A.Miller M571 Spring 2002

Propositional Logic and the Compactness Theorem

The syntax (grammar) of propositional logic is the following. The logical symbols are $\land, \lor, \neg, \rightarrow$, and \leftrightarrow . The nonlogical symbols consist of an arbitrary nonempty set \mathcal{P} that we assume is disjoint from the set of logical symbols to avoid confusion. The set \mathcal{P} is referred to as the set of atomic sentences or as the set of propositional letters. For example, $\{P, Q, R\}$, $\{P_0, P_1, P_2, \ldots\}$, or $\{S_r : r \in \mathbb{R}\}$. The set of propositional sentences \mathcal{S} is the smallest set of finite strings of symbols such that $\mathcal{P} \subseteq \mathcal{S}$, and if $\theta \in \mathcal{S}$ and $\psi \in \mathcal{S}$, then $(\neg \theta) \in \mathcal{S}, (\theta \land \psi) \in \mathcal{S}, (\theta \lor \psi) \in \mathcal{S}, (\theta \to \psi) \in \mathcal{S}$, and $(\theta \leftrightarrow \psi) \in \mathcal{S}$.

The semantics (meaning) of propositional logic consists of truth evaluations. A truth evaluation is a function $e : S \to \{T, F\}$, that is consistent with the following truth tables:

θ	ψ	$\neg \theta$	$(\theta \wedge \psi)$	$(\theta \lor \psi)$	$(\theta \to \psi)$	$(\theta \leftrightarrow \psi)$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

For example if $e(\theta) = T$ and $e(\psi) = F$, then $e(\theta \to \psi) = F$. Also $e(\neg \theta) = T$ iff $e(\theta) = F$. For example, if $\mathcal{P} = \{P_x : x \in \mathbb{R}\}$ and we define $e(P_x) = T$ if x is a rational and $e(P_x) = T$ if x is a irrational, then $e((P_2 \land \neg P_{\sqrt{2}})) = T$. However if we define $e'(P_x) = T$ iff x is an algebraic number, then $e'((P_2 \land \neg P_{\sqrt{2}})) = F$.

A sentence θ is called a validity iff for every truth evaluation $e, e(\theta) = T$.

We say that two sentences θ and ψ are logically equivalent iff for every truth evaluation $e, e(\theta) = e(\psi)$. A set of logical symbols is adequate for propositional logic iff every propositional sentence is logically equivalent to one whose only logical symbols are from the given set.

1. Define $S_0 = \mathcal{P}$ the atomic sentences and define

$$\mathcal{S}_{n+1} = \mathcal{S}_n \cup \{\neg \theta : \theta \in \mathcal{S}_n\} \cup \{(\theta \# \psi) : \theta, \psi \in \mathcal{S}_n, \# \in \{\land, \lor, \rightarrow, \leftrightarrow\}\}$$

Prove that $\mathcal{S} = \mathcal{S}_0 \cup \mathcal{S}_1 \cup \mathcal{S}_2 \cup \cdots$.

- 2. Prove that for any function $f : \mathcal{P} \to \{T, F\}$ there exists a unique truth evaluation $e : \mathcal{S} \to \{T, F\}$ such that $f = e | \mathcal{P}$. The symbol $e | \mathcal{P}$ stands for the restriction of the function e to \mathcal{P} .
- 3. Let θ and ψ be two propositional sentences. Show that θ and ψ are logically equivalent iff $(\theta \leftrightarrow \psi)$ is a validity.
- 4. Suppose θ is a propositional validity, P and Q are two of the propositional letters occurring in θ , and ψ is the sentence obtained by replacing each occurrence of P in θ by Q. Prove that ψ is a validity.
- 5. Can you define \lor using only \rightarrow ? Can you define \land using only \rightarrow ?
- 6. Show that $\{\vee, \neg\}$ is an adequate set for propositional logic.
- 7. The definition of the logical connective nor (\circ) is given by the following truth table:

$$\begin{array}{cccc} \theta & \psi & (\theta \circ \psi) \\ T & T & F \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

Show that $\{\circ\}$ is an adequate set for propositional logic.

- 8. (Sheffer) Find another binary connective that is adequate all by itself.
- 9. Show that $\{\neg\}$ is not adequate.
- 10. Show that $\{\vee\}$ is not adequate.
- 11. How many binary logical connectives are there? We assume two connectives are the same if they have the same truth table.
- 12. Show that there are exactly two binary logical connectives that are adequate all by themselves. Two logical connectives are the same iff they have the same truth table.
- 13. Suppose $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$. How many propositional sentences (up to logical equivalence) are there in this language?
- 14. Show that every propositional sentence is equivalent to a sentence in disjunctive normal form, i.e. a disjunction of conjunctions of atomic or the negation of atomic sentences:

$$\vee_{i=1}^{m}(\wedge_{j=1}^{k_{i}}\theta_{ij})$$

where each $\theta i j$ is atomic or \neg atomic. The expression $\vee_{i=1}^{n} \psi_i$ abbreviates $(\psi_1 \lor (\psi_2 \lor (\cdots \lor (\psi_{n-1} \lor \psi_n))) \cdots).$

In the following definitions and problems Σ is a set of propositional sentences in some fixed language and all sentences are assumed to be in this same fixed language. Σ is realizable iff there exists a truth evaluation e such that for all $\theta \in \Sigma$, $e(\theta) = T$. Σ is finitely realizable iff every finite subset of Σ is realizable. Σ is complete iff for every sentence θ in the language of Σ either θ is in Σ or $\neg \theta$ is in Σ .

- 15. Show that if Σ is finitely realizable and θ is any sentence then either $\Sigma \cup \{\theta\}$ is finitely realizable or $\Sigma \cup \{\neg\theta\}$ is finitely realizable.
- 16. Show that if Σ is finitely realizable and $(\theta \lor \psi)$ is in Σ , then either $\Sigma \cup \{\theta\}$ is finitely realizable or $\Sigma \cup \{\psi\}$ is finitely realizable.
- 17. Show that if Σ is finitely realizable and complete and if θ and $(\theta \to \psi)$ are both in Σ , then ψ is in Σ .
- 18. Show that if Σ is finitely realizable and complete, then Σ is realizable.
- 19. Suppose that the set of all sentences in our language is countable, e.g., $S = \{\theta_n : n = 0, 1, 2, ...\}$. Show that if Σ is finitely realizable, then there exists a complete finitely realizable Σ' with $\Sigma \subseteq \Sigma'$.
- 20. (Compactness theorem for propositional logic) Show that every finitely realizable Σ is realizable. You may assume there are only countably many sentences in the language.

A family of sets C is a chain iff for any X, Y in C either $X \subseteq Y$ or $Y \subseteq X$. The union of the family A is

$$\bigcup \mathcal{A} = \{ b : \exists c \in \mathcal{A}, b \in c \}.$$

M is a maximal member of a family \mathcal{A} iff $M \in \mathcal{A}$ and for every B if $B \in \mathcal{A}$ and $M \subseteq B$, then M = B. A family of sets \mathcal{A} is closed under the unions of chains iff for every subfamily, \mathcal{C} , of \mathcal{A} which is a chain the union of the chain, $\bigcup \mathcal{C}$, is also a member of \mathcal{A} .

Maximality Principle: Every family of sets closed under the unions of chains has a maximal member.

21. Show that the family of finitely realizable Σ is closed under unions of chains.

- 22. Show how to prove the compactness theorem without the assumption that there are only countably many sentences. (You may use the Maximality Principle.)
- 23. Suppose Σ is a set of sentences and θ is some sentence such that for every truth evaluation e if e makes all sentences in Σ true, then e makes θ true. Show that for some finite $\{\psi_1, \psi_2, \psi_3, \dots, \psi_n\} \subseteq \Sigma$ the sentence

$$(\psi_1 \wedge \psi_2 \wedge \psi_3 \wedge \dots \wedge \psi_n) \to \theta$$

is a validity.

A binary relation R on a set A is a subset of $A \times A$. Often we write xRy instead of $\langle x, y \rangle \in R$. A binary relation \leq on a set A is a partial order iff

- a. (reflexive) $\forall a \in A \ a \leq a;$
- b. (transitive) $\forall a, b, c \in A \ [(a \leq b \land b \leq c) \rightarrow a \leq c];$ and
- c. (antisymmetric) $\forall a, b \in A \ [(a \le b \land b \le a) \to a = b].$

Given a partial order \leq we define the strict order < by

$$x < y \leftrightarrow (x \le y \land x \ne y)$$

- A binary relation \leq on a set A is a linear order iff \leq is a partial order and d. (total) $\forall a, b \in A (a \leq b \lor b \leq a)$. A binary relation R on a set A extends a binary relation S on A iff $S \subseteq R$.
- 24. Show that for every finite set A and partial order \leq on A there exists a linear order \leq^* on A extending \leq .
- 25. Let A be any set and let our set of atomic sentences \mathcal{P} be:

$$\mathcal{P} = \{P_{ab} : a, b \in A\}$$

For any truth evaluation e define \leq_e to be the binary relation on A defined by

$$a \leq_e b$$
 iff $e(P_{ab}) = T$.

Construct a set of sentences Σ such that for every truth evaluation e, e makes Σ true iff \leq_e is a linear order on A.

26. Without assuming the set A is finite prove for every partial order \leq on A there exists a linear order \leq^* on A extending \leq .

In the next problems n is an arbitrary positive integer.

27. If $X \subseteq A$ and R is a binary relation on A then the restriction of R to X is the binary relation $S = R \cap (X \times X)$. For a partial order \leq on A, a set $B \subseteq A$ is an \leq -chain iff the restriction of \leq to B is a linear order. Show that given a partial order \leq on A:

the set A is the union of less than $n \leq$ -chains iff every finite subset of A is the union of less than $n \leq$ -chains.

28. A partial order \leq on a set A has dimension less than n + 1 iff there exists n linear orders $\{\leq_1, \leq_2, \leq_3, \ldots, \leq_n\}$ on A (not necessarily distinct) such that:

$$\forall x, y \in A \ [x \leq y \text{ iff } (x \leq_i y \text{ for } i = 1, 2, \dots, n)].$$

Show that a partial order \leq on a set A has dimension less than n + 1 iff for every finite X included in A the restriction of \leq to X has dimension less than n + 1.

29. A binary relation E (called the edges) on a set V (called the vertices) is a graph iff

a. (irreflexive) $\forall x \in V \neg x E x$; and

b. (symmetric) $\forall x, y \in V (xEy \rightarrow yEx)$.

We say x and y are adjacent iff xEy. (V', E') is a subgraph of (V, E) iff $V' \subseteq V$ and E' is the restriction of E to V'. For a graph (V, E) an n coloring is a map $c: V \to \{1, 2, ..., n\}$ satisfying $\forall x, y \in V(xEy \to c(x) \neq c(y))$, i.e. adjacent vertices have different colors. A graph (V, E) has chromatic number $\leq n$ iff there is a n coloring on its vertices. Show that a graph has chromatic number $\leq n$ iff every finite subgraph of it has chromatic number $\leq n$.

- 30. A triangle in a graph (V, E) is a set $\Delta = \{a, b, c\} \subseteq V$ such that aEb, bEc, and cEa. Suppose that every finite subset of V can be partitioned into n or fewer sets none of which contain a triangle. Show that V is the union of n sets none of which contain a triangle.
- 31. (Henkin) A transversal for a family of sets \mathcal{F} is a one-to-one choice function. That is a one-to-one function f with domain \mathcal{F} and for every $x \in \mathcal{F}$ $f(x) \in x$. Suppose that \mathcal{F} is a family of finite sets such that for every finite $\mathcal{F}' \subseteq \mathcal{F}, \mathcal{F}'$ has a transversal. Show that \mathcal{F} has a transversal. Is this result true if \mathcal{F} contains infinite sets?
- 32. Let \mathcal{F} be a family of subsets of a set X. We say that $\mathcal{C} \subseteq \mathcal{F}$ is an exact cover of $Y \subseteq X$ iff every element of Y is in a unique element of \mathcal{C} . Suppose that every element of X is in at most finitely many elements of \mathcal{F} . Show that

there exists an exact cover $\mathcal{C} \subseteq \mathcal{F}$ of X iff for every finite $Y \subseteq X$ there exists $\mathcal{C} \subseteq \mathcal{F}$ an exact cover of Y. Is it necessary that every element of X is in at most finitely many elements of \mathcal{F} ?

- 33. If \mathcal{F} is a family of subsets of X and $Y \subseteq X$ then we say Y splits \mathcal{F} iff for any $Z \in \mathcal{F}, Z \cap Y$ and $Z \setminus Y$ are both nonempty. Prove that if \mathcal{F} is a family of finite subsets of X then \mathcal{F} is split by some $Y \subseteq X$ iff every finite $\mathcal{F}' \subseteq \mathcal{F}$ is split by some $Y \subseteq X$. What if \mathcal{F} is allowed to have infinite sets in it?
- 34. Given a set of students and set of classes, suppose each student wants one of a finite set of classes, and each class has a finite enrollment limit. Show that if each finite set of students can be accommodated, they all can be accommodated.
- 35. Show that the compactness theorem of propositional logic is equivalent to the statement that for any set I, the space 2^{I} , with the usual Tychonov product topology is compact, where $2 = \{0, 1\}$ has the discrete topology. (You should skip this problem if you do not know what a topology is.)