax by:

σax(y) =

{
a if y = x

s(y) if y 6= x.

We first interpret terms:

Definition 2.2.5. Let M be a structure and σ and M-assignment. We define for
every term t its value in M under the assignment σ (or simply in M,σ), denoted tM,σ,
by induction on t:

(i) If t = x is a variable, then xM,σ = σ(x).

(ii) Otherwise, t = ft0 . . . tn−1, and we define tM,σ = fM(tM,σ
0 , . . . , tM,σ

n−1).

2.2. SEMANTICS 27

We now give truth values to formulae:

Definition 2.2.6. Let M be a structure. For a formula ϕ and an M assignment
σ we define whether or not ϕ is true in M under σ, denoted M �σ ϕ. We do this by
induction on ϕ, simultaneously for all M-assignments σ:

(i) If ϕ = Pt0 . . . tn−1 is atomic:

M �σ ϕ⇐⇒ (tM,σ
0 , . . . , tM,σ

m−1) ∈ PM.

(ii) If ϕ is constructed from simpler formulas using connectives, we follow their
truth tables as in propositional logic.

(iii) If ϕ = ∀xψ or ϕ = ∃xψ:

M �σ ∀xψ ⇐⇒ for every a ∈M : M �σax ψ

M �σ ∃xψ ⇐⇒ there exists a ∈M such that: M �σax ψ.

If Γ is a set of formulae, we say that M �σ Γ if M �σ ϕ for all ϕ ∈ Γ.

Once we have defined satisfaction of single formulae we may define:

Definition 2.2.7 (Models). (i) Let Γ be a set of formulae, M a structure and
σ an M-assignment. Then M �σ Γ if M �σ ϕ for all ϕ ∈ Γ.

(ii) A model of a formula ϕ (or set of formulae Γ) is a pair M, σ such that M �σ ϕ
(or M �σ Γ). We also say that the pair M, σ models ϕ (or Γ).

We may now define logical consequence as in Propositional Logic:

Definition 2.2.8 (Logical consequence and equivalence). Let ϕ be a formula, Γ a
set of formulae. We say that ϕ is a logical consequence of Γ, or that Γ logically implies
ϕ, in symbols Γ � ϕ, if every model of Γ is a model of ϕ.

If ϕ and ψ are two formulae such that ϕ � ψ and ψ � ϕ we say that ϕ and ψ are
logically equivalent, denoted ϕ ≡ ψ.

Thus, for example, the formula z = x+ y is a logical consequence of the two formulae
z = y + x and ∀t∀w (t+ w = w + t).

Definition 2.2.9. A formula ϕ is valid if it is true in every structure and under every
assignment, i.e., if � ϕ.

Of course, a formula or term only depend on the values assigned to their free variables:

Lemma 2.2.10. Let M be a structure and σ, σ′ two M-assignments.

(i) For every term t, if σ�fvar(t) = σ′�fvar(t) then

tM,σ = tM,σ′ .

(ii) For every formula ϕ, if σ�fvar(ϕ) = σ′�fvar(ϕ) then

M �σ ϕ⇐⇒ M �σ′ ϕ.

28 2. FIRST ORDER PREDICATE LOGIC

We may therefore introduce a new notation:

Notation 2.2.11. Let M be a structure, ā ∈Mn. Let t(x<n) and ϕ(x<n) be a term
and a formula, respectively. Let σ : V → M be an M-assignment satisfying σ(xi) = ai
for all i < n. Then we write tM(ā) instead of tM,σ, and M � ϕ(ā) instead of M �σ ϕ.

By the previous Lemma, this does not depend on the choice of σ.

In particular, if ϕ is a sentence, then either M � ϕ or not (no free variables that require
an assignment). We may therefore speak of structures as being models of sentences, or
of sets of sentences, without mentioning assignments.

Example 2.2.12. Let L = {0, 1,−,+, ·}, and consider R and Z as L-structures with
the natural interpretation of the symbols. Let t(x, y) = x + y2 + 1 (y2 is just shorthand
for y · y). Then tR(3, 5) = txZ(3, 5) = 29. Similarly, let ϕ(x) = ∃y (y2 = x). Then
R � ϕ(5) ∧ ¬ϕ(−1) and Z � ϕ(4) ∧ ¬ϕ(5).

2.3. Substitutions

Let us again look at the example of the formula ϕ(x) = ∃y (y2 = x), saying “x is
a square”. We can obtain a formula saying “z + w is a square” from ϕ through free
substitution (we substitute the term z + w for the free variable x).

This is done in two stages. We first define substitutions in terms.

Definition 2.3.1. Let t be a term and x a variable. We define the substitution of t
for x inside another term t′, denoted t′[t/x], by induction on t′:

(i) y[t/x] =

{
t y = x

y y 6= x.

(ii) (ft0 . . . tn−1)[t/x] = ft0[t/x] . . . tn−1[t/x].

The term substitution is a pure syntactic operation. Its semantic value is given by
the following Lemma:

Lemma 2.3.2. Let M be a structure and σ an M-assignment. Let t, t′ be terms, x a
variable, and a = tM,σ ∈M . Then:

(t′[t/x])M,σ = t′
M,σax .

Proof. By induction on t′. qed2.3.2

We can now define free substitution, i.e., substitution to free occurrences of a variable.
If we are not careful, the result of a free substitution might not be what we expect; to
avoid this we also need to make sure a free substitution is correct.

Definition 2.3.3. Let t be a term and x a variable. We define the free substitution
of t for x inside a formula ϕ, denoted ϕ[t/x], by induction on ϕ. At the same time we
also say whether the substitution is correct :

2.3. SUBSTITUTIONS 29

(i) Atomic formulae: (Pt0 . . . tn−1)[t/x] = Pt0[t/x] . . . tn−1[t/x]. The substitution
is always correct.

(ii) Connectives: (¬ψ)[t/x] = ¬ψ[t/x], (ψ → χ)[t/x] = ψ[t/x] → χ[t/x], etc. The
substitution is correct if the substitutions to the components are.

(iii) Quantifier, case I:

(Qxψ)[t/x] = Qxψ Q ∈ {∀,∃}.

The substitution is correct.
(iv) Quantifier, case II:

(Qy ψ)[t/x] = Qy (ψ[t/x]) Q ∈ {∀,∃}, y 6= x.

The substitution is correct if:
(a) The substitution ϕ[t/x] is correct; and
(b) The variable y does not appear in t.

The semantic meaning of free substitution is given by:

Lemma 2.3.4. Let M be a structure and σ an M-assignment. Let t be a term, x a
variable, ϕ a formula, and a = tM,σ ∈M . Assume furthermore that the free substitution
ϕ[t/x] is correct. Then:

M �σ ϕ[t/x] ⇐⇒ M �σax ϕ.

Proof. By induction on ϕ. For ϕ atomic this follows from Lemma 2.3.4. If ϕ is
constructed from simpler formulae using connectives, this follows immediately from the
induction hypothesis.

If ϕ = ∀xψ then ϕ[t/x] = ϕ. Also, x /∈ fvar(ϕ) is not free in ϕ, so σ�fvarϕ = (σax)�fvar(ϕ).
Therefore:

M �σ ϕ[t/x] ⇐⇒ M �σ ϕ⇐⇒ M �σax ϕ.

Finally, assume that ϕ = ∀y ψ, y 6= x. By the correctness assumption, y does not
appear in t. Therefore, for every b ∈ M : tM,σ = tM,σby . Also, as y 6= x: (σax)

b
y = (σby)

a
x,

and by the induction hypothesis:

M �σ ∀y (ψ[t/x]) ⇐⇒ for all b ∈M : M �σby ψ[t/x]

⇐⇒ for all b ∈M : M �(σby)
a
x
ψ

⇐⇒ for all b ∈M : M �(σax)by
ψ

⇐⇒ M �σax ∀y ψ.

The quantifier ∃ is treated similarly. qed2.3.4

Example 2.3.5. Let ϕ(x) = ∃y (y2 = x).

(i) The free substitution ϕ[z + w/x] = ∃y (y2 = z + w) is correct, and says indeed
that z + w is a square.

30 2. FIRST ORDER PREDICATE LOGIC

(ii) On the other hand, the substitution ϕ[z + y/x] = ∃y (y2 = z + y) is incorrect,
and indeed it does not say that z + y is a square.

The problem in the second example is that ϕ contains quantification on y which
also appears in the term z + y. But ϕ is logically equivalent (why?) to the formula
ϕ′(x) = ∃w (w2 = x), and the substitution ϕ′[z + y] is correct. This is a special case of
bound substitution.

Definition 2.3.6. Let ϕ be a formula, and x, y variables. The bound substitution of
y for x in ϕ, denoted ϕ{y/x}, is defined as follows:

(i) Atomic formulae: ϕ{y/x} = ϕ, and the bound substitution is correct.
(ii) Connectives: (¬ϕ){y/x} = ¬ϕ{y/x}, (ϕ → ψ){y/x} = ϕ{y/x} → ψ{y/x},

etc. The substitution is correct if the substitutions to the components are.
(iii) Quantifier, case I:

(Qxϕ){y/x} = Qy (ϕ[y/x]) Q ∈ {∀,∃}.

The bound substitution is correct if:
(a) The variable y is not free in ϕ; and
(b) The free substitution ϕ[y/x] is correct.

(iv) Quantifier, case II:

(Qz ϕ){y/x} = Qz (ϕ{y/x}) Q ∈ {∀,∃}, z 6= x

The substitution is correct if ϕ{y/x} is.

In other words, we look for something of the form Qx (. . . x . . .) and replace it with
Qy (. . . y . . .).

Lemma 2.3.7. Assume that the bound substitution ϕ{y/x} is correct. Then ϕ ≡
ϕ{y/x}.

Proof. By induction on ϕ. In case ϕ is atomic then ϕ = ϕ{y/x} and there is
nothing to prove. If ϕ is obtained from simpler formulae using connectives, then the
results follows immediately from the induction hypothesis.

We are left with ϕ = Qz ψ, Q ∈ {∀,∃}.
(i) Assume z = x, i.e., ϕ = Qxψ. Assume Q = ∀. Then ϕ{y/x} = ∀y (ψ[y/x]), y

is not free in ψ, and the substitution ψ[y/x] is correct. Therefore:

M � ∀y (ψ[y/x]) ⇐⇒ for all a ∈M : M �σay ψ[y/x]

As yM,σay = a and ψ[y/x] is correct:

⇐⇒ for all a ∈M : M �(σay)ax ψ

2.3. SUBSTITUTIONS 31

As y is not free in ψ:

⇐⇒ for all a ∈M : M �σax ψ

⇐⇒ M �σ ∀xψ.

The case Q = ∃ is proved identically.
(ii) Assume z 6= x. Then ϕ{y/x} = Qz (ψ{y/x}), and by the induction hypothesis

ψ{y/x} ≡ ψ, whereby Qz ψ ≡ Qz (ψ{y/x}).
qed2.3.7

Finally, we observe that if we substitute a new variable then the substitution is correct
and reversible:

Lemma 2.3.8. Let x, y be two distinct variables. Let t and ϕ be a term and a formula,
respectively, in which y does not appear. Then:

(t[y/x])[x/y] = t,

(ϕ[y/x])[x/y] = ϕ,

(ϕ{y/x}){x/y} = ϕ,

and all the substitutions above are correct.

Proof. Exercise. qed2.3.8

Bound substitution allows us to rectify an incorrect free substitution:

Lemma 2.3.9. Let ϕ be a formula, and x0, . . . , xn−1 a finite sequence of variables.
Then by a finite sequence of correct bound substitutions we can transform into a formula
ϕ′ such that ϕ ≡ ϕ′ and there is no quantification on any of the xi in ϕ′.

Proof. Let ϕ0 = ϕ. Assume we have constructed ϕj. If ϕj contains ∀xi or ∃xi for
some i < n, choose a variable y which does not appear in ϕj or on the list x0, . . . , xn−1,
and let ϕj+1 = ϕj{y/xi}. Otherwise, stop and let ϕ′ = ϕj.

At each step the formula ϕj+1 contains fewer occurrences of ∀xi and ∃xi (i < n) than
ϕj, so the process must stop. Since at each stage we substituted a new variable, all the
substitutions were correct, and ϕj ≡ ϕj+1 for all j, whereby ϕ ≡ ϕ′. qed2.3.9

Notation 2.3.10. Let ϕ(x, ȳ) be a formula, t a term. If the substitution ϕ[t/x] is
correct, we define ϕ(t, ȳ) = ϕ[t/x].

If the substitution is incorrect we use the previous lemma to choose ϕ′ obtained from
ϕ by a series of bound substitutions, such that all the variables appearing in t are not
bound in ϕ′. Then we define ϕ(t, ȳ) = ϕ′[t/x], and the substitution is correct.

Note that the choice of ϕ′ is somewhat arbitrary. We have though:

32 2. FIRST ORDER PREDICATE LOGIC

Lemma 2.3.11. Let M be a structure and σ an M-assignment. Let t(z<n) be a term
and ϕ(x, y<m) a formula such that t and ϕ have no common variables, and let ψ(ȳ, z̄) =
ϕ(t, ȳ). Let b̄ ∈Mm, c̄ ∈Mn and a = tM(c̄) ∈M . Then:

M � ψ(b̄, c̄) ⇐⇒ M � ϕ(a, b̄).

Proof. This is just a special case of Lemma 2.3.4. qed2.3.11

Under the assumptions of Lemma 2.3.11 is will be legitimate to denote ψ(ȳ, z̄) by
ϕ(t(z̄), ȳ), and accordingly denote the property M � ψ(b̄, c̄) by M � ϕ(t(c̄), b̄).

If particular, if we go back to our example of ϕ(x) = ∃y (y2 = x), we have ϕ(z+w) =
∃y (y2 = z + w), but also ϕ(z + y) = ∃u (u2 = z + y) = ϕ{u/y}[z + y/x]. Both have the
intended meaning.

2.4. Syntactic deduction

We seek to understand notions such as logical implication. Direct verification of logical
implication (i.e., that Γ � ϕ) would consist of going over all possible truth assignments
(in Propositional Logic) or structures (in Predicate Logic), checking which are models
of Γ, and whether they are also models of ϕ. This can be done in a finite amount of
time in Propositional Logic when Γ is finite, since then we only need to consider truth
assignments to finitely many propositional variables (but not if it is infinite, although we
can wiggle our way out of this using the Compactness Theorem).

However, direct verification of logical implication in Predicate Logic is entirely un-
feasible, for several reasons. First, we would have to consider all possible L-structures,
and all possible assignments to such structures. Second, even within a single structure,
checking satisfaction of a formula of the form ∀xϕ may require an infinite amount of time
(as we need to test satisfaction of ϕ for every possible value for x). Testing satisfaction
for a formula of the form ∀x∃y ϕ would be even worse, and we can write formulae which
are far more complex.

On the other hand, a complete (and sound) deduction system for Predicate Logic
would allow us to reduce logical implication to formal deduction, and verifying whether a
sequence of formulae is a deduction sequence or not is a relatively easy (and finite) task.

In order to keep syntax as simple as possible, we will convene that:

Convention 2.4.1. In this section all formulae only contain the connectives ¬,→
and the quantifier ∀.

As we know how to find for every formula ϕ an equivalent formula ϕ′ which is in this
form, we do not lose any generality by this convention.

We will now introduce a deduction system as we did for Propositional Logic. In
particular, it will consist of a single inference rule, Modus Ponens. Its logical axioms will
be given by schemes, divided in several group. If ϕ is an instance of a scheme then ϕ, as
well as any formula of the form ∀x∀y . . . ϕ is a logical axiom. (In other words, if ϕ is a
logical axiom and x is a variable, then ∀xϕ is a logical axiom as well.)

2.4. SYNTACTIC DEDUCTION 33

The first group consists of the logical axioms of Propositional Logic. It only deals
with connectives:

ϕ→ (ψ → ϕ),(A1)

((ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))),(A2)

((¬ϕ→ ψ) → ((¬ϕ→ ¬ψ) → ϕ)).(A3)

The second group of axioms deals with quantification:

(∀x (ϕ→ ψ)) → ((∀xϕ) → (∀xψ))(A4)

ϕ→ (∀xϕ) if x is not free in ϕ(A5)

(∀xϕ) → ϕ[t/x] if the substitution is correct.(A6)

The third group deals with equality. It is only present in languages with equality, (i.e.,
almost always):

x = x(A7)

(x = y) → (y = x)(A8)

(x = y) → ((y = z) → (x = z))(A9)

(x = y) → (fz̄xw̄ = fz̄yw̄) |z̄|+ |w̄|+ 1 = ν(f)(A10)

(x = y) → (P z̄xw̄ → P z̄yw̄) |z̄|+ |w̄|+ 1 = ν(P).(A11)

Deduction sequences and the deduction relation ` are defined as in every deduction
system.

Fact 2.4.2. This proof system is sound.

Proof. Exercise. qed2.4.2

Having the first group of logical axiom schemes and Modus Ponens as an only inference
rule implies that many results from Section 1.3 hold in this deduction system, with the
same proof. For example:

(i) The Deduction Theorem: Γ, ϕ ` ψ ⇐⇒ Γ ` ϕ→ ψ.
(ii) If Γ,¬ϕ is contradictory then Γ ` ϕ.
(iii) If Γ is consistent, then at least one of Γ, ϕ or Γ,¬ϕ is.
(iv) Let Γ be a consistent set of formulae. Then there exists a maximal set consistent

set of formulae ∆ ⊇ Γ. Moreover, for every formula ϕ either ϕ ∈ ∆ or ¬ϕ ∈ ∆,
and ϕ ∈ ∆ ⇐⇒ ∆ ` ϕ.

In propositional logic, the was almost the end of the proof: once we have a maximal
consistent set of propositional formulae, constructing a model for it was a trivial matter.
Here this is just the beginning of our troubles.

In Predicate Logic, a model for a set of formulae is a structure, and the first thing
we need in order to construct a structure is to choose its domain. A natural candidate

34 2. FIRST ORDER PREDICATE LOGIC

for this is the term algebra of L, which already comes equipped with interpretations of
the function symbols:

Definition 2.4.3. Recall that T denotes the set of all L-terms. For every n-ary
function symbol f ∈ L and t0, . . . , tn−1 ∈ T we define:

fT (t0, . . . , tn−1) = ft0 . . . tn−1 ∈ T .
The set T equipped with these interpretations of the function symbols is called the term
algebra of L.

There are still several issues (this should be viewed as an informal discussion):

(i) First assume that ∀xϕ(x) ∈ ∆. Then for every t ∈ T we would like to make
sure that T � ϕ(t). For this to be true we might think to apply A6: but what
if the substitution ϕ[t/x] is incorrect? Our discussion of bound substitutions in
the previous section should take care of that.

(ii) Worse yet, assume ¬∀xϕ(x) ∈ ∆. The we must find a term t ∈ T such that
T � ¬ϕ(t), i.e., that ϕ[t/x] ∈ ∆. There is absolutely no reason to assume that
such t exists. To make sure that it does exist we will use a trick called Henkin’s
method.

(iii) Finally, if we have the equality symbol in our language, we must make sure that
it is interpreted as actual equality. Again, this needs not be true, but can be
achieved by dividing by an appropriate equivalence relation.

We first deal with quantifiers.
Let us start by thinking how we usually prove universal statements (i.e., statements

of the form “for all x, if A(x) then B(x)”). Usually a proof would go as follows: we name
one such x, assume that A(x), and prove that B(x); since we made no assumption about
the identity of x, beyond that A(x) holds, we conclude that A(x) → B(x) for all x. This
method has a counterpart in formal deductions:

Lemma 2.4.4 (The Generalisation Theorem). Assume that Γ ` ϕ, and that x is not
free in Γ. Then Γ ` ∀xϕ.

Proof. Let ψ0, . . . , ψn−1 be a deduction sequence from Γ. We will prove by induction
on i < n that Γ ` ∀xψ0. We treat each i < n according to cases:

(i) ψi is a logical axiom. Then ∀xψi is a logical axiom as well.
(ii) ψi ∈ Γ. Then x is not free in ψi, whereby we have an instance of A5: ψi → ∀xψi.

It follows that Γ ` ∀xψi.
(iii) ψi is obtained by Modus Ponens from ψj and ψk = (ψj → ψi), where j, k < i.

By the induction hypothesis we have:

Γ ` ∀xψj, Γ ` ∀x (ψj → ψk)

By A4:

Γ ` (∀x (ψj → ψi)) → ((∀xψj) → (∀xψi))

2.4. SYNTACTIC DEDUCTION 35

Which put together yields:

Γ ` ∀xψi qed2.4.4

We have proved in Section 2.3 that if a bound substitution ϕ{y/x} is correct then
ϕ ≡ ϕ{y/x}. We can now prove a similar result, namely that we can actually deduce this
equivalence in our proof system. To simplify the proof we will strengthen the assumption,
assuming that y does not even appear in ϕ.

Lemma 2.4.5. Assume that ϕ is a formula in which y does not appear. Then ` ϕ→
ϕ{y/x} and ` ϕ{y/x} → ϕ. (Recall that by Lemma 2.3.8, the bound substitution is
correct.)

Proof. We prove by induction on the complexity of ϕ.

(i) If ϕ is atomic then ϕ{y/x} = ϕ and we know that ` ϕ→ ϕ.
(ii) If ϕ = ¬ψ, then ϕ{y/x} = ¬ψ{y/x} and ψ{y/x} is correct. We know from the

Completeness Theorem for Propositional Logic that:

P → P ′ ` ¬P ′ → ¬P.
Substituting in a deduction sequence for this P = ψ{y/x} and P ′ = ψ for P ′,
we get a deduction (which only uses A1-3) of

ψ{y/x} → ψ ` ϕ→ ϕ{y/x}.
The opposite substitution yields:

ψ → ψ{y/x} ` ϕ{y/x} → ϕ.

The induction hypothesis tells us that ` ψ → ψ{y/x} and ` ψ{y/x} → ψ, and
we are done.

(iii) A similar argument works for ϕ = ψ → χ, this time using the fact that

P ′ → P,Q→ Q′ ` (P → Q) → (P ′ → Q′).

(iv) If ϕ = ∀xψ, then ϕ{y/x} = ∀y ψ[y/x], y is not free in ψ, and the substitution
ψ[y/x] is correct. Therefore we have an instance of A6: ∀xψ → ψ[y/x], whereby
∀xψ ` ψ[y/x]. Since y is not free in ∀xψ, we have by the Generalisation
Theorem: ∀xψ ` ∀y ψ[y/x], i.e., ϕ ` ϕ{y/x}. We conclude that ` ϕ→ ϕ{y/x}
by the Deduction Theorem.

Since y does not appear in ψ, we have by Lemma 2.3.8 that ψ = ψ′[x/y]
and this substitution is correct as well. Also, clearly x is not free in ψ[y/x]
(by an easy inductive argument which we leave as an exercise). Since ϕ =
(ϕ{y/x}){x/y} (by Lemma 2.3.8), the mirror image of the above argument
shows that ` ϕ{y/x} → ϕ.

(v) If ϕ = ∀z ψ, where z 6= x, then ϕ{y/x} = ∀z ψ{y/x}, and the bound substitu-
tion ψ{y/x} is correct. By the induction hypothesis we have ` ψ → ψ{y/x},
and by the Generalisation Theorem: ` ∀z (ψ → ψ{y/x}). Use an instance of

36 2. FIRST ORDER PREDICATE LOGIC

A4: ∀z (ψ → ψ{y/x}) → ((∀z ψ) → (∀z ψ{y/x})), and apply Modus Ponens to
conclude.

We obtain ` ϕ{y/x} → ϕ similarly.

qed2.4.5

We now have what we need to treat the case where ∀xϕ ∈ ∆:

Lemma 2.4.6. Assume that ∆ is a maximal consistent set of formulae, ∀xϕ ∈ ∆,
and t ∈ T . Then there is a formula ϕ′ such that ϕ′ ≡ ϕ and ϕ′[t/x] ∈ ∆.

Proof. By Lemma 2.3.9 we can obtain a formula ϕ′ through a sequence of correct
bound substitutions, such that no variable of t is bound in ϕ′. Then ` ϕ → ϕ′, and by
the Generalisation Theorem ` ∀x (ϕ → ϕ′). By A4 ` (∀xϕ) → (∀xϕ′), so ∆ ` ∀xϕ′.
Finally, ϕ′[t/x] is correct so by A6: ∆ ` ϕ′[t/x]. As ∆ is maximal consistent: ϕ′[t/x] ∈
∆. qed2.4.6

The next case is when ¬∀xϕ ∈ ∆, and is more difficult: we need t ∈ T (as T is
going to be the domain of our model) that would witness that ¬∀xϕ, i.e., such that
¬ϕ[t/x] ∈ ∆, but there is no reason for such t to exist. We solve this through a process
of artificially adding witnesses, due to Henkin.

We first need an auxiliary result, which is a modified version of the Generalisation
Theorem for constant symbols. If c is a constant symbol and x a variable, we can define
the substitution ϕ[x/c] in the obvious way. Given the very limited fashion we will use
this kind of substitution we will not worry about correctness.

Lemma 2.4.7. Assume that Γ ` ϕ, and c is a constant symbol which does not appear
in Γ. Let x be a variable which does not appear in ϕ. Then Γ ` ∀xϕ[x/c].

Proof. Let ϕ0, . . . , ϕn−1 be a deduction sequence for ϕ from Γ, and let y be a variable
not appearing in any formula on that sequence. We first claim that Γ ` ϕi[y/c] for all
i < n. If ϕi ∈ Γ is a premise then ϕi[y/c] = ϕi (since c does not appear in Γ), so
Γ ` ϕi[y/c]. If ϕi is obtained from ϕj and ϕk = (ϕj → ϕi) by Modus Ponens, we need
only observe that ϕk[y/c] = (ϕj[y/c] → ϕi[y/c]), and use the induction hypothesis.

We are left with the case that ϕi is a logical axiom, and we wish to show that so it
ϕi[y/c]. This is easily verified scheme by scheme. The only two cases where it is not
completely trivial are:

• Scheme A5: ϕi = ψ → (∀z ψ), and z is not free in ψ. Then y 6= z, so z is not
free in ψ[y/c]. Therefore ψ[y/c] → (∀z ψ[y/c]) is an instance of A5.

• Scheme A6: ϕi = (∀z ψ) → ψ[t/z], and ψ[t/z] is correct. Then y 6= z, whereby:

(ψ[t/z])[y/c] = (ψ[y/c])[t[y/c]/z].

Also, since y does not appear in ψ, if only has free occurrences in ψ[y/c] (but
there are no quantifiers ∀y in ϕ[y/c]), so the substitution (ψ[y/c])[t[y/c]/z] is
also correct. Therefore ϕi[y/c] is also an instance of A6.

2.4. SYNTACTIC DEDUCTION 37

Same holds for instances of A5-6 preceded by universal quantifiers.
Let Γ0 be the set of premises used in this deduction. Then Γ0 ` ϕ[y/c] and y is not

free in Γ0, so by the Generalisation Theorem Γ0 ` ∀y ϕ[y/c] and therefore Γ ` ∀y ϕ[y/c].
Finally, if x 6= y then (∀y ϕ[y/c]){x/y} = ∀xϕ[x/c] and x does not appear in ∀y ϕ[y/c],
so Γ ` ∀xϕ[x/c] by Lemma 2.4.5. qed2.4.7

Proposition 2.4.8. Fix a signature L. There exists a signature LH ⊇ L, such that
LH r L consists solely of constant symbols, and a set of LH formulae ΓH , such that:

(i) For every LH-formula ϕ and variable x there exists a constant symbol c ∈ LH
such that:

(¬∀xϕ) → ¬ϕ[c/x] ∈ ΓH .

(Note that the free substitution of a constant symbol is always correct).
(ii) For every set of L-formulae Γ, if Γ is consistent the so is Γ ∪ ΓH .

Moreover, |LH | = |L| + ℵ0 (assuming, as we may, that there are only countable many
variables.)

Proof. We define an increasing sequence of signatures LHn inductively. We start
with L0,H = L. Given Ln,H , for every Ln,H-formula ϕ and variable x we introduce a new
constant symbol cϕ,x, and define:

Ln+1,H = Ln,H ∪ {cϕ,x : ϕ ∈ Ln,Hω,ω , x ∈ V }.

We then define:

LH =
⋃
n∈N

Ln,H

ψϕ,x = (¬∀xϕ) → ¬ϕ[cϕ,x/x]

ΓH = {ψϕ,x : ϕ ∈ LHω,ω, x ∈ V }.

Clearly ΓH has the first property. We wish to prove the second.
Assume therefore that Γ ⊆ Lω,ω is consistent, but ΓH is not. Then there is a finite

subset ΓH0 ⊆ ΓH such that Γ ∪ ΓH0 is contradictory, and we may assume that ΓH0 is
minimal such. Since Γ was assumed consistent, ΓH0 6= ∅. Also, ΓH0 is of the form
{ψϕi,xi : i < n}, where ϕi ∈ LHω,ω, and all the pairs (ϕi, xi) are distinct. For each i < n

there is a minimal mi such that ϕi ∈ Lmi,Hω,ω , and without loss of generality m0 is maximal
among {mi : i < n}.

Let ϕ = ϕ0, x = x0, m = m0 = max{mi : i < n}. Then ϕi ∈ Lm,Hω,ω for all i < n, but

cϕ,x ∈ Lm+1,H r Lm,H (since m is minimal such that ϕ ∈ Lm,Hω,ω). Let ΓH1 = {ψϕi,xi : 0 <

i < n} = Γ0 r {ψϕ,x}, and Γ1 = Γ∪ΓH1 . Then cϕ,x does not appear in Γ1: indeed, it does
not appear in any ϕi, and cϕ,x 6= cϕi,xi for all i > 0.

Our assumption was that Γ ∪ ΓH0 = Γ1 ∪ {(¬∀xϕ) → ¬ϕ[cϕ,x/x]} is contradictory.
Then a fortiori Γ1 ∪ {¬¬∀xϕ} and Γ1 ∪ {¬ϕ[cϕ,x/x]} are contradictory, whereby Γ1 `

38 2. FIRST ORDER PREDICATE LOGIC

¬∀xϕ and Γ1 ` ϕ[cϕ,x/x]. Let y be a variable not appearing in ϕ. By Lemma 2.4.5:

Γ1 ` ¬∀xϕ =⇒ Γ1 ` (¬∀xϕ){y/x} = ¬∀y ϕ[y/x]

As cϕ,x does not appear in Γ1 we have by Lemma 2.4.7:

Γ1 ` ϕ[cϕ,x/x] =⇒ Γ1 ` ∀y (ϕ[cϕ,x/x])[y/cϕ,x] = ∀y ϕ[y/x].

In other words, Γ1 = Γ ∪ ΓH1 is contradictory, contradicting the minimality of
ΓH0 . qed2.4.8

We may now prove an intermediary result:

Theorem 2.4.9 (Completeness Theorem for Predicate Logic without equality). Let
Γ be a set of formulae in a first order language Lω,ω without equality (with only the
connectives ¬ and → and the quantifier ∀). Then Γ is satisfiable if and only if it is
consistent (in the deduction system given above).

Proof. If Γ is satisfiable then it is consistent by soundness. For the converse, assume
that Γ is consistent. Let LH ⊇ L and ΓH be as in Proposition 2.4.8. Then Γ ∪ ΓH is
consistent, and is therefore contained in a maximal consistent set ∆ ⊆ LHω,ω.

Let T be the term algebra of LH . We define an L-structure M whose domain is
M = T . We interpret the function symbols on M in the standard fashion:

fM = fT : (t0, . . . , tn−1) 7→ ft0 . . . tn−1.

For an n-ary predicate symbol P define:

PM = {(t0, . . . , tn−1) ∈Mn : Pt0 . . . tn−1 ∈ ∆}.

Once M is defined we define an M-assignment σ by σ(x) = x (here the variable x is both
a variable and a member of M).

We claim without proof that for all t ∈ T : tM,σ = t. We then prove that for all
ϕ ∈ LHω,ω: M �σ ϕ ⇐⇒ ϕ ∈ ∆, by induction on the number of quantifiers in ϕ, and for
formulae with the same number of quantifiers, by induction on the complexity:

(i) If ϕ is atomic then we can prove what we want directly:

Pt0 . . . tn−1 ∈ ∆ ⇐⇒ (tM,σ
0 , . . . , tM,σ

n−1) = (t0, . . . , tn−1) ∈ PM

⇐⇒ M �σ Pt0 . . . tn−1.

(ii) If ϕ = ¬ψ then the induction hypothesis applies to ψ, which is simpler, and we
conclude as in the proof of Theorem 1.3.16. Similarly if ϕ = ψ → χ.

(iii) Finally, assume ϕ = ∀xψ. Each direction is handled separately. If ∀xψ ∈ ∆,
then we need to show for all t ∈M : M �σtx ψ. But t is a term, and Lemma 2.4.6
tells us that under the circumstances there is a formula ψ′ ≡ ψ such that
ψ′[t/x] ∈ ∆, and the substitution is correct. As ψ′[t/x] has fewer quantifiers
than ϕ the induction hypothesis holds and M �σ ψ′[t/x]. Since the substitution

2.4. SYNTACTIC DEDUCTION 39

is correct, and t = tM,σ: M �σ ψ′[t/x] ⇐⇒ M �σtx ψ
′. Since ψ′ ≡ ψ, this is

further equivalent to M �σtx ψ, which is what we wanted.
Conversely, assume ∀xψ /∈ ∆, so ¬∀xψ ∈ ∆. Since ΓH ⊆ ∆ we have

(¬∀xψ) → ¬ψ[cψ,x/x] ∈ ∆, whereby ¬ψ[cψ,x/x] ∈ ∆. By the induction hy-
pothesis:

M �σ ¬ψ[cψ,x/x]

And since cM,σ
ψ,x = cψ,x:

M �σcϕ,xx
¬ψ

Whereby:

M �σ ¬∀xψ.
Therefore M �σ ∆, and in particular M �σ Γ. qed2.4.9

The last thing to deal with is equality. The problem in the proof of Theorem 2.4.9
for a language with equality is that it may happen that t 6= t′ are two terms such that
(t = t′) ∈ ∆, so =M does not coincide with actual equality in M . We can solve this
through simple division by an equivalence relation.

Definition 2.4.10. Let L be a signature without equality, and M and L-structure.
Let ∼ be a binary relation on M . We say that ∼ is a congruence relation for M if it is
an equivalence relation, and for every n-ary function symbol f or n-ary predicate symbol
P , a ∼ b and c̄, d̄ in M such that |c̄|+ |d̄|+ 1 = n:

fM(c̄, a, d̄) = fM(c̄, b, d̄),

(c̄, a, d̄) ∈ PM ⇐⇒ (c̄, b, d̄) ∈ PM.

Lemma 2.4.11. Let L be a signature without equality, and M and L-structure. Let ∼
be a congruence relation for M. Let M̄ = M/∼, and for a ∈ M let [a] ∈ M̄ denote the
equivalence class a/∼. Then there is a unique L-structure M̄ with domain M̄ satisfying
for every n-ary function symbol f or n-ary predicate symbol P and ā ∈Mn:

fM̄([a0], . . . , [an−1]) = [fM(a0, . . . , an−1)],

([a0], . . . , [an−1]) ∈ P M̄ ⇐⇒ (a0, . . . , an−1) ∈ PM.

Moreover, let σ be an M-assignment, and σ̄ the M̄-assignment defined by σ̄(x) =
[σ(a)]. Then for every L-formula ϕ and M-assignment σ:

M �σ ϕ⇐⇒ M̄ �σ̄ ϕ.

We call M̄ the quotient of M by ∼, denoted M/∼, and may similarly denote σ̄ by
σ/∼.

Proof. Exercise. qed2.4.11

40 2. FIRST ORDER PREDICATE LOGIC

Lemma 2.4.12. Assume that L is now a signature with equality, and ∆ and M are
as in the proof of Theorem 2.4.9. Let L̃ be a signature without equality, such that L̃ = L
but =∈ L̃ is just an ordinary predicate symbol. Then M is an L̃-structure and =M is a
congruence relation for M.

Proof. Since L is a language with equality, we have logical axiom schemes A7-11,
and since ∆ is maximal they all belong to ∆. In particular, the following sentences belong
to ∆:

∀x x = x

∀xy (x = y) → (y = x)

∀xyz (x = y) → ((y = z) → (x = z))

∀xyz̄w̄ (x = y) → (fz̄xw̄ = fz̄yw̄) |z̄|+ |w̄|+ 1 = ν(f)

∀xyz̄w̄ (x = y) → (P z̄xw̄ → P z̄yw̄) |z̄|+ |w̄|+ 1 = ν(P).

They are therefore true in M, which means precisely that =M is a congruence relation.
qed2.4.12

Theorem 2.4.13 (Completeness Theorem for Predicate Logic). Let Γ be a set of
formulae and ϕ a formula in a first order language Lω,ω (with only the connectives ¬ and
→ and the quantifier ∀). Then:

(i) The set Γ is satisfiable if and only if it is consistent (in the deduction system
given above).

(ii) Γ � ϕ⇐⇒ Γ ` ϕ.

Proof. As usual we only prove the first item, and we only need to prove that if Γ is
consistent then it is satisfiable.

If L is without equality, this has already been proved in Theorem 2.4.9. If L has
equality, let ∆ ⊇ Γ, M and σ be as in the proof of Theorem 2.4.9. Let L̃ be the signature
without equality obtained from L by making the equality symbol an ordinary predicate
symbol. By Lemma 2.4.12, M is a L̃-structure and =M is a congruence relation. Let
M̄ = M/=M. Then for [a], [b] ∈ M̄ we have:

[a] =f̄M [b] ⇐⇒ a =M b⇐⇒ [a] = [b].

This means that =M̄ coincides with equality, so M̄ is actually an L-structure, and by
Lemma 2.4.11: M̄ �σ̄ Γ. qed2.4.13

Corollary 2.4.14 (Compactness Theorem for Predicate Logic). Let Γ be a set of
first order formulae and ϕ a formula. Then:

(i) Γ is satisfiable if and only if it is finitely satisfiable.
(ii) Γ � ϕ if and only if there is a finite subset Γ0 ⊆ Γ such that Γ0 � ϕ.

Proof. Follows from the finite nature of formal deduction. qed2.4.14

EXERCISES 41

Exercises

Exercise 2.1. Recall that V denote the set of variables, T the set of terms, and Lω,ω
the set of first order formulae.

For each n-ary function symbol f define:

Ef : T n → T
t̄ 7→ f t̄.

Similarly, for each n-ary predicate symbol P define:

EP : T n → Lω,ω
t̄ 7→ P t̄.

Lastly, for each variable x ∈ V define:

E∀,x : Lω,ω → Lω,ω
ϕ 7→ (∀xϕ)

,
E∃,x : Lω,ω → Lω,ω

ϕ 7→ (∃xϕ)
.

Prove unique readability: T and Lω,ω are disjoint; T is freely generated from V by
the Efs; the operators EP are injective with disjoint images, and Lω,ω is freely generated
from the images by the operators E� : � ∈ {¬,→,∨,∧} and E∀,x, E∃,x : x ∈ V .

Exercise 2.2. Let us consider another kind of substitution, which we may call
propositional substitution. Let ϕ be a propositional formula in the (distinct) proposi-
tional variables P0, . . . , Pn−1, and let ψ0, . . . , ψn−1 be first order L-formulae. We define
ϕ[ψ0/P0, . . . , ψn−1/Pn−1] by replacing each occurrence of Pi in ϕ with ψi (a proper defi-
nition would be by induction on ϕ).

(i) Show that ϕ[ψ0/P0, . . . , ψn−1/Pn−1] is an L-formula.
(ii) Let Γ be a set of propositional formulae, also all in P0, . . . , Pn−1, and let

Γ[ψ0/P0, . . . , ψn−1/Pn−1] = {γ[ψ0/P0, . . . , ψn−1/Pn−1] : γ ∈ Γ}.
Show that

Γ � ϕ =⇒ Γ[ψ0/P0, . . . , ψn−1/Pn−1] � ϕ[ψ0/P0, . . . , ψn−1/Pn−1].

(iii) Use the previous item to show that if ϕ is valid then so is
ϕ[ψ0/P0, . . . , ψn−1/Pn−1], and that:

ϕ ≡ ϕ′ =⇒ ϕ[ψ0/P0, . . . , ψn−1/Pn−1] ≡ ϕ′[ψ0/P0, . . . , ψn−1/Pn−1].

Exercise 2.3. As in Propositional Logic, define a literal of predicate logic to be an
atomic formula or its negation, and define disjunctive normal form (DNF) accordingly.
Prove that every quantifier-free formula is logically equivalent to one in DNF.

Exercise 2.4. Let T be a set of sentences. Define ϕ ≡T ψ if T � ϕ → ψ and
T � ψ → ϕ.

(i) Let Lω,ω(n) consist of the set of all formulae of the form ϕ(x0, . . . , xn−1), and
LT (n) = Lω,ω(n)/≡T . Let the equivalence class ϕ/≡T be denoted by [ϕ]T .
Show that LT (n) is naturally equipped with the structure of a Boolean algebra.

42 2. FIRST ORDER PREDICATE LOGIC

(ii) Show that the ordering on LT (n) (as defined in Exercise 1.2.23) is given by
[ϕ]T ≤ [ψ]T ⇐⇒ T � ϕ→ ψ.

(iii) Let i : LT (n) ↪→ LT (n + 1) denote the inclusion mapping (this is the addition
of a dummy variable xn). Show that for all [ϕ]T ∈ LT (n + 1) there are unique
equivalence classes [ϕ′]T , [ϕ

′′]T ∈ LT (n) such that for all [ψ]T ∈ LT (n):

i([ψ]T) ≤ [ϕ]T ⇐⇒ [ψ]T ≤ [ϕ′]T

[ϕ]T ≤ i([ψ]T) ⇐⇒ [ϕ′′]T ≤ [ψ]T .

How would you obtain [ϕ′]T and [ϕ′′]T explicitly from ϕ?

Exercise 2.5 (Reduced products). Let I be a set, which we view as a set of indices.
Let (Mi : i ∈ I) be a sequence of L-structures indexed by I. Let F be a proper filter on
I (i.e., on the Boolean algebra of subsets of I): we view subsets of I which belong to F
as “big”.

Let N0 =
∏

i∈IMi. We will denote members of N0 by (ai : i ∈ I) (where ai ∈ Mi) or
just by (ai). We interpret function symbols f ∈ L on N0 coordinate-wise:

fN0((ai), (bi), . . .) = (fMi(ai, bi, . . .)).

With predicate symbols this are more delicate, and the filter F will be taken into account:

PN0 =
{

((ai), (bi), . . .) : {i ∈ I : (ai, bi, . . .) ∈ PMi} ∈ F
}
.

(Explanation: a tuple belongs to PN0 if its components belong to the corresponding PMi

on a “big” set of indices.)
In particular, the binary relation =N0 is defined as above. It is not necessarily equality,

so N0 is not a structure, according to our definitions. Nevertheless:

(i) Show that =N0 is an equivalence relation.
(ii) Show that =N0 is a congruence relation for every function fN0 (i.e., (ai) =N0 (a′i),

(bi) =N0 (b′i), etc., imply that fN0((ai), (bi), . . .) =N0 fN0((a′i), (b
′
i), . . .).)

(iii) Show that =N0 is a congruence relation for every relation PN0 (i.e., (ai) =N0 (a′i),
(bi) =N0 (b′i), etc., imply that ((ai), (bi), . . .) ∈ PN0 ⇐⇒ ((a′i), (b

′
i), . . .) ∈ PN0 .)

(iv) Show you can quotient N0 by the equivalence relation =N0 to obtain an actual
L-structure N whose domain N is equal to N0/=

N0 . We will use the notation
[ai] = [ai : i ∈ I] ∈ N for the equivalence class of (ai) = (ai : i ∈ I) ∈ N0.

We call this N the reduced product of (Mi : i ∈ I) modulo F , denoted
∏

i∈IMi/F .

Exercise 2.6. Prove Lemma 2.3.2.

Exercise 2.7. Prove Lemma 2.3.8.

Exercise 2.8 (Prenex normal form). We say that a formula is in prenex normal
form, or simply that it is a prenex formula, if it is of the form

Q0x0Q1x1 . . . Qn−1xn−1 ϕ,

EXERCISES 43

where each Qi is either ∀ or ∃, the xi are distinct variables, and ϕ is quantifier-free. Show
that every first order formula is logically equivalent to a prenex formula.

Exercise 2.9 (Ultraproducts and Loś’s Theorem). Recall the construction of reduced
products from Exercise 2.5. If U is an ultrafilter, then the reduced product

∏
i Mi/U

is called an ultraproduct.
Prove Loś’s Theorem:

Let {Mi : i ∈ I} be structures, U an ultrafilter on I, and N =
∏

i Mi

the ultraproduct. Then for every formula ϕ(x, y, . . .) ∈ L, and
[ai], [bi], . . . ∈ N :

N � ϕ([ai], [bi], . . .) ⇐⇒ {i ∈ I : Mi � ϕ(ai, bi, . . .)} ∈ U .

In other words, if σi is an Mi-assignment for each i ∈ I and τ is
defined by τ(x) = [σi(x) : i ∈ I], then:

N �τ ϕ⇐⇒ {i ∈ I : Mi �σi ϕ} ∈ U .

Hint: argue first why it suffices to show this for formulae which only use the connectives
∧ and ¬, and the quantifier ∃, and prove by induction on such formulae.

(At some point you will need to use the Axiom of Choice which says that if you have
a sequence {Xi : i ∈ I} of non-empty sets then there exists a function f : I →

⋃
i∈I Xi

such that f(i) ∈ Xi for all i ∈ I. If this remark seems obscure, it will become clearer
when we speak about axioms for Set Theory.)

Exercise 2.10 (Compactness Theorem via Loś’s Theorem). Let Γ be a finitely sat-
isfiable set of formulae. We will prove it is satisfiable in several steps:

(i) Let I = Pfin(Γ) be the family of all finite subsets of Γ. For ∆ ∈ I, let J∆ =
{∆′ ∈ I : ∆ ⊆ ∆′}. Show that the family {J∆ : ∆ ∈ I} is closed under finite
intersections and does not contain ∅.

(ii) Let:
F = {J ⊆ I : (∃∆ ∈ I)(J ⊇ J∆)}.

Show that F is a proper filter on I.
(iii) Let U be an ultrafilter containing F . Why is there one?
(iv) By assumption, for every ∆ ∈ I there are M∆, σ∆ such that M∆ �σ∆

∆. Show
that for every formula ϕ ∈ Γ:

{∆ ∈ I : M∆ �σ∆
ϕ} ∈ U .

(v) Let N =
∏

∆∈I M∆/U , and τ(x) = [σ∆(x) : ∆ ∈ I] ∈ N . Show that N �τ Γ.

Exercise 2.11. Show that the proof system for predicate logic we introduced is
sound.

Exercise 2.12. Prove Lemma 2.4.11.

CHAPTER 3

Model Theory

Model Theory is a branch of Mathematical Logic that studies the relation between
properties of first order theories (i.e., sets of first order sentences) and more general
properties of the classes of their models.

Fix a signature L (with equality). Unless said otherwise, all formulae, structures,
etc., are in L.

Definition 3.0.1. (i) A theory T is a set of first order sentences, closed under
logical implication (i.e., if T � ϕ then ϕ ∈ T).

(ii) A complete theory is one which is maximal consistent (equivalently: T is con-
sistent and for every sentence ϕ either ϕ ∈ T or ¬ϕ ∈ T).

(iii) If K is any class of structures, we define its theory as:

Th(K) = {ϕ : ϕ is a sentence and M � ϕ for all M ∈ K}.
If K = {M} consists of a single structure, we write Th(M) instead of Th({M}).
Note that Th(M) is a complete theory, naturally called the complete theory of
M.

Definition 3.0.2. (i) Let T be a theory. We define the class of models of T
as:

Mod(T) = {M : M is a structure and M � T}.
(ii) A class of structures K is elementary if it is of the form K = Mod(T) for some

theory T .

With these definitions we can rephrase what we said earlier, saying that Model Theory
studies relations between properties of elementary classes and properties of their theories.
Let us give two examples whose proofs lie beyond the scope of this class.

A cardinal is a measure for the “size” of a set: 4, 17, 666, etc., are finite cardinals;
ℵ0 = |N| = |Q| is the infinite countable cardinal (sometimes also denoted ω or ω0);
ℵ = |R| = |C| is the continuum; and there are many others.

Definition 3.0.3. Let κ be a cardinal. We sat that a theory T is κ-categorical if it
has a unique model of size κ up to isomorphism. In other words, if it has models of size
κ, and all its models of size κ are isomorphic.

Theorem 3.0.4 (Ryll-Nardzewski). The following are equivalent for a complete the-
ory T in a countable language L:

45

46 3. MODEL THEORY

(i) The theory T is ℵ0-categorical.
(ii) For every n there are only finitely many formulae in n variables which are not

equivalent modulo T (i.e., the Boolean algebra LT (n) of Exercise 2.4 is finite
for all n).

Theorem 3.0.5 (Morley, conjectured by Loś). The following are equivalent for a
complete theory T in a countable language L:

(i) The theory T is κ-categorical for some uncountable cardinal κ.
(ii) The theory T is κ-categorical for every uncountable cardinal κ.

It should be pointed out that the proof of Morley’s Theorem is in fact much more
interesting than its statement: it involves proving that models of T admit a notion of
independence, much like linear independence in vector spaces and algebraic independence
in fields, and that every such model can be viewed as “generated” by a basis of indepen-
dent elements (as in vector spaces). This served as a starting point for much of modern
Model Theory one of whose main themes is notions of independence and their properties.

3.1. Elementary extensions and embeddings

Definition 3.1.1. Let M and N be two structures, θ : M → N a mapping. We say
that θ is an embedding, in symbols θ : M ↪→ N, if for every n-ary predicate symbol P or
function symbol n, and every ā ∈M :

θ(fM(ā)) = fN(θ(ā))

ā ∈ PM ⇐⇒ θ(ā) ∈ PN.

(Here θ(a0, a1, . . .) = θ(a0), θ(a1), . . .). If M ⊆ N and the inclusion is an embedding, we
say that M is a sub-structure of N, or that N is an extension of M, in symbols M ⊆ N.

Lemma 3.1.2. Let M be an L-structure and A ⊆ M a subset. Then there exists
a sub-structure A ⊆ M whose underlying set is A if and only if A is closed under the
interpretations in M of the function symbols.

Proof. Exercise. qed3.1.2

Lemma 3.1.3. Let M and N be structures and θ : M → N a mapping. Then the
following are equivalent:

(i) θ is an embedding.
(ii) For every atomic formula ϕ(x̄) and tuple ā ∈M (of the appropriate length):

M � ϕ(ā) ⇐⇒ N � ϕ(θ(ā)).

(iii) For every quantifier-free formula ϕ(x̄) and tuple ā ∈ M (of the appropriate
length):

M � ϕ(ā) ⇐⇒ N � ϕ(θ(ā)).

Proof. Exercise. qed3.1.3

3.1. ELEMENTARY EXTENSIONS AND EMBEDDINGS 47

Example 3.1.4. We have Z ⊆ Q ⊆ R ⊆ C, all viewed as structures in Lring =
{0, 1,+,−, ·}.

Plain embeddings (or extensions) are not enough for us, and we “prefer” to consider
ones which preserve the entire first order language:

Definition 3.1.5. Let M and N be structures and θ : M → N a mapping. We say
that θ is an elementary embedding if for every first order formula ϕ(x̄) and tuple ā ∈M
(of the appropriate length):

M � ϕ(ā) ⇐⇒ N � ϕ(θ(ā)).

If M ⊆ N and the inclusion is an elementary embedding, we say that M is an elementary
sub-structure of N, or that N is an elementary extension of M, in symbols M � N.

While it is relatively straightforward to verify that one structure is an extension of
another, verifying that it is an elementary extension is much more difficult. Of course,
in order to verify an extension is not elementary a single counterexample suffices.

Example 3.1.6. None of the inclusions Z ⊆ Q ⊆ R ⊆ C is elementary.

Proof. Let ϕ(x) be the formula ∃y (y + y = x). Then Z � ¬ϕ(1) when all of the
other structures satisfy ϕ(1). This shows that Z is not an elementary substructure of
either Q, R and C. The rest is left as an exercise. qed3.1.6

The existence of (elementary) embeddings from one structure to another is closely
related to the notion of a diagram:

Definition 3.1.7. Let L ⊆ L′ be two signatures. Let M′ be an L′-structure, and
let M be the L-structure obtained from M′ by “forgetting” the interpretations of the
symbols in L′rL (i.e., the domains are the same, and sM = sM′

for every symbol s ∈ L).
We then say that M is the L-reduct of M′, in symbols M = M′�L, or that M′ is an

expansion of M to L′.

Note that while the L-reduct of M′ is unique, M may have many expansions to L′.

Definition 3.1.8. Let L be a signature and A a set. Then L(A) = L∪ {ca : a ∈ A},
where each ca is a new distinct constant symbol.

This will almost exclusively be used in a situation where M is an L-structure and
A ⊆ M . In that case M has a natural expansion to an L(A)-structure by interpreting
each ca by a, and we will identify M with this expansion.

To simplify notation, if ā = a0, . . . , an−1 ∈ An, we will write cā for ca0 , . . . , can−1 .
Notice that an (atomic) L(A)-sentence is always of the form ϕ(cā) where ϕ(x̄) is an
(atomic) L-formula and ā ∈ A.

48 3. MODEL THEORY

Definition 3.1.9. Let M be a L-structure. The atomic diagram and elementary
diagram of M, respectively, are the following two sets of L(M)-sentences:

Dat(M) = {ϕ : ϕ ∈ L(M)ω,ω is an atomic sentence and M � ϕ}
∪ {¬ϕ : ϕ ∈ L(M)ω,ω is an atomic sentence and M � ¬ϕ}

= {ϕ(cā) : ϕ(x̄) ∈ Lω,ω is an atomic formula and M � ϕ(ā)}
∪ {¬ϕ(cā) : ϕ(x̄) ∈ Lω,ω is an atomic formula and M � ¬ϕ(ā)}

Del(M) = ThL(M)(M)

= {ϕ : ϕ ∈ L(M)ω,ω is a sentence and M � ϕ}
= {ϕ(cā) : ϕ(x̄) ∈ Lω,ω is a formula and M � ϕ(ā)}.

Proposition 3.1.10. Let M and N be L-structure.

(i) There is a natural bijection between embeddings of M in N and expansions N′

of N to L(M) such that N′ � Dat(M).
(ii) There is a natural bijection between elementary embeddings of M in N and

expansions N′ of N to L(M) such that N′ � Del(M).

Proof. Let θ : M → N be an embedding. Define an expansion N′ by cN
′

a = θ(a) for
all a ∈M . Then N′ is an L(M)-structure and N′ � Dat(M). Conversely, if N′ is such an
expansion, then defining θ(a) = cN

′
a for all a ∈ M yields an embedding θ : M → N. The

details and second item are left as an exercise. qed3.1.10

Definition 3.1.11 (Tarski-Vaught Test). Assume that M ⊆ N. We say that M
satisfies the Tarski-Vaught test in N if for every formula ϕ(x̄, y) ∈ Lω,ω, and for every
tuple ā ∈ M (of the same length as x̄), if N � ∃y ϕ(ā, y) then there is b ∈ M such that
N � ϕ(ā, b). (Note that we only speak about satisfaction in N).

Proposition 3.1.12 (Tarski-Vaught test). Assume that M ⊆ N. Then M � N if
and only if M satisfies the Tarski-Vaught Test in N.

Proof. Left to right: Assume that M � N and N � ∃y ϕ(ā, y), where ā ∈M . Then
M � ∃y ϕ(ā, y) since M � N, so there is b ∈ M such that M � ϕ(ā, b), and again
M � N =⇒ N � ϕ(ā, b).

Right to left: we prove that M � ϕ(ā) ⇐⇒ N � ϕ(ā) for every ϕ ∈ Lω,ω and ā ∈M ,
by induction on ϕ:

(i) ϕ atomic: since M ⊆ N.
(ii) ϕ constructed using connectives: as usual.
(iii) ϕ(x̄) = ∃y ψ(x̄, y). Then

M � ∃y ψ(ā, y) ⇐⇒∃b ∈M such that M � ψ(ā, b)

By the induction hypothesis, if ā, b ∈M then M � ψ(ā, b) ⇐⇒ N � ψ(ā, b), so:

. . .⇐⇒∃b ∈M such that N � ψ(ā, b)

3.1. ELEMENTARY EXTENSIONS AND EMBEDDINGS 49

Since M satisfies the Traski-Vaught test:

. . .⇐⇒N � ∃y ψ(ā, y) qed3.1.12

We next prove the Löwenheim-Skolem theorems. Let us make a quick reminder about
cardinalities:

We say that two sets A and B have the same cardinality, in symbols |A| = |B|, if there
is a bijection (i.e., a one-to-one and onto mapping) from A to B. Intuitively, this means
that A and B have the same size. The relation |A| = |B| is an equivalence relation. The
cardinality of A, denoted by |A|, is the equivalence class of A (this gives the notation
|A| = |B| a new meaning, but this new meaning coincides with the first one). Such an
equivalence class is called a cardinal, and is usually denoted by lowercase Greek letters
κ, λ, etc. The smallest infinite cardinal is ℵ0 = |N| = |Q|.

We define sums and products as follows: If A and B are any two sets, then |A| · |B| =
|A × B| (where A × B = {(a, b) : a ∈ A, b ∈ B}). If A and B are disjoint, then
|A| + |B| = |A ∪ B|. The finite cardinals (i.e., sizes of finite sets) can be identified with
the natural numbers, and in this case addition and multiplication of cardinals and of
natural numbers coincide.

Infinite sums are defined the same way: if {Ai : i ∈ I} are all disjoint sets, then∑
i∈I |Ai| = |

⋃
i∈I Ai|. Infinite products can be defined similarly, but we shall avoid

them. Classical commutative, associative and distributive laws hold. For example, the
distributive law implies that∑

i∈I

κ =
∑
i∈I

1 · κ =

(∑
i∈I

1

)
· κ = |I| · κ.

The cardinals are ordered: |A| ≤ |B| if there is an injective (one-to-one) function
from A to B, or equivalently if there is a surjective (onto) function from B to A. It is
true (but requires a proof) that |A| ≤ |B| ∧ |B| ≤ |A| =⇒ |A| = |B|. It is even less
evident that for every two sets A and B, either |A| ≤ |B| or |B| ≤ |A|; it is a consequence
of the Axiom of Choice, which we accept as true (in fact, it is equivalent to the Axiom
of Choice).

If at least one of κ and λ is infinite then κ+λ = max{κ, λ}, and if both are non-zero
then κ · λ = max{k, λ}. For infinite sums, the only rule we are going to use is that
if κi ≤ λi for all i ∈ I then

∑
i∈I κi ≤

∑
i∈I λi. Thus if κi ≤ λ for all i ∈ I then∑

i∈I κi ≤ |I| · λ.

Now Back to business. The upward Löwenheim-Skolem Theorem is a simple example
of a very common manner in which the Compactness Theorem is applied.

Theorem 3.1.13 (Upward Löwenheim-Skolem). Let M be an infinite L-structure and
κ a cardinal. Then there exists an elementary extension M � N such that |N | ≥ κ. In
other words, an infinite structure has arbitrarily big elementary extensions.

50 3. MODEL THEORY

Proof. Let S be a set disjoint from M such that κ = |S|. Let Σ be the following
set of L(M ∪ S)-sentences:

Σ = Del(M) ∪ {cs 6= cs′ : s 6= s′ ∈ S}.
We claim that Σ is finitely satisfiable. Indeed, let Σ0 ⊆ Σ be finite. Then there are
finitely many s ∈ S such that cs appears in Σ0, and let us enumerate them in a list
{si : i < k}. Since M is infinite, we can find k distinct elements a0, . . . , ak−1 ∈ M . Let
M′ be the expansion of M to L(M ∪ S) defined by first expanding M to L(M) in the
natural way, and then for s ∈ S:

cM
′

s =

{
ai s = si, i < k

a0 s /∈ {si : i < k}.

Then M′ � Σ0.
It follows by the Compactness Theorem that Σ is satisfiable and therefore has a

model N′ with domain N . Let N = N′�L. The mapping s 7→ cN
′

s is injective, whereby
|N | ≥ |S| = κ. Also, since N � Del(M), there is an elementary embedding θ : M → N.
By renaming the elements of M we may assume that θ is an inclusion, whence M � N
as required. qed3.1.13

In particular, a first order theory T with an infinite model M cannot be categorical
(i.e., has non-isomorphic models): indeed, let κ > |M | (e.g., κ = |P(M)|), and N � M
such that |N | ≥ κ. Then N � T (why?) and there can be no isomorphism between M
and N.

Theorem 3.1.14 (Downward Löwenheim-Skolem). Let M be an L-structure, and let
A ⊆ M be a set. Then there exists an elementary sub-model N � M containing A such
that |N | ≤ max{|A|, |L|,ℵ0} = |A|+ |L|+ ℵ0.

Proof. For every formula of the form ϕ(x̄, y) ∈ Lω,ω and every tuple ā ∈ M of
the length of x̄ such that if M � ∃y ϕ(ā, y), choose an element bϕ,ā ∈ M such that
M � ϕ(ā, bϕ,ā).

We define by induction an increasing sequence of subsets of M : A = A0 ⊆ A1 ⊆
We start with A0 = A, and define

An+1 = An ∪ {bϕ,ā : ā ∈ An and ϕ such that M � ∃y ϕ(ā, y)}.
Let Aω =

⋃
n<ω An. First we claim that the set Aω is closed under the functions of

M. Indeed, if f is an n-ary function symbol and ā ∈ Anω, then ā ∈ Anm for some m. Let
ϕ(x̄, y) be the formula y = f(x̄). Then fM(ā) = bϕ,ā ∈ Am+1 ⊆ Aω.

Therefore M has a unique sub-structure N whose underlying set is N = Aω. The
Tarksi-Vaught criterion is satisfied by for N in M (same argument as above), whereby
N � M.

Last, we need to calculate cardinalities. Let κ = |A|+|L|+ℵ0. We prove by induction
that |An| ≤ κ. For A0, this is since A0 = A. For An+1: first, the number of finite tuples

3.1. ELEMENTARY EXTENSIONS AND EMBEDDINGS 51

in An is: ∑
m<ω

|An|m =
∑
m<ω

|An| = |An| · ℵ0 ≤ κ · ℵ0 = κ.

Similarly, every formula is a finite sequence of symbols, and there are at most |L| + ℵ0

symbols to choose from, so there are at most (|L|+ ℵ0) · ℵ0 ≤ κ formulae. Therefore at
each step there are at most κ2 = κ pairs ϕ, ā such that ā ∈ An and ϕ ∈ L, so we add at
most κ witnesses to An, and |An+1| ≤ |An|+ κ = κ. Finally:

|N | =

∣∣∣∣∣⋃
n<ω

An

∣∣∣∣∣ ≤∑
n<ω

|An| ≤ κ · ℵ0 = κ.

qed3.1.14

We conclude with a result on which many constructions in Model Theory are based:

Definition 3.1.15. Let (I,<) be linearly ordered, and (Mi : i ∈ I) an increasing
sequence of structures, i.e., i ≤ j =⇒ Mi ⊆ Mj. We define a structure N =

⋃
i∈I Mi in

the obvious manner:

N =
⋃
i∈I

Mi

And for a function symbol f or predicate symbol P we define:

fN =
⋃
i∈I

fMi , PN =
⋃
i∈I

PMi

(By
⋃
i∈I f

Mi we mean the union of the graphs. One can and should verify that this is
indeed the graph of a function.)

Notice that with this definition N ⊇ Mi for all i ∈ I, and moreover, it is the unique
such structure whose domain is

⋃
iMi. Also, for every n-ary function symbol f (predicate

symbol P) and n-tuple ā ∈ Nn, there is i ∈ I such that ā ∈ Mi, and then fN(ā) = fMi(ā)
(ā ∈ PN ⇐⇒ ā ∈ PMi).

Proposition 3.1.16 (Elementary Chain Theorem). Let (I,<) be linearly ordered,
and (Mi : i ∈ I) an elementary chain, i.e., i ≤ j =⇒ Mi � Mj. Let N =

⋃
i∈I Mi. Then

N � Mi for all i ∈ I.

Proof. We will prove by induction on ϕ(x̄) that for all i ∈ I and ā ∈ Mi: Mi �
ϕ(ā) ⇐⇒ N � ϕ(ā).

(i) ϕ atomic: since N ⊇ Mi.
(ii) ϕ obtained using connectives: standard.
(iii) ϕ(x̄) = ∃y ψ(y, x̄). If Mi � ϕ(y, ā) then there is b ∈ Mi ⊆ N such that

Mi � ψ(b, ā), and by the induction hypothesis N � ψ(b, ā) whereby N � ϕ(ā).
Conversely, assume N � ϕ(ā). Then there is b ∈ N such that N � ψ(b, ā), and
there is some j ≥ i such that b ∈Mj. Since ā ∈Mi ⊆Mj as well, our induction

52 3. MODEL THEORY

hypothesis tells us that Mj � ψ(b, ā), whereby Mj � ϕ(ā). As Mi � Mj:
Mi � ϕ(ā), as required. qed3.1.16

3.2. Quantifier elimination

Let C be the field of complex numbers, F the field of complex numbers which are
algebraic over Q (i.e., are the roots of polynomials with rational coefficients). It is
a classical fact that C is an algebraically closed field (the “Fundamental Theorem of
Algebra”, although it is in fact an analytic result), and that F is an algebraically closed
sub-field of C. Clearly F ⊆ C as structures (in Lring).

We would like to show that F � C. In order to do that we need, a priori, to verify for
every formula ϕ(x̄), and every tuple of rational numbers ā, that Q � ϕ(ā) ⇐⇒ R � ϕ(ā).
Now this would be easy to verify for atomic formulae, and would therefore follow for
quantifier-free formulae (i.e., formulae constructed without the use of quantifiers). But
for a formula containing many quantifiers, this becomes a more complicated task.

The standard method of simplifying this task is what is a technique called quantifier
elimination. We assume throughout that we work in a fixed signature L.

Definition 3.2.1. Let T be a theory. We say that T has quantifier elimination (QE)
if for every formula ϕ(x̄), where x̄ is a non-empty tuple, there is a quantifier-free formula
θ(x̄) which is equivalent to ϕ modulo T .

Note that the requirement that x̄ be non-empty does not mean that ϕ cannot be a
sentence: it just means that if ϕ is a sentence, we would have to write it as ϕ(x) with a
dummy variable x, so θ may have x as a free variable (the problem is that a signature
without constant symbols may simply have no quantifier free sentences).

From now on, all tuples x̄, ā, etc., are assumed to be non-empty, even if not said so
explicitly.

Lemma 3.2.2. Assume that for quantifier-free formula ϕ(x̄, y) (where x̄ is non-empty!)
there is a quantifier-free formula θ(x̄) which is equivalent modulo T to ∃y ϕ(x̄, y). Then
T has QE.

Proof. We prove that every formula ϕ(x̄) is equivalent modulo T for a quantifier-free
formula θ(x̄) by induction on the structure of ϕ:

(i) If ϕ atomic it is quantifier-free.
(ii) If ϕ = ¬ψ: by the induction hypothesis ψ is equivalent modulo T to a quantifier-

free formula θ and then ϕ is equivalent modulo T to ¬θ which is quantifier-free.
Similarly for other connectives.

(iii) Assume ϕ(x̄) = ∃y ψ(x̄, y). By the induction hypothesis ψ is equivalent modulo
T to a quantifier-free formula θ(x̄, y). By assumption, ∃y θ(x̄, y) is equivalent
modulo T to some quantifier-free θ′(x̄). Therefore:

ϕ(x̄) ≡T ∃y θ(x̄, y) ≡T θ
′(x̄). qed3.2.2

3.2. QUANTIFIER ELIMINATION 53

We can somewhat weaken the assumption of Lemma 3.2.2. Recall that a literal is an
atomic formula or its negation; a conjunctive clause is a conjunction of literals; and a
DNF formula is a disjunction of conjunctive clauses. Recall also that every quantifier-free
formula is logically equivalent to a DNF formula.

Corollary 3.2.3. Assume that for conjunctive clause ϕ(x̄, y) there is a quantifier-
free formula θ(x̄) which is equivalent modulo T to ∃y ϕ(x̄, y). Then T has QE.

Proof. Let ϕ(x̄, y) be any quantifier-free formula. Then it is logically equivalent to
a formula in DNF, which we may write as

∨
i<n ψi(x̄, y) where each ψi is a conjunctive

clause. It is left to the reader to verify that:

∃y ϕ(x̄, y) ≡ ∃y
∨
i<n

ψi(x̄, y) ≡
∨
i<n

∃y ψi(x̄, y).

By assumption, each formula ∃y ψi(x̄, y) is equivalent modulo T to a quantifier-free for-
mula θi(x̄). We conclude that ∃y ϕ(x̄) ≡T

∨
i<n θi(x̄). As the latter is quantifier-free we

can apply Lemma 3.2.2 to conclude. qed3.2.3

We start with a quantifier-elimination result involving getting one’s hands dirty:

Example 3.2.4. Let DLO (dense linear ordering) be the set of consequence of the
following sentences in the signature {<}:

∀x x 6< x

∀xyz (x < y) ∧ (y < z) → (x < z)

∀xy (x < y) ∨ (y < x) ∨ (x = y)

∀x∃yz (y < x) ∧ (x < z)

∀xy∃y (x < y) → ((x < z) ∧ (z < y))

This is the theory of dense linear orderings without endpoints.
Notice that modulo DLO (in fact, modulo the first three axioms) we have that x 6= y

is equivalent to (x < y)∨ (x > y) and x 6< y is equivalent to (x = y)∨ (y < x). It follows
that modulo DLO, every quantifier-free formula is equivalent to one in DNF in which
all the literals are positive. Therefore, as in Corollary 3.2.3, it suffices to show that if
ϕ(x̄, y) is a positive conjunctive clause then it is equivalent modulo DLO to quantifier-
free formula. We can write ϕ(x̄, y) = ϕ1(x̄) ∧ ϕ2(x̄, y), where ϕ1 is the conjunction of all
the literals which do no mention y and ϕ2 is the conjunction of those which do. Clearly
∃y ϕ ≡ ϕ1∧∃y ϕ2, so we may assume that all the literals in ϕ involve y. There are several
cases:

(i) If y < y appears in ϕ then ∃y ϕ ≡DLO x0 6= x0.
(ii) If y = xi appears in ϕ then ∃y ϕ ≡ ϕ(xi, x̄).
(iii) Otherwise, ϕ only contain literals of the form y = y, y < xi and xi < y. The

first kind are always true, so we ignore them. If ϕ contains no literals of the
second kind then y larger than all the xi would always satisfy ϕ. Similarly, if ϕ

54 3. MODEL THEORY

contains no literals of the third kind then y smaller than all the xi would always
satisfy ϕ. Since DLO says there is no maximal or minimal element it follows
that in either case ∃y ϕ(x̄, y) ≡DLO x0 = x0.

(iv) The last case is that ϕ contains both literals of the form y < xi and xi < y. Let

θ(x̄) =
∧
{xi < xj : “xi < y” and “y < xj” appear in ϕ}.

Since DLO says the order is dense: ∃y ϕ(ȳ, x) ≡DLO ψ(x̄).

It follows that DLO has QE.

The following result depends heavily on the Compactness Theorem, although in a
manner essentially different than that used, say, in the proof of the upward Löwenheim-
Skolem theorem.

Definition 3.2.5. Let T be a theory. Let Φ be a set of formulae in a fixed tuple of
free variables x̄ (i.e., every ϕ ∈ Φ is of the form ϕ(x̄)), which is closed under connectives.

We say that a formula ψ(x̄) is determined by Φ modulo T if for every two models
M,N � T , and ā ∈M , b̄ ∈ N of the appropriate length:[

∀ϕ ∈ Φ M � ϕ(ā) ⇐⇒ N � ϕ(b̄)
]

=⇒
[
M � ψ(ā) ⇐⇒ M � ψ(b̄)].

Lemma 3.2.6. Assume ψ is determined by Φ modulo T . Then whenever M � T and
ā ∈ M is of the correct length such that M � ψ(ā), there is a formula ϕ ∈ Φ such that
M � ϕ(ā) and T � ϕ→ ψ.

Proof. Assume that M � T and ā ∈M is such that M � ψ(ā). Let:

Φ1 = {ϕ ∈ Φ: M � ϕ(ā)}
Γ1 = T ∪ Φ1 ∪ {¬ψ}.

We claim that Γ1 is unsatisfiable. Indeed, if it were then there would be a model N � T
and a tuple b̄ ∈ N such that N � ¬ψ(b̄) and yet for all ϕ ∈ Φ: M � ϕ(ā) =⇒ N � ϕ(b̄).
Since Φ is closed under ¬, this means that for all ϕ ∈ Φ: M � ϕ(ā) ⇐⇒ N � ϕ(b̄). This
contradicts the assumption.

So Γ1 is not satisfiable, and by compactness there is a finite subset Φ′
1 ⊆ Φ1 such

that T ∪Φ′
1 ∪ {¬ψ} is not satisfiable. Let ϕ1 =

∧
Φ′

1: then M � ϕ1(ā) and T ∪ {ϕ1,¬ψ}
is not satisfiable, i.e., T � ϕ1 → ψ. Since Φ is closed under ∧ we have ϕ1 ∈ Φ, as
required. qed3.2.6

Proposition 3.2.7. Let T be a theory. Let Φ be a set of formulae in a fixed tuple x̄,
closed under connectives, and let ψ(x̄) be a formula. Then ψ is determined by Φ modulo
T if and only if ψ is equivalent modulo T to some ϕ ∈ Φ.

Proof. One direction is clear. For the other, assume ψ is determined by Φ modulo
T . Let:

Φ2 = {ϕ ∈ Φ: T � ϕ→ ψ}
Γ2 = T ∪ {ψ} ∪ {¬ϕ : ϕ ∈ Φ2}.

3.2. QUANTIFIER ELIMINATION 55

Lemma 3.2.6 says precisely that Γ2 is not satisfiable. Therefore there is a finite subset
Φ′

2 ⊆ Φ2 such that T ∪ {ψ} ∪ {¬ϕ : ϕ ∈ Φ′
2} is not satisfiable. Let ϕ2 =

∨
Φ′

2. Then
ϕ2 ∈ Φ, and T � ϕ2 → ψ. Also, ¬ϕ2 is logically equivalent to

∧
{¬ϕ : ϕ ∈ Φ′

2}, so
T ∪ {¬ϕ2, ψ} is not satisfiable, i.e., T � ψ → ϕ2.

Therefore ϕ2 ≡T ψ as required. qed3.2.7

Theorem 3.2.8. Let T be a theory. Then the following are equivalent:

(i) T has quantifier elimination.
(ii) For every non-empty tuple of free variables x̄, the set of quantifier-free formulae

in x̄ determines modulo T every formula of the form ∃y ϕ(x̄, y) where ϕ is
conjunctive clause.

Proof. Follows immediately from Corollary 3.2.3 and Proposition 3.2.7. qed3.2.8

Let ACF be the theory of algebraically closed fields, in the signature Lring =
{0, 1,−,+, ·}:

∀xy x+ y = y + x ∀xyxy = yx

∀xyz (x+ y) + z = x+ (y + z) ∀xyz(xy)z = x(yz)

∀x x+ 0 = x ∀x x1 = x

∀x x+ (−x) = 0 ∀x∃y x 6= 0 → xy = 1

∀xyz (x+ y)z = xz + yz

∀x0 . . . xn−1∃y yn + xn−1y
n−1 + . . .+ x1y + x0 = 0

All the axioms but the last form the theory of fields. The last axiom is an axiom scheme,
repeated for every 0 < n < ω, saying the field is algebraically closed.

Theorem 3.2.9. The theory ACF eliminates quantifiers.

Proof. Let K and L be two algebraically closed fields, and ā ∈ K, b̄ ∈ L two finite
tuples of the same length satisfying the same quantifier free formulae. We need to show
that they satisfy the same formulae of the form ∃y ϕ(y, x̄) where ϕ is a conjunctive clause.

The only atomic formulae in Lring are of the form t = t′, where t, t′ are terms. It is
equivalent (modulo the theory of fields) to t′′ = 0 where t′′ = t− t′. Also, every term in
Lring evaluates to a polynomial with integer coefficients. Therefore, every atomic formula
is equivalent to one of the form f(x̄) = 0 where f(X̄) ∈ Z[X̄]. A conjunctive clause is
therefore a conjunction of polynomial equalities and inequalities.

Let A0 ⊆ K be the sub-ring generated by K, and A ⊆ K the generated sub-field, i.e.,
the quotient field of A0; similarly, let B0 ⊆ L be the ring generated by b̄ and B ⊆ L the
generated field. The fact that ā and b̄ satisfy the same quantifier-free formulae means
precisely that there is a (unique) isomorphism of rings θ0 : A0 → B0 which extends (again,
uniquely) to an isomorphism θ : A→ B.

56 3. MODEL THEORY

Assume now that K � ∃y ϕ(y, ā), where ϕ is a conjunctive clause, and let c ∈ K be
such that K � ϕ(c, ā). We need to find d ∈ L such that L � ϕ(d, b̄). We consider two
cases:

(i) If c is algebraic over A, it satisfies a minimal polynomial f(Y) ∈ A[Y]. Let
g(Y) = θ(f) ∈ B[Y]: then there is in L a root for g, call it d, and θ extends
uniquely to an isomorphism θ′ : A[c] → B[d] sending c to d. As ϕ is quantifier-
free, this implies in particular that L � ϕ(d, b̄).

(ii) If c is transcendental over A, write ϕ as

ϕ(y, x̄) =
∧
i<k

fi(y, x̄) 6= 0 ∧
∧
j<`

gj(y, x̄) = 0.

Since c is transcendental, each gj(Y, ā) is the zero polynomial in A[Y], whereby
gj(Y, b̄) = 0 in B[Y]. Also, each fi(Y, ā) ∈ A[Y] must be non-zero. Therefore
h(Y) = Y ·

∏
i<k fi(Y, b̄) + 1 ∈ B[Y] is non-constant, and has a root d ∈ L.

Clearly fi(d, b̄) 6= 0 for all i < k, whereby L � ϕ(d, b̄). qed3.2.9

Definition 3.2.10. A theory T is model-complete if whenever M ⊆ N are both
models of T then M � N.

Lemma 3.2.11. If T eliminates quantifiers then it is model-complete.

Proof. Immediate. qed3.2.11

Fact 3.2.12. All rings under consideration are commutative with a unit.

(i) Every proper ideal of a ring is contained in a maximal ideal.
(ii) If R is a ring and I ⊆ R is a maximal ideal then R/I is a field.
(iii) Every field extends to an algebraically closed one.
(iv) If K is a field and X̄ is a finite tuple of unknowns, the polynomial ring K[X̄]

is Noetherian, i.e., every ideal I ⊆ K[X̄] is finitely generated.

Corollary 3.2.13 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field,
X̄ = X0, . . . , Xn−1, R = K[X̄] and I ⊆ R a proper ideal. Then I has a common root in
K (i.e., a tuple ā ∈ Kn such that f(ā) = 0 for all f ∈ I).

Proof. Since K[X̄] is Noetherian, we can write I = (f0, . . . , fm−1), where each
fi(X̄) ∈ K[X̄]. Since I is proper, it extends to a maximal proper ideal J ⊆ R. Let
F = R/J , which is a field as J is maximal. Then we can view F as an extension of K via
the embedding a 7→ (a+ J). As every field embeds in an algebraically closed field, let L
be an algebraically closed extension of F . Then K ⊆ L, and as ACF is model-complete:
K � L.

For i < n let bi = Xi+J ∈ F ⊆ L. For each f(X̄) ∈ J we have f(b̄) = f(X̄)+J = 0+
J = 0F , so b̄ ∈ Ln is a common root of J , and therefore of I. Therefore L � ∃ȳ

∧
i<m fi(ȳ),

and this is a formula with parameters in K, so as K � L: K � ∃ȳ
∧
i<m fi(ȳ) Since the

fi generate I, I has a common root in K. qed3.2.13

EXERCISES 57

Exercises

Exercise 3.1. (i) Show that if K is a class of structures then Th(K) is a theory.
(ii) We could have defined Mod(Σ) for any set of sentences Σ (which is not closed

under implication). Show that Th(Mod(Σ)) is the minimal theory containing
Σ.

Exercise 3.2 (Ultrapowers). Let M be a structure, I a set, and U an ultrafilter on
I. Let Mi = M for all i ∈ I. Then the ultraproduct

∏
i∈I Mi/U =

∏
i∈I M/U is called

an ultrapower of U , also denoted MI/U or simply MU .
Show there exists a canonical elementary embedding of M in MU .

Exercise 3.3. Prove Lemma 3.1.3.

Exercise 3.4. Finish the proof of Example 3.1.6.

Exercise 3.5. Let L be a signature (as usual, with equality). Recall from Defini-
tion 3.0.2 the notion of an elementary class of structures.

Show that the class of all infinite L-structures is elementary, but the class of all finite
such structures is not. (Hint: use the Compactness Theorem for the second item.)

Exercise 3.6. Let M0, M1 and M2 be L-structures, and assume that M0,M1 � M2,
and that moreover M0 ⊆M1. Then M0 � M1.

Exercise 3.7. Let M be a finite structure. Show that M has no proper elementary
extensions or substructures.

Exercise 3.8. Complete the proof of Proposition 3.1.10.

Exercise 3.9 (Application of the Löwenheim-Skolem Theorems). (i) Let T
be a theory. Show that if T has arbitrarily large finite models then it has an
infinite model, and that if it has an infinite model then it as a model of size κ
for every infinite cardinal κ ≥ |L|.

(ii) (Vaught’s Test)
Let T be a theory with no finite models, and assume that T is κ-categorical for
some infinite cardinal κ ≥ |L|. Show that T is complete.

Exercise 3.10. Assume that the language L is countable. We say that a structure
M is weakly ℵ0-homogeneous if for every two finite tuples ā, b̄ ∈ M of the same length
which satisfy the same formulae in M, and every c ∈ M , there is d ∈ M such that ā, c
and b̄, d satisfy the same formulae in M.

(i) Let M be any structure, ā, b̄ ∈M two finite tuples satisfying the same formulae.
Let c ∈M . Show there exists N � M such that |N | = |M | and there is d ∈ N
such that ā, c and b̄, d satisfy the same formulae in N.

(ii) Show that every countable structure admits a countable elementary extension
which is weakly ℵ0-homogeneous.

58 3. MODEL THEORY

(iii) A structure M is strongly ℵ0-homogeneous if whenever there are two tuples
ā, b̄ ∈M which satify the same formula, there is an automorphism f ∈ Aut(M)
(i.e., an isomorphism of M with itself) sending ā to b̄. Show that a countable
weakly ℵ0-homogeneous is strongly ℵ0-homogeneous.

Exercise 3.11. For p prime, let ACFp be ACF along with 1+1+. . .+1 (p times) = 0.
Let ACF0 be ACF along with 1 + 1 + . . .+ 1 (p times) 6= 0 for each p.

Show that for p prime or zero the theory ACFp is complete.

Exercise 3.12. Let F be your favourite field. Let L = {0,−,+} ∪ {ma}a∈F , where
0 s a constant symbol, − a unary function symbol, + a binary function symbol, and ma

is a unary function symbol for each a ∈ F . This is the language of vector spaces over F .
If V is a vector space, it can be naturally identified with an L-structure, where ma is

scalar multiplication by a ∈ F . (Note that the field F is part of the language, not of the
structure).

Show that the class of vector spaces over F (i.e., the structures with which they are
identified as above) is elementary. Do this by writing down a list Σ (possibly infinite)
of L-sentences such that M � Σ if and only if M comes from a vector space as in the
preceding paragraph. (You do not have to prove in detail you’ve got the right axioms,
but you do need to get them right.)

Similarly, show that the class of infinite vector spaces over F is elementary.

Exercise 3.13. Show that for every fields F , the theory of infinite vector spaces over
F eliminates quantifiers. (You may find that if you assume that F is finite the proof is
somewhat easier.)

Exercise 3.14. Show that the theory of infinite vector spaces over a fixed field F is
complete.

CHAPTER 4

Incompleteness

The goal of this chapter is to prove several results about decidability in Mathematics.
The most famous is probably Gödel’s Incompleteness Theorem, which roughly says that
we can never give a complete set of axioms for Mathematics. That is to say that there
is no set of sentences Σ such that:

• A sentence is true (in the “real world” of Mathematics) if and only if it is a
consequence of Σ.

• The set Σ is decidable, i.e., there is a procedure, or algorithm, by which we can
decide for each sentence ϕ whether ϕ ∈ Σ or not (so there is a practical way to
“give” Σ).

In fact, since we do not really know for every sentence whether it is true or not in the real
world (or else we could shut down most of the Mathematics departments and research
institutes), we need to prove a stronger result: no complete theory extending a basic
theory we know is true can have a decidable axiomatisation.

What do we mean by “mathematics”? The standard answer to that would be set
theory, as all of mathematics can indeed be developed therein. However, set theory is
way stronger than what we need here: we can show that incompleteness already arises if
we restrict our attention to arithmetic, i.e., the structure formed by the natural numbers.
Even though infinite mathematical structures cannot live within arithmetic, which deals
after all with finite objects, all the mathematical reasoning can be viewed as taking place
entire inside arithmetic, and this will be enough. Of course, once there is no complete
axiom system for arithmetic, there can be none for set theory or any other mathematical
theory which is sufficiently strong to contain arithmetic in one form or another, which is
what we want to prove.

We also need to define formally what we mean by an algorithm. In order to define an
algorithm precisely, one usually defines what we call a computation model. This consists
of the following information:

(i) What kind of input an algorithm is expected to take (the computation model’s
domain), and what kind of output it is expected to give (its range).

(ii) What the atomic computations are.
(iii) How an algorithm is constructed from these simple building blocks (how algo-

rithms are executed).

There are many conceivable computation models. Among the best know are:

59

60 4. INCOMPLETENESS

– The model of Turing machines (after Allan Turing) is essentially the one imple-
mented by modern computers (with the difference that Turing machines have infinite
memory). It is noteworthy that this model preceded computers by many years.

– The model of recursive functions is more mathematical in nature: there is no
corresponding physical representation of the model as in the previous two, just functions
that we construct according to certain rules.

The interesting thing is all these computation models and others that attempt to
capture our intuitive idea of an algorithm are equivalent, in the sense that they can
calculate the same functions. This serves as strong evidence to the somewhat vague
(and therefore unprovable) conjecture that the “calculable” functions are precisely the
recursive ones, know as Church’s thesis.

Therefore, the choice of a computation model is not very important. As mathemati-
cians, we naturally opt for that of recursive functions.

4.1. Recursive functions

The recursive functions will be defined formally below. Informally, each recursive
function represents an algorithm, or a computer program, that takes as input finite
tuples of a fixed length of natural numbers and performs a certain calculation on them.
If the calculation ever stops, it yields a value which is itself a natural number; if the
computation does not stop, which may well happen, the function is not defined for this
specific input. Therefore, the recursive functions are going to be partial functions.

Definition 4.1.1. Let n < ω, A ⊆ Nn, and let f : A → N. Then f is a partial
function from Nn to N, denoted f : Nn 99K N. The set A is the domain of f , denoted
dom(f). We consider A to be part of the information contained in f , which is why we
allow ourselves to omit it in the notation. If x ∈ Nn r dom(f), then we say that f(x) is
not defined.

If dom(f) = Nn, then f is total, denoted as usual f : n → N.

If P ⊆ Nn is a predicate, we define its characteristic function χP : Nn → N by:

χP (ā) =

{
1 ā ∈ P
0 ā /∈ P

Projections: for every i < n < ω, πn,i : Nn → N is defined by: πn,i(x0, . . . , xn−1) = xi.
In particular, π1,0 is the identity: π1,0(x) = x.

If f : Nn 99K N and gi : Nm 99K N are partial functions for i < n, we define the
composition:

h = f ◦ (g0, . . . , gn−1) : Nm 99K N

dom(h) = {ā ∈ Nm : ā ∈
⋂
i<n

dom(gi) and (gi(ā) : i < n) ∈ dom(f)}

4.1. RECURSIVE FUNCTIONS 61

And for ā ∈ dom(h):

h(ā) = f(gi(ā) : i < n).

Another way to construct functions from others is the µ-operator. Let f : Nn+1 99K N.
We define h(ȳ) = µx (f(ȳ, x) = 0) as a partial function h : Nn 99K N. For ā ∈ Nn, h(ā) = b
if and only if f(ā, c) is defined for all c ≤ b, f(ā, c) > 0 for all c < b, and f(ā, b) = 0. If
no such b exists then h(ā) is not defined. (Think of a computer programme calculating
f(ā, b) for b = 0, 1, . . ., stopping the moment it finds such a b for which the result is 0.
A function not being defined corresponds to the programme never stopping. Indeed this
can happen in one of two cases: either one of the calculations of f(ā, b) never stops, or
they all stop but yield non-zero results.)

Definition 4.1.2. The family recursive functions is the smallest family of partial
functions from powers of N to N, containing χ≤, +, · and all the projections, and closed
under composition and the µ-operator.

In other words, the family of recursive functions is generated by χ≤, +, · and projec-
tions by composition and the µ-operator. Notice that all the basic recursive functions are
total, and that the composition of total functions is total, so the only source for non-total
recursive functions is the µ-operator.

Constant functions. Let cn(x) denote the function equal to n for all x. Then
c1(x) = χ≤(x, x), and the latter can be obtained as χ≤ ◦ (id, id). As χ≤ and id = π1,0 are
recursive, so is c1. Then we get c2 = c1+c1 (i.e., +◦(c1, c1)), etc. Finally, c0 = χ≤◦(c2, c1).
These are all functions in a single variable. Then constant function n in m variables is
recursive as it can be written as cn ◦ πm,0 From now on we will identify the constant
functions with their values and write n instead of cn.

Recursive predicates. We define:

Definition 4.1.3. A predicate P ⊆ Nn is recursive if its characteristic function χP
is a (total) recursive function.

Note that the binary predicate ≤ is recursive by definition.
Let P ⊆ Nn be a recursive predicate, fi : Nm → N total recursive functions for i < n.

Define Q ⊆ Nm by:

Q(ā) ⇐⇒ P (f0(ā), . . . , fn−1(ā)).

Then Q is recursive. Indeed, we have:

χQ = χP ◦ (fi : i < n).

For example, we conclude that the unary predicate {0} (i.e., “x = 0”) is recursive.
Indeed:

x = 0 ⇐⇒ x ≤ 0(⇐⇒ id(x) ≤ c0(x)).

62 4. INCOMPLETENESS

Boolean combinations of recursive predicates. Let P,Q ⊆ Nn be recursive
predicates. Note that χP∧Q = χP · χQ, and χ¬P = χ{0} ◦ χP , so ¬P and P ∧ Q are
recursive. It follows that P ∨Q = ¬(¬P ∧¬χ) is recursive as well, and using disjunctive
normal form, if Pi : i < m are recursive of the same arity and g : {T, F}m → {T, F} is
any (Boolean) function, then g ◦ (Pi : i < m) is also a recursive predicate.

Since ≤ is recursive, it follows that <, =, 6= are also recursive.

µ-operator for recursive predicates. Let P ⊆ Nn+1 be a recursive predicate.
Define f(ȳ) = µxP (ȳ, x) : Nn 99K N by letting f(ā) be the least b such that P (ā, b)
holds, or if no such b exists then f(ā) is undefined. Then f is recursive. Indeed,

f(ȳ) = µx(χ¬P (ȳ, x) = 0).

Bounded µ-operator and quantifiers. Let P ⊆ Nn+1 be recursive, and define
f(x̄, z) = µy<z P (x̄, y) as the least y smaller than z such that P (x̄, y), or z if no such y
exists. Then f is a total recursive function:

f(x̄, z) = µy (y ≥ z ∨ P (x̄, y)).

Similarly, we can define Q ⊆ Nn+1 by: Q(x̄, z) ⇐⇒ ∃y<z P (x̄, y), which is true if and
only if there is some y < z such that P (x̄, y). This is a recursive predicate, as:

∃y<z P (x̄, y) ⇐⇒ (µy<z P (x̄, y)) < z.

We define ∃y≤z, ∀y<z and ∀y≤z similarly.

Definition by cases. Let Pi : i < m be n-art recursive predicates such that for each
tuple ā ∈ Nn exactly one of them is true, and let fi : i < m be total n-ary recursive
functions. Define:

g(x̄) =

f0(x̄) if P0(x̄)

. . .

fn−1(x̄) if Pn−1(x̄).

Then g is recursive. Indeed, g(x̄) = χP0(x̄) · f0(x̄) + . . . + χPn−1(x̄) · fn−1(x̄). We may
replace “if Pn−1(x̄)” with “otherwise”, so all we require of P0, . . . , Pn−2 is to be recursive
and mutually exclusive, noting that then Pn−1 = ¬(P0 ∨ . . . ∨ Pn−2) is recursive as well.

The same holds for definition of a predicate by cases:

R(x̄) ⇐⇒

Q0(x̄) if P0(x̄)

. . .

Qn−2(x̄) if Pn−2(x̄)

Qn−1(x̄) otherwise.

4.1. RECURSIVE FUNCTIONS 63

Miscellaneous functions. Subtraction cannot be recursive for the technical reason
that its range contains negative numbers which we do not allow. Instead we define for
x, y ∈ N:

x−. y =

{
x− y x ≥ y

0 otherwise.

Then −. is recursive. Indeed, x−. y = µz (y + z ≥ x).
Similarly, the binary relation x | y (x divides y) is recursive. Indeed:

x | y ⇐⇒ ∃z≤y (xz = y).

Ordered pairs. Let us define: op(x, y) = (x+ y)2 + x+ 1. Observe that (x+ y)2 <
op(x, y) ≤ (x+ y+ 1)2. This is a total recursive function, whose name stands for ordered
pair. This is justified by the following:

Lemma 4.1.4. For all a, b, c, d ∈ N:

op(a, b) = op(c, d) ⇐⇒ a = c ∧ b = d.

Proof. Assume op(a, b) = op(c, d). Then (a+b)2 < (c+d+1)2, whereby a+b ≤ c+d.
Similarly c+d ≤ a+b, so a+b = c+d. But then (a+b)2+a+1 = (c+d)2+c+1 =⇒ a = c,
and b = d ensues. qed4.1.4

The coding function β. The function op allows us to code pairs of natural numbers
in a single natural number. We wish to code sequences of arbitrary finite length of natural
numbers in single numbers.

Lemma 4.1.5. Let m ∈ N, c = m!. Then ac + 1 and bc + 1 are relatively prime for
all a < b ≤ m.

Proof. Assume not, and let p be a common prime factor of ac+ 1 and bc+ 1. Then
p | (a− b)c, so p ≤ m. But then p | ac =⇒ p - ac+ 1. qed4.1.5

We now define the following binary function.

β(x, y) = µz<x ∃t<x∃w<x
(
x = op(t, w) ∧ t op(z, y) + 1 | w

)
Proposition 4.1.6. β is recursive, and for every tuple ai : i < n there is a number a

such that for all i < n: β(a, i) = ai.

Proof. Let m = op(max{ai : i < n}, n), c = m!, d =
∏

i<n(c · op(ai, i) + 1) and
a = op(c, d) (yes, values here grow very fast. . .) We claim that a is as required.

Indeed, let us calculate β(x, y) where x = a and y = i < n.
Assume first that z ≤ ai (clearly ai < a), and t, w < a are such that x = op(t, w) ∧

t op(z, y) + 1 | w. Then t = c and w = d. Also, op(z, i) > 0, so c op(z, i) + 1 > 1. As
op(z, i) ≤ m, it is relatively prime to op(aj, j) for all j < n, unless j = i and ai = z.
Therefore z = ai.

64 4. INCOMPLETENESS

Thus the least z for which ∃t<x∃w<x
(
x = op(t, w) ∧ t op(z, y) + 1 | w

)
can possibly

be true is z = ai. On the other hand, letting t = c < a and w = d < a we see that this
is true for z = ai < a, whereby β(a, i) = ai. qed4.1.6

Coding and decoding of finite sequences. For each n and tuple ā = a<n =
a0, . . . , an−1 we define 〈ā〉 as the least a such that:

(i) β(a, 0) = n,
(ii) β(a, i+ 1) = ai.

Note that we always have β(a, i) ≤ a, so n, ai ≤ 〈a<n〉 for all i < n. We call 〈a0, . . . , an−1〉
the sequence number of the finite sequence a0, . . . , an−1.

For every fixed n, the function fn(x0, . . . , xn−1) = 〈x0, . . . , xn−1〉 is recursive:

fn(x̄) = µy (β(y, 0) = n ∧ β(y, 1) = x0 ∧ . . . ∧ β(y, n) = xn−1).

Conversely, we can decode sequence numbers using the following recursive functions:

len(x) = β(x, 0)

(x)yβ(x, y + 1).

Thus len(〈a0, . . . , an−1〉) = n and (〈a0, . . . , an−1〉)i = ai for i < n.

Operations on sequence numbers. We define Seq ⊆ N as the set of sequence
numbers. This is recursive:

Seq(x) ⇐⇒ ¬∃y<x
(

len(y) = len(x) ∧ ∀i<len(x)(x)i = (y)i
)
.

We can extract initial sub-sequences. Indeed, define

Init(x, y) = µz
(

len(z) = y ∧ ∀i<y(z)i = (x)i
)
.

Then Init is a total recursive function, satisfying Init(x, y) = 〈(x)0, . . . , (xy−1)〉. If m ≤ n
then Init(〈a<n〉) = 〈a<m〉.

We can similarly concatenate sequences:

x ∗ y = µz
(

len(z) = len(x) + len(y)

∧ ∀i<len(x)(z)i = (x)i

∧ ∀i<len(y)(z)len(x)+i = (x)i
)
.

Inductive definitions. Let f : Nn+1 → N be a total function. Define

f̃(ā, b) = 〈f(ā, 0), . . . , f(ā, b− 1)〉.

Then f̃ is total, and is recursive if and only if f is. Indeed, if f̃ is recursive then we can
recover f as:

f(x̄, y) = (f̃(x̄, y + 1))y.

Conversely, if f is recursive, then:

f̃(x̄, y) = µz (len(z) = y ∧ ∀i<y(zi) = f(x̄, i)).

4.2. CODING SYNTAX IN ARITHMETIC 65

Let g : Nn+2 → N be a total recursive function. Then there exists a unique total
function f : Nn+1 → N satisfying:

f(x̄, y) = g(f̃(x̄, y), x̄, y).

Moreover, f is recursive. Indeed, a function f satisfies this equation if and only if f̃
satisfies:

f̃(x̄, y) = µz
(

len(z) = y ∧ ∀i<y(z)i = g(Init(z, i), x̄, i)
)
.

This is an explicit definition, so such an f̃ exists, is unique, and is recursive, so f exists,
and is unique and recursive.

This means we can use an explicit definition for f(x̄, y) which uses the value of f(x̄, z)

for z < y (since these values can be extracted from the value of f̃(x̄, y)). Such a definition
would be called inductive.

Primitive recursion. Let us see this through a common example. Let g : Nn → N
and h : Nn+2 → N be total recursive functions. Define f : Nn+1 → N by:

f(x̄, y) =

{
g(x̄) y = 0

h(x̄, f(x̄, z), z) y = z + 1.

We then say that f is constructed from g and h through primitive recursion.
We claim that f is recursive. Indeed, define

g′(t, x̄, y) =

{
g(x̄) y = 0

h(x̄, (t)y−. 1, y −. 1) otherwise.

Then g is total recursive and

f(x̄, y) = g′(f̃(x̄, y), x̄, y).

Remark 4.1.7. One can define the family of primitive recursive functions as the
minimal family of functions which:

• Contains the constant function x 7→ 0, the successor function s(x) = x+ 1, and
all the projections πn,m : Nn → N.

• Is closed under composition.
• Is closed under primitive recursion.

Note that all the primitive recursive functions are total. By the arguments above, every
primitive recursive function is recursive.

4.2. Coding syntax in Arithmetic

Let L be a finite signature. We will assign numerical codes to symbols and expressions
of L. These codes are called Gödel numbers or codes.

• To the mth variable xm we associate the code pxmq = 〈0,m〉.

66 4. INCOMPLETENESS

• For each n we enumerate the n-ary function and predicate symbols as
{fn,m : m < `n}. To the mth n-ary function symbol fn,m we associate the
code pfn,mq = 〈1, n,m〉.

• We numerate the n-ary predicate symbols similarly, and to Pn,m we associate
the code pPn,mq = 〈2, n,m〉.

• We also define p¬q = 3, p→q = 4, and p∀q = 5.
• Once we have defined the Gödel codes of variables and function symbols, we

can define the Gödel codes of terms inductively:

pft0, . . . , tn−1q = 〈pfq, pt0q, . . . , ptn−1q〉.
• We define Gödel codes for atomic formulae similarly:

pPt0, . . . , tn−1q = 〈pPq, pt0q, . . . , ptn−1q〉.
• For convenience, we will restrict our syntax to ¬, →, ∀. We define:

p¬ϕq = 〈p¬q, pϕq〉
pϕ→ ψq = 〈p→q, pϕq, pψq〉

p∀xϕq = 〈p∀q, pxq, pϕq〉.

We also use Arity(x) as shorthand for (x)1. This is recursive.
Recall we showed that β(x, y) ≤ x for all x, y. Rename this function β to be β′, and

re-define β as β(x, y) = β′(x, y)−. 1. Then everything we proved for the old β still holds
for the new β, and in addition, if x > 0 then (x)i < x for all i.

Lemma 4.2.1. The following relations and functions are recursive (and in fact prim-
itive recursive):

(i) V ar(x) = “x is the code of a variable”.
(ii) FSymb(x) = “x is the code of a function symbol.
(iii) PSymb(x) = “x is the code of a predicate symbol.
(iv) Term(x) = “x is the code of a term”.
(v) AF (x) = “x is the code of an atomic formula”.
(vi) Form(x) = “x is the code of a formula”.

Proof. (i) V ar(x) = ∃y<x x = 〈0, y〉 (since pxiq > i).
(ii) FSymb is finite by assumption and therefore recursive.
(iii) PSymb is finite by assumption and therefore recursive.
(iv) We have an inductive definition: Term(x) if and only if:

• x = pvq for some variable v (formally: V ar(x)); or:
• x = 〈pfq, y0, . . . , yn−1〉, where f is an n-ary function symbol and yi is the

code of a term for all i < n (formally: FSymb((x)0), len(x) = Arity((x)0)+
1, and ∀i<Arity((x)0) Term((x)i+1).)

Since len(x) ≥ 1 =⇒ x 6= 0 =⇒ (x)i < x for all i, this is a legitimate inductive
proof.

4.2. CODING SYNTAX IN ARITHMETIC 67

(v) AF (x) if and only if x = 〈pPq, pt0q, . . . , ptn−1q〉, where P is an n-ary function
symbol and ti is a term for all i < n.

(vi) Form(x) if and only if:
• x = pϕq, where ϕ is an atomic formula; or:
• x = p¬ϕq = 〈p¬q, pϕq〉, where ϕ is a formula (i.e., (x)0 = p¬q, len(x) = 2

and Form((x)1)); or:
• x = 〈p→q, pϕq, pψq〉, where ϕ and ψ are formulae; or:
• x = 〈p∀q, pvq, pϕq〉, where v is a variable and ϕ a formula.

As in the case of Term, the only uses of Form in its own definition are for
lower values (if x = 〈. . . , y, . . .〉 then y < x) so this is a legitimate inductive
definition.

qed4.2.1

We may also define more sophisticated syntax-related recursive functions and predi-
cates:

Let us start with defining a predicate Free(x, y). This is an inductive definition by
cases:

Free(x, y) ⇐⇒

x = y V ar(y)

∃i<Arity((y)0)Free(x, (y)i+1) (Term(y) ∧ ¬V ar(y)) ∨ AF (y)

Free(x, (y)1) (y)0 = p¬q

Free(x, (y)1) ∨ Free(x, (y)2) (y)0 = p→q

Free(x, (y)2)x 6= (y)1 (y)0 = p∀q
0 = 1 otherwise.

Then Free(x) is a recursive predicate, and if x is a variable, t a term, and ϕ a formula,
then Free(pxq, ptq) if and only if x appears in t, and Free(pxq, pϕq) if and only x is free
in ϕ.

We obtain as a consequence the following recursive predicate:

Sent(x) ⇐⇒ Form(x) ∧ ∀y<x¬(V ar(y) ∧ Free(y, x))

⇐⇒ x is the code of a sentence.

68 4. INCOMPLETENESS

We can define free substitutions similarly:

FrSub(x, y, z) =

z x = y ∧ V ar(x)

µw
(

len(w) = len(x) ∧ (w)0 = (x)0∧
∀i<Arity((x)0)(w)i+1 = FrSub((x)i+1, y, z)

) (Term(x) ∧ ¬V ar(x)) ∨ AF (x)

〈p¬q, F rSub((x)1, y, z)〉 (x)0 = p¬q

〈p→q, F rSub((x)1, y, z), F rSub((x)2, y, z)〉 (x)0 = p→q

〈p∀q, (x)1, F rSub((x)2, y, z)〉 (x)0 = p∀q ∧ (x)1 6= y

x (x)0 = p∀q ∧ (x)1 = y

17 otherwise.

Then FrSub is recursive, and FrSub(pt′q, pxq, ptq) = pt′[t/x]q, FrSub(pϕq, pxq, ptq) =
pϕ[t/x]q.

We can similarly test whether a free substitution to a formula is correct:

CFrSub(x, y, z) ⇐⇒

0 = 0 AF (x)

CFrSub((x)1, y, z) (x)0 = p¬q

CFrSub((x)1, y, z) ∧ CFrSub((x)2, y, z) (x)0 = p→q

¬Free((x)1, z) (x)0 = p∀q ∧ (x)1 6= y

0 = 0 (x)0 = p∀q ∧ (x)1 = y

0 = 0 otherwise.

We now observe we can tell, using recursive predicates, whether a (code for a) formula
is (the code of) a logical axioms:

• First, x is a code of an instance of A1 if and only if it is a formula and:

∃y<x∃z<x x = 〈p→q, y, 〈p→q, z, y〉〉.

Similarly for A2-4.
• It is an instance of A5 if and only if it is a formula and:

∃y<x∃z<x
(
¬Free(z, y) ∧ x = 〈p→q, y, 〈p∀q, z, y〉〉

)
.

• It is an instance of A6 if and only if it is a formula and:

∃y<x∃z<x∃w<x
(
CFrSub(y, z, w) ∧ x = 〈p→q, 〈p∀q, z, y〉, F rSub(y, z, w)〉

)
.

• Axiom schemes A7-11 are dealt with similarly and left as an exercise.
• Therefore “x is the code of an instance of one of A1-11” is recursive, as a finite

disjunction of recursive predicates.

4.2. CODING SYNTAX IN ARITHMETIC 69

• Finally, define LogAx(x) as saying that either x is an instance of one of A1-11,
or there are y, z < x such that V ar(y), LogAx(z), and x = 〈p∀q, y, z〉. This
inductive definition shows that LogAx is recursive, and LogAx(x) is true if and
only if x = p∀v . . . ∀uϕq, where ϕ is an instance of one of A1-11, i.e., if and
only if x is the code of a logical axiom.

Definition 4.2.2. We say that a set of formulae Γ is decidable if Γ̂ = {pϕq : ϕ ∈ Γ}
is recursive.

Let Γ be a decidable set of formulae. Define DedSeqΓ(x, y) to say that x is a sequence
number, and for all i < len(x) one of the following holds:

• (x)i is a logical axiom; or:

• (x)i ∈ Γ̂; or:
• ∃j, k < i (x)k = 〈p→q, (x)j, (xi)〉.

Then DedSeqΓ is recursive, and holds precisely when x codes a deduction sequences from
Γ.

Define

DedΓ(x, y) ⇐⇒ DedSeqΓ(y) ∧ len(y) > 0 ∧ x = (y)len(y)−. 1.

Then DedΓ is recursive, and holds precisely when y codes a deduction of y from Γ.

Definition 4.2.3. Let T be a theory (i.e., a set of sentences closed under deduction).
We say that T is axiomatised if it has a decidable set of axioms, i.e., if there exists a de-
cidable set of sentences Σ ⊆ T such that T is the set of sentences which are consequences
of Σ.

Say that T is axiomatised, and let Σ ⊆ T be a decidable set of axioms. Then:

ϕ ∈ T ⇐⇒ Sent(pϕq) ∧ ∃y DedΣ(pϕq, y).

Unfortunately the right hand side has no particular reason to be recursive, as it contains
an unbounded quantifier.

Definition 4.2.4. A set P ⊆ N is recursively enumerable (r.e.) if it is empty, or the
range of a total recursive function.

We say that a set of formulae Γ is enumerable if Γ̂ is r.e.

(Compare this with Exercise 4.1.)

Proposition 4.2.5. A predicate P ⊆ N is r.e. if and only if there is a recursive
predicate Q ⊆ N2 such that P (x) ⇐⇒ ∃y Q(x, y).

Proof. Assume first that P is r.e. If P is empty let Q = ∅. Otherwise, P is the
range of a recursive function f , and let Q(x, y) ⇐⇒ x = f(y). Either way Q is recursive
and P (x) ⇐⇒ ∃y Q(x, y).

70 4. INCOMPLETENESS

Conversely, assume Q is recursive and P (x) ⇐⇒ ∃y Q(x, y) If P is empty then it is
r.e. Otherwise, let n ∈ P . Define

f(x) =

{
(x)0 if Q((x)0, (x)1)

n otherwise.

Then f is total recursive and P is the range of f . qed4.2.5

Corollary 4.2.6. Every axiomatised theory is enumerable.

Proposition 4.2.7. A set P ⊆ N is recursive if and only both P and its complement
are recursively enumerable.

Proof. By Exercise 4.1, every recursive set is recursively enumerable. If P is recur-
sive then so is its complement, and thus both are recursively enumerable.

Conversely, assume both P and N r P are recursively enumerable. If either one is
empty, clearly P is recursive. Otherwise, say they are the ranges of the total recursive
functions f and g, respectively.

Let h(x) = µy(f(y) = x∨ g(y) = x). Then h is recursive, and total since every x ∈ N
is either in the range of f or of g. Then P (x) ⇐⇒ f ◦ h(x) = x. qed4.2.7

Lemma 4.2.8. Let P ⊆ N be r.e. and f(x) be total recursive. Then the predicate
P (f(x)) is r.e.

Proof. Say P (x) ⇐⇒ ∃y Q(x, y), where Q is recursive. Then P (f(x)) ⇐⇒
∃y Q(f(x), y), and Q(f(x), y) is recursive. qed4.2.8

Corollary 4.2.9. Every complete axiomatised theory is decidable.

Proof. Let T be an axiomatised theory. Let P = {pϕq : ϕ ∈ T}, Q = {pϕq : ¬ϕ ∈
T}. Since T is axiomatised, P is r.e. Therefore Q is r.e. Since T is complete, Q = NrP ,
so P is recursive. qed4.2.9

Example 4.2.10. ACFp is decidable for every p prime or zero.

4.3. Representation of recursive functions

We may now define our goal more precisely: we will show that the theory of Arithmetic
Th(N, 0, s,+, ·) cannot be axiomatised. Equivalently: no consistent set of axioms for the
natural numbers axiomatises a complete theory.

4.3. REPRESENTATION OF RECURSIVE FUNCTIONS 71

The “standard” set of axioms for the natural numbers is called Peano’s Arithmetic,
or PA: 〈N, 0, s,+, ·〉:

∀x (sx 6= 0)(PA1)

∀x∀y (sx = sy → x = y)(PA2)

∀x (x+ 0 = x)(PA3)

∀x∀y (x+ sy = s(x+ y))(PA4)

∀x (x · 0 = 0)(PA5)

∀x∀y (x · sy = x · y + x)(PA6)

∀x̄
(
(ϕ(x̄, 0) ∧ ∀y (ϕ(x̄, y) → ϕ(x̄, sy))) → ∀y ϕ(x̄, y)

)
(PA7)

The last axiom is in fact a scheme, called the induction scheme (for obvious reasons). It
is sometimes convenient to add another symbol <, and the axiom

∀x∀y ((x < y) ↔ ∃z (y = x+ s(z))).

Modulo this additional axiom, every formula with < is equivalent to one without <, so
this addition changes nothing essential.

Peano’s Arithmetic captures, in some sense, all of our intuition about what should
be true in N. The set of axioms we gave is easily verified to be decidable, so PA is
axiomatised and therefore enumerable.

Notation 4.3.1. For every natural number n, kn is the L-term sn0 (clearly, kN
n = n).

Such a term is sometime called numeral.

Definition 4.3.2. Let T be an L-theory.

(i) We say that a partial function f : Nn 99K N is representable in T if there is a
formula ϕ(x̄, y) such that for every tuple ā ∈ Nn:

f(a0, . . . , an−1) = b =⇒ T � ∀y (ϕ(ka0 , . . . , kan−1 , y) ↔ y = kb)

For tuples ā for which f(ā) is not defined there is no requirement (thus a function
with an empty domain is vacuously representable).

(ii) We say that a relation P (x̄) is representable in T if there is a formula ϕ(x̄) such
that:

P (a0, . . . , an−1) =⇒ T � ϕ(ka0 , . . . , kan−1)

¬P (a0, . . . , an−1) =⇒ T � ¬ϕ(ka0 , . . . , kan−1)

(If ϕ uses connectives and quantifiers other than ¬,→,∀, and ϕ̃ is a logically equivalent
formula which is restricted to ¬,→,∀, then ϕ represents a function or a predicate if ϕ̃
does. Note that this does not depend on the choice of ϕ̃.)

Say that a set P ⊆ Nn is r.e. if {〈ā〉 : ā ∈ P} is.

72 4. INCOMPLETENESS

Lemma 4.3.3. Let f : Nn → N be a total function, and assume its graph {ā, f(ā) : ā ∈
Nn} is r.e. Then f is recursive (and its graph is therefore recursive as well).

Proof. Since the graph is r.e., there is a recursive Q such that f(ā) = b ⇐⇒
∃y Q(〈ā, b〉, y). Define

f1(x̄) = µy Q(〈ā, (y)0〉, (y)1).

Then f1 is recursive, and for all ā, f1(ā) is a pair 〈b, c〉, where b = f(ā) and c is such that
Q(〈ā, b〉, c) (i.e., c witnesses that f(ā) = b.

Now f(x̄) = (f1(x̄))0. qed4.3.3

Proposition 4.3.4. Assume that f(x̄) is a total function and is representable in an
enumerable theory T . Then f is recursive.

Proof. Since T is enumerable, T̂ = {pϕq : ϕ ∈ T} is r.e. Assume that f is repre-
sented by the formula ϕ(x̄, y). Then the function h(ā, b) = p∀y (ϕ(k̄a, y) ↔ y = kb)q is
recursive, and therefore the graph of f is given by:

Gr(f) = {(ā, b) : f(ā) = b} = {(ā, b) : h(ā, b) ∈ T̂}.
By Lemma 4.2.8, Gr(f) is r.e., whereby f is recursive. qed4.3.4

In order to prove a converse to this result we need to show that certain sentences are
provable from T . This requires that T have some minimal strength. Peano’s Arithmetic
is much stronger than is really needed for this. We will axioms for a theory N , chosen
to be just strong enough for the purpose of representing recursive functions.

Axioms N1−6 are the same as PA1−6, and we replace the axiom scheme PA7 with
three new axioms (not schemes):

∀x (sx 6= 0)(N1)

∀x∀y (sx = sy → x = y)(N2)

∀x (x+ 0 = x)(N3)

∀x∀y (x+ sy = s(x+ y))(N4)

∀x (x · 0 = 0)(N5)

∀x∀y (x · sy = x · y + x)(N6)

∀x¬(x < 0)(N7)

∀x∀y (x < sy ↔ (x < y ∨ x = y))(N8)

∀x∀y (x < y ∨ x = y ∨ y < x)(N9)

This theory is very weak (try and prove something useful from it. . .)

Lemma 4.3.5. Say that the term τ(x̄) represents a total function f(x̄) in T if for
every ā: T ` τ(k̄a) = kf(ā). In this case, the formula τ(x̄) = y represents f in T .

4.3. REPRESENTATION OF RECURSIVE FUNCTIONS 73

Proof. The formula ∀y
(
(τ(k̄a) = y) ↔ y = kf(ā)

)
is logically equivalent to τ(k̄a) =

kf(ā). By the Completeness Theorem, T proves one if and only if T proves the other.
qed4.3.5

Lemma 4.3.6. Fix T = N .

(i) The relation = is represented by the formula x = y.
(ii) The function + is represented by the term x + y (and therefore by the formula

x+ y = z).
(iii) The function · is represented by the term x · y (and therefore by the formula

x · y = z).
(iv) The relation < is represented by the formula x < y.
(v) The projection function πn,m is represented by the variable xm viewed as a term

t(x<n).

Proof. (i) We need to prove that n = m =⇒ N ` kn = km and n 6= m =⇒
N ` kn 6= km. The first is clear. For the second, assume that n < m, and
prove by induction on n: For n = 0, this follows from N1; and if we assume
that N ` kn 6= km, then by N2: N ` kn+1 6= km+1.

(ii) We need to prove that for every m,n: N ` km + kn = km+n. We proceed by
induction on n: For n = 0, this is by N3; and if N ` km + kn = km+n, then by
N4: N ` km + kn+1 = km+n+1.

(iii) Similarly, using N5 and N6.
(iv) We need to prove that:

n < m =⇒ N ` kn < km(1)

n ≥ m =⇒ N ` ¬(kn < km)(2)

We do so by induction on m. For m = 0, (1) is vacuously true, and (2) follows
from N7. Assume now that (1) and (2) hold for a fixed m (and for every n),
and let us prove for m+ 1. Note that km+1 = skm.

If n < m + 1, then either n < m or n = m. In the former case we have
N ` kn < km by (1), and in the latter ` kn = km. In either case, it follows from
N8 that N ` kn < km+1. On the other hand, if n ≥ m+1, then N ` ¬(kn < km)
by (2), and N ` kn 6= km since x = y represents equality. Thus by N8:
N ` ¬(kn < km+1).

(v) Immediate.
qed4.3.6

Lemma 4.3.7. A relation P (x̄) is representable (in N) if and only if its characteristic
function χP is. In fact, this is true for every theory T satisfying T ` k0 6= k1.

Proof. Assume that ϕ(x̄) represents P in T . Then (ϕ(x̄)∧y = k1)∨(¬ϕ(x̄)∧y = k0)
represents χP in T .

74 4. INCOMPLETENESS

Conversely, assume that ψ(x̄, y) represents χP in T . Then ψ(x̄, k1) represents P , since
we said that T ` k0 6= k1.

Since N ` k0 6= k1, this is true in particular for T = N . qed4.3.7

Lemma 4.3.8. For every n:

N ` ∀x (x < kn ↔
∨
i<n

x = ki)

(For n = 0, the empty disjunction is “false”, so replacing it with x 6= x will do.)

Proof. By induction on n. For n = 0, we need to prove that N ` ∀x (x < 0 ↔ x 6=
x) which is true by N7. Assume now for n, and prove for n + 1. By N8: N ` ∀x (x <
kn+1 ↔ (x < kn ∨ x = kn)), and by the induction hypothesis: N ` ∀x (x < kn+1 ↔
(
∨
i<n x = ki ∨ x = kn)) as required. qed4.3.8

Lemma 4.3.9. Assume that f(x̄) = h(g0(x̄), . . . , gm−1(x̄)), that h(x0, . . . , xm−1)
is represented by ψ(x0, . . . , xm−1) and that each gi(x0, . . . , xn−1) is represented by
ϕi(x0, . . . , xn−1) for all i < m. Then f is represented by the formula:

∃z0 . . . ∃zm−1

(
ψ(z̄, y) ∧

∧
i<m

ϕi(x̄, zi)

)
.

Proof. Easy. qed4.3.9

Lemma 4.3.10. Assume that f(x̄, y) is represented by ϕ(x̄, y, z), and g(x̄) =
µy (f(x̄, y) = 0). Then g is represented by the following formula:

ψ(x̄, y)
def
= ϕ(x̄, y, k0) ∧ ∀z ((z < y) → ¬ϕ(x̄, z, k0)).

Proof. Assume that g(ā) = µy (f(ā, y) = 0) = b. This means that f(ā, b) = 0 and
f(ā, c) > 0 for all c < b. As we know that if m > 0 then N ` km 6= k0, the assumption
that ϕ represents f tells us that:

N ` ¬ϕ(k̄a, kc, k0) for c < b(3)

N ` ϕ(k̄a, kb, k0)(4)

As we know that N ` ∀x (x < kb ↔
∨
c<b x = kc), it follows that N ` ψ(k̄a, kb).

Assume now that M � N , r ∈ M , and M � ψ(k̄a, r). By N9: M � r < kb ∨ r =
kb∨ r > kb. M � r < kb is excluded since then r = kM

c for some c < b, so M � ϕ(k̄a, r, k0)
would contradict (3). M � r > kb is excluded, since M � ∀z ((z < r) → ¬ϕ(k̄a, z, k0))
would contradict (4). So necessarily M � r = kb, which shows that:

N ` ∀y (ψ(k̄a, y) ↔ y = kb).

qed4.3.10

Theorem 4.3.11. Every recursive function and relation is representable in N .

4.4. INCOMPLETENESS 75

Proof. By Lemma 4.3.7, it would suffice to prove for every recursive function.
We know that +, ·, χ=, χ< and all the projections are representable in N , and that the

family of functions representable in N is closed under composition and the µ-operator.
It follows that χ≤ = χ= + χ< is representable in N , so all the basic recursive functions
are representable. Therefore all the recursive functions are representable. qed4.3.11

Corollary 4.3.12. A total function is recursive if and only if it is representable in
N .

4.4. Incompleteness

We now have the tools necessary to prove that the theory N is undecidable (see below)
and incomplete; moreover, every consistent axiomatisable extension of N is incomplete.

Definition 4.4.1. Two disjoint sets P,Q ⊆ N are recursively inseparable if there is
no recursive set R ⊆ N such that P ⊆ R ⊆ N rQ.

Theorem 4.4.2. Let P = {pϕq : N ` ϕ} and Q = {pϕq : N ` ¬ϕ}. Then P and Q
are recursively inseparable.

Proof. Assume that there is such a recursive set R. Define:

S = {n ∈ N : FrSub(n, pxq, pknq) /∈ R}
(Recall that FrSub(pϕ(x)q, pxq, pknq) = pϕ(kn)q.) Since R, FrSub and n 7→ pknq are
all recursive, so is S. Therefore it is represented by a formula ψ(x):

n ∈ S =⇒ N ` ψ(kn)

n /∈ S =⇒ N ` ¬ψ(kn)

So, is pψq ∈ S? Let us check both possibilities:

pψq ∈ S =⇒ N ` ψ(kpψq) =⇒ pψ(kpψq)q ∈ P
=⇒ FrSub(pψq, pxq, pkpψqq) = pψ(kpψq)q ∈ R
=⇒ pψq /∈ S

pψq /∈ S =⇒ N ` ¬ψ(kpψq) =⇒ pψ(kpψq)q ∈ Q
=⇒ FrSub(pψq, pxq, pkpψqq) = pψ(kpψq)q /∈ R
=⇒ pψq ∈ S

As neither pψq ∈ S nor pψq /∈ S is possible, we have a contradiction. It follows that no
recursive set can separate P and Q. qed4.4.2

Definition 4.4.3. Recall that a consistent theory T is decidable if the set {pϕq : T `
ϕ} is recursive, otherwise it is undecidable. We say that T is hereditarily undecidable if
every consistent extension T ′ ⊇ T is undecidable.

Corollary 4.4.4. N is hereditarily undecidable.

76 4. INCOMPLETENESS

Proof. Assume the contrary, i.e., that there is a consistent theory T ⊇ N which
is decidable, namely that R = {pϕq : T ` ϕ} is recursive. Let P and Q be as in
Theorem 4.4.2. Since T is consistent, P ⊆ R ⊆ N rQ, which is impossible since P and
Q are recursively inseparable. qed4.4.4

Recall we showed (Corollary 4.2.9) that every complete axiomatised theory is decid-
able.

Theorem 4.4.5. No consistent axiomatisable extension of N is complete.

Proof. Such an extension would be decidable, but N is hereditarily undecidable.
qed4.4.5

Corollary 4.4.6. If T is a theory such that T ∪N is consistent, then T is undecid-
able. If T is axiomatised, then it is incomplete.

Proof. Here we use the fact that N is finitely axiomatised. Let ϕ be the conjunction
of all the axioms of N . Then we have T ∪ N ` ψ ⇐⇒ T ` ϕ → ψ. Thus, if T were
decidable, so would be the theory {ψ : T ∪N ` ψ}, but we know the latter is undecidable.

Since T is undecidable, it cannot be both axiomatised and complete. qed4.4.6

Corollary 4.4.7. Peano Arithmetic is undecidable and incomplete.

We conclude with a similar result:

Theorem 4.4.8 (Tarski). Truth is not definable in (N, 0, s,+, ·), in the sense that
there is no formula ϕ(x) satisfying for all ψ:

N � ψ ⇐⇒ N � ϕ(pψq).

Proof. Assume there is such a formula ϕ(x). There is a total recursive function f
such that:

f(pχ(x)q) = p¬χ(kpχq)q.

Let θ(x, y) represent f in N , and let

ψ(x) = ∃y (θ(x, y) ∧ ϕ(y)).

Then, as θ represents f in N , we have for all χ(x):

N � ψ(kpχq) ↔ ϕ(kp¬χ(kpχq)q).

As N � N , and letting χ = ψ we have:

N � ψ(kpψq) ⇐⇒ N � ϕ(kp¬ψ(kpψq)q)

⇐⇒ N � ¬ψ(kpψq).

A contradiction. qed4.4.8

4.5. A “PHYSICAL” COMPUTATION MODEL: REGISTER MACHINES 77

4.5. A “physical” computation model: register machines

While we cannot formally prove Church’s thesis, due to its vagueness, we can convince
ourselves of its truth by the following intuitive argument. Assume that a function f is
computable by some algorithm. Then regardless of the precise definition of the word
algorithm, it should consist of a sequence of steps, starting with the input and ending
with the output, and each step should be “easy” to compute. Thus the properties “x
codes the initial state with input y”, “x codes the state immediately following state y”
and “x codes a terminal state” should be recursive relations, and the mapping of a code
for a terminal state to its output should be a recursive function. Then “x code a full
computation sequence” is recursive, and

f(x) = Output(h((x)len(h(x))−1)).

Where:

h(x) = µy (y codes a computation sequence and (y)0 is initial with input x).

We will give a concrete example of this using register machines. A register machine
is an abstract computation model consisting of countable many registers (ri : i ∈ N),
each of which capable of holding a natural number, and a finite sequence of instructions
(Ii : i < `). An instruction Ii can be any one of:

• “Increase r” (where r is a register).
• “Decrease r, else”.
• “Go to In”.

At every step of the execution of the programme, the “machine state” consists of the
values (in N) of the registers, as well as special instruction index which will be denoted
i ∈ N, indicating the next instruction to execute. As long as i < ` (the length of the
programme), a single execution step consists of modifying the machine state according
to the current instruction Ii:

• If Ii is “increase r”, increase r and i by 1 (i.e., increase r and move to the next
instruction).

• If Ii is “decrease r, else”:
– If r = 0, increase i by 1.
– If r > 0, decrease r by 1 and increase i by 2.

Thus, if r > 0 the next instruction is skipped.
• If Ii is “go to In”, assign n to i.

An execution of the machine M on input a0, . . . an−1 consists of initialising r0, . . . , rn−1

to a0, . . . , an−1 and all other registers to 0, initialising i to 0, and then performing exe-
cution steps as long as i < `. If at any point i ≥ ` then the execution stops, and the
contents of r0 is the output.

If the execution of M on input ā stops at some point we say that M stops on ā, in
symbols M(ā) ↓. Otherwise, M does not stop on ā, in symbols M(ā) ↑.

78 4. INCOMPLETENESS

If M is a register machine and n ∈ N, M defines a partial function fM,n : Nn 99K N
as follows: dom(fM,n) = {ā ∈ Nn : M(ā) ↓}, and for every ā ∈ dom(fM,n), fM,n(ā) is the
output of the execution of M on ā. We call fM,n the partial n-ary function calculated by
M .

We would like to show that the partial recursive functions are precisely the ones which
can be calculated by register machines.

One direction is essentially an exercise in programming. We start by observing that
as there are infinitely many registers we can always use a register no other part of the
programme uses.

We start by observing that we can always assign zero to a register:

I0. Decrease r, else
I1. Go to I3.
I2. Go to I0.
I3. . . .

Once r = 0, the “go to I3” is reached and the execution continues after the loop. We
can of course place this piece of code anywhere in a programme (adjusting the “go to”
instruction accordingly), shortening it to “let r = 0”.

We can assign the value of r to r′, r′′ (all distinct), while setting r to zero:

I0. Let r′ = 0.
I1. Let r′′ = 0.
I2. Decrease r, else
I3. Go to I7
I4. Increase r′.
I5. Increase r′′.
I6. Go to I2
I7. . . .

Now, if r and r′ are any two distinct registers, we can always choose a register s which
is used nowhere else in the programme and first assign r to r′, s, while setting r to zero,
then assign back s to r, r′ (setting s to zero). Then r remains unchanged, while r′ is now
equal to r. Again, we may place this anywhere in a programme, shortening it to “let
r′ = r”.

We can now verify that some basic functions can indeed be calculated by register
machines. To perform “let r′′ = r + r′”, we choose unused registers s, s′:

I0. Let s = r.
I1. Let s′ = r′.
I2. Decrease s′, else
I3. Go to I6
I4. Increase s.
I5. Go to I2
I6. Let r′′ = s.

4.5. A “PHYSICAL” COMPUTATION MODEL: REGISTER MACHINES 79

Note that there is no requirement here for r, r′, r′′ to be distinct.
Similarly for “let r′′ = r · r′”:

I0. Let s = 0.
I1. Let s′ = r′.
I2. Decrease s′, else
I3. Go to I6
I4. Let s = s+ r.
I5. Go to I2
I6. Let r′′ = s.

For “let r′′ = r −. r′”:

I0. Let s = r.
I1. Let s′ = r′.
I2. Decrease s′, else
I3. Go to I7
I4. Decrease s, else
I5. Go to I7.
I6. Go to I2.
I7. Let r′′ = s.

Finally, “let r′′ = χ≤(r, r′)” is given by:

I0. Let s = r −. r′.
I1. Let r′′ = 0.
I2. Decrease s, else
I3. Increase r′′.

We conclude that all the basic recursive functions are calculable by register machines:
for +, · and χ≤ we showed this explicitly, while each of the projections πn,m is calculated
by the programme “let r0 = rm”.

We also claim that the family of functions calculable by register machines is closed
under composition. Indeed, assume that f : Nn 99K N and gi : Nm 99K N are all calculable
by register machines for i < n. Then we can calculate f ◦ (g0, . . . , gn−1) : Nm 99K N by:

I0. Let rm = g0(r0, . . . , rm−1).
I1. Let rm+1 = g1(r0, . . . , rm−1).

. . .
In−1 Let rm+n−1 = gn−1(r0, . . . , rm−1).
In Let r0 = f(rm, . . . , rm+n−1).

Note that this programme stops on input ā ∈ Nm if and only if ā ∈ dom(gi) for all i < n
and (g0(ā), . . . , gn−1(ā)) ∈ dom(f), i.e., if and only if ā ∈ dom(f ◦ ḡ).

Finally, we claim that if f : Nn+1 99K N is calculable by a register machine, then so is
h(x̄) = µy (f(x̄, y) = 0). Indeed, we can calculate h with the programme:

I0. Let s = f(r0, . . . , rn−1, rn).
I1. Decrease s, else

80 4. INCOMPLETENESS

I2. Go to I5.
I3. Increase rn.
I4. Go to I0.
I5. Let r0 = rn.

Again, we verify easily that this stops on ā if and only if ā ∈ dom(h), and in this case
the result is

We conclude that every partial recursive function is calculable by a register machine.

Now we turn to the converse. First, we observe we can code register machines, i.e.,
programmes:

pIncrease rnq = 〈0, n〉,
pDecrease rn, elseq = 〈1, n〉,
pGo to Inq = 〈2, n〉,
pMq = p(Ii : i < `)q = 〈pI0q, . . . , pI`−1q〉.

In the last line, pMq is the code for the register machine M whose programme is (Ii : i <
`).

Similarly, given a machine state, i.e., an integer value for the instruction index i as
well as to the registers {ri : i < ω}, all but finitely many of which being zero, we let
m < ω be least such that ri = 0 for all i ≥ m, and code the state by 〈i, r0, . . . , rm−1〉 (if
m = 0 this is just 〈i〉). We leave it for the reader to verify that the following relations
are recursive (and in fact primitive recursive):

• x codes a machine state.
• x codes a programme.
• x and y code machine states, z codes an instruction, and y is the result of

executing z in state x.
• x and y code machine states, z codes a programme, and y is the state following
x in the execution of z.

• x is a terminal state for the execution of z (i.e., the instruction index of state
x lies outside the programme z).

• x codes an execution sequence for programme y on input z, i.e.:
– x and z are sequence numbers.
– (x)0 is the initial machine state for input z: i = 0, rj = (z)j for j < len(z),

and rj = 0 for j ≥ len(z).
– For all i < len(x)− 1: (x)i+1 is the state following (x)i in the execution of
y.

– (x)len(x)−1 is a terminal state for y.

We now define a partial recursive function u0(x, y) as:

u0(x, y) = µz (z codes an execution sequence of programme x on input y).

EXERCISES 81

Note that u0(pMq, 〈a0, . . . , an−1〉) is defined if and only if M stops on input a0, . . . , an−1.
Define now:

u(x, y) = value of r0 in the state u0(x, y).

Then u(pMq, 〈ā〉) is defined if and only if M(ā) ↓, in which case u(pMq, 〈ā〉) is equal to
the output of M on input ā. In other words, for every n < ω, the function fM,n is given
by:

fM,n(x̄) = u(pMq, 〈x̄〉).
It is in particular recursive.

We conclude:

Theorem 4.5.1. A partial function f : Nn 99K N is recursive if and only if it is of
the form fM,n for some register machine M .

But in fact, we obtained more than that: the function u gives us a uniform enumer-
ation of all recursive functions. For all i < ω we define ϕi : N 99K N by:

ϕi(x) = u(i, 〈x〉).

Then every ϕi is a partial recursive function, and every partial recursive function f : N 99K
N is equal to some ϕi.

Exercises

Exercise 4.1. Show that every finite set P ⊆ N is recursive.
Show that if P ⊆ N is infinite, P is recursive if and only if there is a total recursive

strictly increasing function f : N → N whose range is P .

Exercise 4.2. Recall the definition of primitive recursive functions from Re-
mark 4.1.7.

Show (briefly) that all the basic recursive functions (χ≤, +, · and projections) are
primitive recursive.

Argue (again, briefly) why in Section 4.1, in the items concerning constant functions,
recursive predicate, Boolean combinations and definition by cases, we could replace ev-
erywhere “recursive” with “primitive recursive” (where a predicate is primitive recursive
if its characteristic function is).

Show that the factorial function is primitive recursive.

Exercise 4.3. Let P (x̄, y) be a primitive recursive predicate. Show that the function
f(x̄, z) = µy<z P (x̄, y) is primitive recursive (remember, use of the µ-operator is not
allowed).

Deduce that the coding function β is primitive recursive.

Exercise 4.4. Show that for every n, the function (a0, . . . , an−1) 7→ 〈a0, . . . , an−1〉 is
primitive recursive. (Hint: look at the proof of Proposition 4.1.6.)

82 4. INCOMPLETENESS

Exercise 4.5. Let P,Q ⊆ Nn be r.e. Then there are recursive relations P ′, Q′ ⊆ Nn+1

such that P (x̄) ⇐⇒ ∃y P ′(x̄, y) and Q(x̄) ⇐⇒ ∃y Q′(x̄, y) (why?) Let ϕ(x̄, y) and ψ(x̄, y)
represent P ′ and Q′ in N , respectively, and let:

χ(x̄) = ∃y (ϕ(x̄, y) ∧ ∀z (z < y → ¬ψ(x̄, z))).

Show that:

ā ∈ P rQ =⇒ N ` χ(kā)

ā ∈ Qr P =⇒ N ` ¬χ(kā).

Exercise 4.6. Let T be a consistent axiomatisable extension of N . Show there
exists an r.e. predicate Q ⊆ Nn+1 such that for every formula ϕ(x̄, y) (where |x̄| = n)
and ā ∈ Nn:

Q(ā, pϕq) ⇐⇒ T ` ϕ(kā, kpϕq).

Exercise 4.7. Let T ⊇ N be an axiomatisable consistent extension of the theory
N . Say that a predicate P ⊆ Nn is weakly represented in T by a formula ϕ(x̄) if for all
ā ∈ Nn: ā ∈ P ⇐⇒ T ` ϕ(kā). We say that P ⊆ Nn is weakly representable in T if it is
weakly represented in T by some formula.

Let P ⊆ Nn be r.e., T as above. Let P1 = P × N ⊆ Nn+1, and Q ⊆ Nn+1 as in the
previous exercise. As both P1 and Q are r.e. (why?), there is a formula χ(x̄, y) such that:

(ā, b) ∈ P1 rQ =⇒ N ` χ(kā, kb)

(ā, b) ∈ Qr P1 =⇒ N ` ¬χ(kā, kb).

Let ϕ(x̄) = χ(x̄, kpχq). Show that ϕ weakly represents P in T .

Exercise 4.8. Conclude that if T is an axiomatisable consistent extension of N then
P is weakly representable in T if and only if P is r.e. (there is a converse here to show
as well).

Exercise 4.9. Show that a subset A ⊆ N is recursively enumerable if and only if it is
the domain of a partial recursive function. (Hint: think in terms of execution of register
machines.) The domain of ϕi (i.e., the ith r.e. set) is denoted by Wi.

CHAPTER 5

Set theory

We study the abstract notion of a set. Intuitively, sets are collections of objects:
chairs, theorems, and possibly other sets. But: if we admit every conceivable collection
of objects as a set we may encounter paradoxes, such as Russel’s:

Let A be the set of all sets which are not members of themselves. Then
A is a member of itself if and only if it isn’t.

The common solution to this is that not all collections are sets; rather, there are
certain constructions that allow us to deduce that various collections of objects are indeed
sets. Also, for the purposes of serving as a foundation for mathematics, we might as well
assume that all sets are “pure” sets, namely that there are no non-set objects involved.

5.1. Axioms for set theory

Our language for sets will consist of a single relation symbol ∈, where x ∈ y means
“x is a member of y”. We will introduce as we go various shorthand notations such as
x ⊆ y for ∀t(t ∈ x→ t ∈ y), etc.

5.1.1. Zermelo-Fraenkel axioms for set theory. Let us start with Zermelo’s
axioms for set theory, denoted Z. All free variables are quantified universally.

We start with two axioms which we call “structural”, as they tell us something about
the nature of sets:

• Extensionality:

x = y ↔ ∀t(t ∈ x↔ t ∈ y).

This tells us that a set is indeed nothing but the collection of all its members: if
two have the same members then they are the same. In particular, there exists
(at most) one empty set which will be denoted by ∅.

• Foundation (or regularity):

x 6= ∅ → ∃t ∈ x(t ∩ x = ∅),

i.e.,

∃t(t ∈ x) → ∃t(t ∈ x ∧ ∀y¬(y ∈ t ∧ y ∈ x)).

This tells us that the universe of sets is well-founded. We will get back to that
later.

83

84 5. SET THEORY

A class is a collection of sets defined by a first order formula, possibly with parameters,
i.e., something of the form {x : ϕ(x, ā)} where ϕ(x, ȳ) is a formula and ā is a tuple of
sets. If a is a set we identify it with the class {x : x ∈ a} (this is legitimate by the
extensionality axiom). If C = {x : ϕ(x, ā)} is a class, we write x ∈ C as shorthand for
ϕ(x, ā) A class which does not come from a set in this manner is called a proper class.

The class of all sets is traditionally denoted V .

Remark 5.1.1. A word of caution: if a and b are two sets, then x ∈ a and x ∈ b
are two formulae which are both instances of x ∈ y, and only differ in the parameter
(a or b) assigned to the parameter variable y. On the other hand, if C and D are two
distinct classes, then the “formulae” x ∈ C and x ∈ D are shorthands for two possibly
very different formulae.

Most of the other axioms are “set existence” axioms, i.e., axioms telling us that
certain classes are in fact sets:

• Pairing:
∃{x, y},

i.e.,
∃z ∀t (t ∈ z ↔ t = x ∨ t = y).

• Union:
∃
⋃

x,

where
⋃
x =

⋃
z∈x z, i.e.,

∃y∀t (t ∈ y ↔ ∃z(t ∈ z ∧ z ∈ x)).

• Power set:
∃P(x),

where P(x) = {t : t ⊆ x}, i.e.,

∃y∀t(t ∈ y ↔ t ⊆ x).

(We recall that t ⊆ x is shorthand for ∀z (z ∈ t→ z ∈ x).)
• Subset (or separation) scheme: For every formula ϕ(t, w̄):

∃{t ∈ x : ϕ(t, w̄)},
i.e.,

∃y∀t (t ∈ y ↔ (t ∈ x ∧ ϕ(t, w̄))).

Alternatively, this can be restated as: “the intersection of a class with a set is
a set”.

• Infinity: Let us introduce further terminology: If x is a set then its successor
is defined as x∪{x} (should it exist as a set). A set x is inductive if ∅ ∈ x and
if y ∈ x then y ∪ {y} ∈ x. The infinity axioms says:

There exists an inductive set,

5.1. AXIOMS FOR SET THEORY 85

i.e.:

∃x(∅ ∈ x ∧ ∀y(y ∈ x→ (y ∪ {y}) ∈ x)).

While the infinity axiom does not specify the set x entirely, together with the
other axioms it can be shown to be equivalent to the statement that the class
of all natural numbers is a set (the minimal inductive set).

These axioms form what is called Zermelo set theory, denoted Z. They are not strong
enough, and we usually add to them the following axiom scheme (again, a set existence
axiom). Together they form the Zermelo-Fraenkel set theory, or ZF :

• Replacement: For every formula ϕ(u, v, w̄):
If w̄ are such that {(u, v) : ϕ(u, v, w̄)} defines the graph of a “partial
function”, then the image of every set x under this function exists,

i.e.,

∀uvv′ (ϕ(u, v, w̄) ∧ ϕ(u, v′, w̄) → v = v′)

→ ∃y∀v (v ∈ y ↔ ∃u(u ∈ x ∧ ϕ(u, v, w̄)))

5.1.2. Pairs and functions.

Definition 5.1.2. For any two sets x, y, let (x, y) = {{x, y}, {x}}. This is a set by
the pairing axiom. We call a set of the form (x, y) an ordered pair.

Note that {x, x} = {x} and (x, x) = {{x}}.

Lemma 5.1.3. For all x, y, z, w: (x, y) = (z, w) if and only if x = z and y = w.

Proof. Exercise. qed5.1.3

Definition 5.1.4. A function is a set f , all of whose members are ordered pairs, and
such that ∀xyz (x, y) ∈ f ∧ (x, z) ∈ f → y = z.

If f is a function we define is domain and range as

dom(f) = {x : ∃y (x, y) ∈ f} rng(f) = {x : ∃y (y, x) ∈ f}.

If A,B are sets then the notation f : A→ B means that f is a function, dom(f) = A
and rng(f) ⊆ B.

Lemma 5.1.5. The domain and range of a function f (which are a priori classes) are
sets.

Proof. Let A =
⋃⋃

f . Then A is a set by the union axioms, and A = dom(f) ∪
rng(f). By the subset axiom dom(f) and rng(f) are sets. qed5.1.5

86 5. SET THEORY

5.1.3. The axiom of choice.

Definition 5.1.6. Let x be a set. Define P−(x) = P(x) r {∅}. A choice function
for x is a function f : P−(x) → x such that f(y) ∈ y for all ∅ 6= y ⊆ x.

One last axiom is the Axiom of Choice, which is special since it is a set existence
axiom which is non-constructive (i.e., we say that a set with a certain property exists
without being able to say which are precisely its elements):

• Choice: Every set admits a choice function.

We will be very careful with our use of the Axiom of Choice (AC), and mention explicitly
for which results it is needed.

The most common axiom system for set theory is ZFC, standing for Zermelo-Fraenkel
plus Choice.

5.2. Well ordered sets

In this section we will intentionally avoid using the Foundation axiom.

5.2.1. Properties of ω.

Lemma 5.2.1. Let C be a non-empty set, or even a non-empty class. Then
⋂
C =⋂

y∈C y is a set.

Proof. As every set is a class we may assume that C is a class, and as it is non-empty,
let b ∈ C. Then ⋂

C = {x ∈ b : ∀y(y ∈ C → x ∈ y)},
which exists by the subset axiom. qed5.2.1

Corollary 5.2.2. There exists a minimal inductive set, denoted ω.

Proof. The property “x is inductive” can be defined by a first order formula and is
thus a class, call it Ind. This is a non-empty class by the infinity axiom, so its intersection
ω :=

⋂
Ind exists. Then ∅ ∈ ω, since ∅ belongs to all inductive sets, and if y ∈ ω then

y belongs to all x ∈ Ind, so y ∪ {y} belongs to every x ∈ Ind, whereby y ∪ {y} ∈ ω.
Therefore ω is inductive, and is minimal such. qed5.2.2

Definition 5.2.3. A set a is transitive if ∀x (x ∈ a → x ⊆ a) (i.e., if c ∈ b ∈ a →
c ∈ a).

(i) ω is transitive.
Indeed, otherwise let ω′ = {x ∈ ω : x ⊆ ω}. Then it is easy to see that ω′ is
inductive whereby ω′ = ω.

(ii) Every n ∈ ω is transitive.
Same argument with ω′ = {x ∈ ω : x is transitive}.

(iii) If n ∈ ω then n /∈ n. It follows that ω /∈ ω.
Same argument with ω′ = {x ∈ ω : x /∈ x}.

5.2. WELL ORDERED SETS 87

(iv) If n ∈ ω then for all m ∈ n: either S(m) ∈ n or S(m) = n.
As usual, let ω′ ⊆ ω be the set of all n ∈ ω having this property and observe
that ω′ is inductive.

It follows that ∈ defines a strict partial ordering (transitive, anti-reflexive relation)
on ω. If n ∈ ω then n ⊆ ω, and as n is transitive it is downward-closed in ω, i.e., it is an
initial segment. It is a proper initial segment since n /∈ n.

For m,n ∈ ω we will write m < n and m ∈ n interchangeably. Then for all n ∈ ω:
n = {m ∈ ω : m < n}.

Lemma 5.2.4. Let x ⊆ ω be an initial segment. Then for all n ∈ ω precisely on of
the following holds: n ∈ x, n = x or x ∈ n.

Proof. Since ∈ is transitive and anti-reflexive on ω the three possibilities are mu-
tually exclusive. Let ω′ ⊆ ω be the set of all n such that one of the three condition
holds.

If x 6= ∅ then ∅ ∈ x, so ∅ ∈ ω′. Assume that n ∈ ω′. If x = n or x ∈ n then
x ∈ S(n) = n ∪ {n}. So assume n ∈ x, which implies that S(n) ⊆ x. Assume that
S(n) 6= x. Then there is m ∈ x r S(n), and as x is downward-closed: m ⊆ x. Since
n ∈ m, either S(n) ∈ m ⊆ x or S(n) = m ∈ x. Thus, either way, S(n) ∈ ω′.

We conclude that ω′ = ω. qed5.2.4

Lemma 5.2.5. The ordering of ω defined by ∈ is total. Also, for all m,n ∈ ω:
m ≤ n⇐⇒ m ⊆ n (so m ∈ n⇐⇒ m (n).

Proof. Let m,n. Then both are initial segments of ω, so either m ∈ n, m = n or
n ∈ m. If m ∈ n or m = n then m ⊆ n. Conversely, if m ⊆ n then n /∈ m so either
m = n or m ∈ n. qed5.2.5

Lemma 5.2.6. The members of ω are precisely its proper initial segments.

Proof. Indeed, one direction was observed above. For the other, if x ⊆ ω is a
proper initial segment, then there is n ∈ ω r x. As x is an initial segment and n /∈ x:
x ∈ S(n) ⊆ ω. qed5.2.6

Lemma 5.2.7. Let A ⊆ ω be non-empty. Then A contains a minimal element, which
is precisely

⋂
A.

Proof. Let x =
⋂
A. Then it is a proper initial segment of ω (as the intersection of

a non-empty family of such). Therefore x = n ∈ ω. For all m ∈ A we have n ⊆ m =⇒
n ≤ m.

If n /∈ A then n < m for all m ∈ A. But then n ∈
⋂
A = n, which is impossible.

Therefore n ∈ A. qed5.2.7

5.2.2. Well-ordered sets and transfinite induction.

88 5. SET THEORY

Definition 5.2.8. Let (A,<) be an ordered set, i.e., A is a set and <⊆ A2 a relation
on A satisfying the usual axioms. We say that < is a well-ordering of A, or that (A,<) is
well-ordered, if every non-empty subset B ⊆ A contains a minimal element with respect
to <.

We say that (ω,∈ �ω) is well-ordered, where ∈ �ω = {(n,m) ∈ ω2 : n ∈ m}.

Fact 5.2.9. A subset of a well-ordered set is well-ordered (with the induced ordering).

Notation 5.2.10. If (A,<) is a totally ordered set and a ∈ A then A<a = {b ∈
A : b < a}.

The following principle generalises proof by induction to arbitrary well-ordered sets:

Proposition 5.2.11 (Proof by transfinite induction). Let (A,<) be well-ordered,
B ⊆ A. Assume that for all a ∈ A, if A<a ⊆ B then a ∈ B. Then B = A.

Proof. If B 6= A then C = A r B is non-empty. Let a ∈ C be minimal. Then
A<a ⊆ B =⇒ a ∈ B, a contradiction. qed5.2.11

Definition 5.2.12. A class function is a class F of pairs (x, y) such that ∀xyz (x, y) ∈
F ∧ (x, z) ∈ F → y = z. Its domain dom(F) = {x : ∃y (x, y) ∈ F} is a class.

Theorem 5.2.13 (Definition by transfinite induction). Let (A,<) be a well-ordered
set, and F a class function whose domain contains all functions whose domain is of the
form A<a. Then there exists a unique function f : A→ V such that for all a ∈ A:

f(a) = F (f�A<a).(∗)

(As V is the class of all sets, the notation f : A→ V just says that dom(f) = A.)

Proof. Let ϕ(x, y, A,<) say that x ∈ A, y is a function, dom(y) = A<x, and y
satisfies (∗) for all a ∈ A<x. This can be expressed with a first order formula.

We prove by transfinite induction that (∀x ∈ A)(∃!y)ϕ(x, y, A,<), i.e., that for every
b ∈ A there exists a unique function fb : A<b → V such that (∗) holds for all a < b.

Indeed, assume this is true for all c < b, so for all such c fc exists and is unique.
Define g as the function c 7→ F (fc) for all c < b, i.e., as the set{

(x, y) : ∃z
(
x ∈ A ∧ x < b ∧ ϕ(x, z, A,<) ∧ y = F (z)

)}
.

This is indeed a set by the replacement axiom and the uniqueness of fc for all c < b.
We claim that for all c < b: g�A<c = fc. Indeed, let d < c. Then then fc�A<d = fd

by uniqueness of fd. Therefore g(d) = F (fd) = F (fc�A<d) = fc(d). Thus for all c < b:
g(c) = F (fc) = F (g�A<c), so ϕ(b, g, A,<) holds.

For uniqueness, assume that ϕ(b, g′, A,<). Then g′�A<c = fc for all c < b by unique-
ness of fc, whereby g′(c) = F (fc) = g(c), so g = g′.

This concludes the proof of the existence and uniqueness of fb for all b ∈ A.

5.2. WELL ORDERED SETS 89

To conclude it is convenient to replace (A,<) with (A∗, <∗), where A∗ = A ∪ {∗}, ∗
is a new element (not in A), and <∗ says that ∗ is greater than all members of A. It is
easy to verify that (A∗, <∗) is well-ordered.

Then A∗
<∗∗ = A, and applying to proof above to (A∗, <∗) instead of (A,<) we obtain

that f∗ is the unique function satisfying the requirements. qed5.2.13

Observation: if (A,<) is well-ordered, and a ∈ A is not maximal, then it has a
successor in A: this is min{b ∈ A : b > a}.

Let (A,<) be a well-ordered set. By Theorem 5.2.13 there is a function f whose
domain is A, and satisfying for all a ∈ A:

f(a) = rng(f�A<a) = {f(b) : b < a}.

Let α = rng(f). We observe that α shares many properties of ω:

• If a, b ∈ A and a < b then f(a) ∈ f(b): since f(a) ∈ rng(f�A<b).
• f is injective, i.e., if b < a then f(a) 6= f(b). Indeed, otherwise let a ∈ A

be minimal such that there is b < a such that f(a) = f(b). Then b < a =⇒
f(b) ∈ f(a) = f(b), so there is c < b such that f(b) = f(c), contradicting the
minimality of a.

• If a, b ∈ A f(a) ∈ f(b) then a < b. Indeed, if f(a) ∈ f(b) then there is c < b
such that f(a) = f(c), so a = c < b.

• α is transitive: Indeed, assume β ∈ α. Then β = f(b) = {f(a) : a < b} ⊆ α.

We conclude that f : A → α is an order-preserving bijection between (A,<) and
(α,∈). In particular, ∈ defines a total order on α, and it is a well-ordering.

Definition 5.2.14. Let (A,<A) and (B,<B) be two ordered sets. we say that they
have the same order type (otp(A) = otp(B)) if there exists a bijection f : A → B which
is order-preserving, i.e., for all a, b ∈ A:

a <A b⇐⇒ f(a) <B f(b).

Let (A,<A) and (B,<B) be two well-ordered sets. Construct f : A → α as above,
and similarly g : B → β, so β = rng(g) and for all a ∈ B: g(a) = {g(b) : b <B a}. Then
f witnesses that otp(A,<) = otp(α,∈), and g witnesses that otp(B,<) = otp(β,∈).

We claim that α = β if and only if (A,<) and (B,<) have the same order type.
Indeed, if α = β then g−1 ◦ f : A→ B witnesses that otp(A,<) = otp(B,<). Conversely,
assume that h : A → B is an order preserving bijection. We claim that f(a) = g(h(a))
for all a ∈ A. We prove this by induction on a: if this is true for all b <A a then:

f(a) = {f(b) : b <A a} = {g(h(b)) : b <A a} = {g(b) : b ∈ B, b <B h(a)} = g(h(a)).

In particular: α = rng(f) = rng(g ◦ h) = rng(g) = β.
Thus (α,∈) is a canonical representative of its order type, and we might as well define

α = otp(A,<) (unfortunately, such an elegant canonical Representative of the order type
only exists for well-orderings).

90 5. SET THEORY

5.2.3. Ordinals.

Definition 5.2.15. An ordinal is a transitive set on which ∈ defines a well-ordering.
The class of all ordinals is denoted ON (ordinal numbers). Usually ordinals are denoted
by lowercase Greek letters: α, β, γ, . . . but sometimes also i, j, k,

Remark 5.2.16. Given the Foundation Axiom, the assumption that ∈ defines a well-
ordering can be weakened to the assumption that ∈ defines a total ordering.

Example 5.2.17. If (A,<) is well-ordered and α = otp(A,<) as constructed above,
then α is an ordinal.

Example 5.2.18. ω is an ordinal, and every natural number n ∈ ω is an ordinal.

A few properties of ordinals:

• All members of an ordinal α are ordinals.
Indeed, if β ∈ α then β ⊆ α, so ∈ induces a total well-ordering on β. To
see that β is transitive assume that δ ∈ γ ∈ β. Then, as α is transitive:
β ∈ α =⇒ γ ∈ α =⇒ δ ∈ α, and as ∈ is an ordering on α: δ ∈ γ ∈ β =⇒ δ ∈ β.

• The members of an ordinal α are precisely its proper initial segments in the
ordering defined by ∈.
Indeed, let β ∈ α. Then β = {γ ∈ α : γ ∈ β} (i.e., {γ ∈ α : γ < β}) is an initial
segment of α. Since β 6< β, β is a proper initial segment. Conversely, let β ⊆ α
be a proper initial segment of α, and let γ ∈ α r β be minimal. Then for all
δ ∈ α: δ ∈ β ⇐⇒ δ ∈ γ, so β = γ ∈ α.

• For two ordinals α, β ∈ ON : α ⊆ β if and only if α ∈ β or α = β, these are
mutually exclusive.
Follows from the previous item.

Lemma 5.2.19. The relation ∈ defines a strict total order on ON .

Proof. First, α ∈ ON =⇒ α /∈ α since α is not a proper subset of itself, and if
α, β, γ ∈ ON and α ∈ β ∈ γ then α ∈ γ by transitivity of γ. To see the order is total, let
α, β ∈ ON , and assume α * β (i.e., α 6= β and α /∈ β). Let γ ∈ α r β ⊆ α be minimal
in α. Since γ is minimal, γ ∩ (α r β) = ∅, whereby γ ⊆ β. Since γ is an ordinal, and
therefore transitive, it is an initial segment of β. But γ /∈ β, so it cannot be a proper
initial segment. Therefore β = γ ∈ α. qed5.2.19

From now on if α, β ∈ ON we write α < β and α ∈ β interchangeably. Thus if
α ∈ ON then α = {β ∈ ON : β < α}.

Corollary 5.2.20. Let A be a non-empty class of ordinals. Then minA =
⋂
A.

Proof. Let α ∈ A and β =
⋂
A. Then β is an initial segment of α, so β is an ordinal

and β ≤ α. If β < α for all α ∈ A then β ∈
⋂
A = β, a contradiction. Therefore β = α

for some α ∈ A. qed5.2.20

5.2. WELL ORDERED SETS 91

Lemma 5.2.21. A set x is an ordinal if and only if it is a transitive set of ordinals
(i.e., if and only if it is an initial segment of (ON,∈)).

Proof. Indeed, left to right is already shown. For right to left, let x be a transitive
set of ordinals. Then x ⊆ ON implies that ∈ defines a total well-ordering on x. qed5.2.21

Corollary 5.2.22. Let A be a set of ordinals, and let α =
⋃
A. Then α ∈ ON , and

α = supA, i.e., α = min{β ∈ ON : (∀γ ∈ A)(β ≥ γ)}.

Proof. Since A is a set, so is α. As every ordinal is an initial segment of ON , so is
any union of ordinals. Therefore α is an initial segment of ON and therefore an ordinal.

Clearly, (∀γ ∈ A)(γ ⊆ α). Conversely, if β satisfies (∀γ ∈ A)(γ ⊆ β) then α =
⋃
A ⊆

β, so α is minimal among all such β. qed5.2.22

Finally, for every α ∈ ON there are three possibilities:

• α = ∅ = 0.
• α has a maximal member β. In that case α is the successor of β in ON , and
α = β ∪ {β} = S(β). In this case we say that α is a successor ordinal. We will
write from now on β + 1 for β ∪ {β}.

• Neither of the above holds. In this case we say that α is a limit ordinal.

Note that ω is the least limit ordinal.

Definition 5.2.23. An ordered class (C,<) is a class C equipped with a a class < of
pairs of members of C satisfying the usual axioms of an order relation. (The pair (C,<)
is a pair in “our” sense, as neither C no < are assumed to be sets.)

An ordered class (C,<) is well-ordered if:

(i) For every a ∈ C: the class C<a = {b ∈ C : b < a} is a set.
(ii) The set C<a is well-ordered by <.

Example 5.2.24. The class ON is well ordered by ∈. Indeed, ON<α = α for all
α ∈ ON and this is a well-ordered set.

The restriction that C<a be set is so that the following hold:

Theorem 5.2.25 (Definition by transfinite induction on a class). Let (C,<) be a well-
ordered class, and F a class function whose domain contains all functions whose domain
is of the form C<a. Then there exists a (unique) class function such that dom(G) = C
and for all a ∈ C:

G(a) = F (G�C<a).(∗)
(Note that even though G is a class, as C<a is a set so is G�C<a by the replacement
axiom.)

Proof. First we observe that if b ∈ C then C≤b = C<b ∪ {b} is also necessarily a
well-ordered set. By Theorem 5.2.13, for all b ∈ C there is a unique function gb : C≤b → V
such that (∗) holds for all a < b.

92 5. SET THEORY

Let D = {gb : b ∈ C} = {f : (∃b ∈ C)(f = gb)}. Then D is a class (whose defining
formula makes use of the formulae defining C, < and G, and therefore of any parameters
they may use). Let F =

⋃
D = {(x, y) : (∃b ∈ C)(x ∈ dom(gb) ∧ gb(x) = y)}. Then F is

the required class function. qed5.2.25

This means we are allows to define functions by induction on the class ON . For
example we define operations of ordinal arithmetic:

Definition 5.2.26. Let α, β be ordinals. We define α + β by induction on β:

β = 0 : α + 0 = α

β = γ + 1 : α + (γ + 1) = (α + γ) + 1

β limit α + β = sup{α + γ : γ < β}.

Definition 5.2.27. Let α, β be ordinals. We define α · β by induction on β:

β = 0 : α · 0 = 0

β = γ + 1 : α · (γ + 1) = α · γ + α

β limit α · β = sup{α · γ : γ < β}.

Definition 5.2.28. Let α, β be ordinals. We define αβ by induction on β:

β = 0 : α0 = 1(= {0})
β = γ + 1 : α(γ+1) = αγ · α
β limit αβ = sup{αγ : γ < β}.

Note that addition and multiplication are associative (requires proof!) but non-
commutative: 1 + ω = ω 6= ω + 1, and ω · 2 = ω + ω > ω while 2 · ω = ω.

Exercises

Exercise 5.1. Let C be the class {x : x /∈ x}. Show that C is a proper class. What
is the relation to Russel’s Paradox?

Use the foundation axiom to show that C is the class of all sets (i.e., C = {x : x = x}).

Exercise 5.2. Show that the Subset axiom scheme is a consequence of the Replace-
ment axiom scheme.

(It is therefore redundant. Historically it is there because it was part of Zermelo’s set
theory before Fraenkel suggested to add replacement. Also, one can re-state replacement
in a manner which does not imply the subset axiom, but which, together with the subset
axiom, is equivalent to the replacement as stated here.)

Exercise 5.3. Show that ordinal addition is associative.

Exercise 5.4. Define by transfinite induction on α ∈ ON :

• V0 = ∅.

EXERCISES 93

• Vα+1 = P(Vα).
• Vδ =

⋃
α<δ Vα for δ limit.

(One can define alternatively Vα =
⋃
β<αP(Vβ) for all α ∈ ON – the two definitions

coincide).
Define a class V∞: V∞ =

⋃
α∈ON Vα = {x : ∃αα ∈ ON ∧ x ∈ Vα}. Note that we made

no use of the Foundation axiom throughout. Let ZF ′ be ZF minus the Foundation
axioms. Thus we can construct the class V∞ in a model of ZF ′.

Show that if (V,∈) � ZF ′ then (V∞,∈) � ZF .
This is a classical case of “relative consistency”: we cannot show that ZF is consistent,

but we can show that if ZF ′ is consistent then so is ZF . Thus in some sense the
foundation axiom is a “benign” axiom.

Exercise 5.5. Conversely, show that if V � ZF (with the foundation axiom) then
V = V∞.

Hint: given a set x, we define its transitive closure tcl(x) as the minimal transitive
set containing x. We can construct it as follows: x0 = x, xn+1 = xn ∪

⋃
xn for all n < ω,

and tcl(x) =
⋃
{xn : n < ω}. What can you say about tcl(x) r V∞?

	Chapter 1. Propositional Logic
	1.1. Syntax
	1.2. Semantics
	1.3. Syntactic deduction

	Chapter 2. First order Predicate Logic
	2.1. Syntax
	2.2. Semantics
	2.3. Substitutions
	2.4. Syntactic deduction
	Exercises

	Chapter 3. Model Theory
	3.1. Elementary extensions and embeddings
	3.2. Quantifier elimination
	Exercises

	Chapter 4. Incompleteness
	4.1. Recursive functions
	4.2. Coding syntax in Arithmetic
	4.3. Representation of recursive functions
	4.4. Incompleteness
	4.5. A ``physical'' computation model: register machines
	Exercises

	Chapter 5. Set theory
	5.1. Axioms for set theory
	5.2. Well ordered sets
	Exercises

