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Propositional Logic and the Compactness Theorem

The syntax (grammar) of propositional logic is the following. The log-
ical symbols are A,V,—, —, and <. The nonlogical symbols consist of an
arbitrary nonempty set P that we assume is disjoint from the set of logical
symbols to avoid confusion. The set P is referred to as the set of atomic
sentences or as the set of propositional letters. For example, {P,Q, R},
{Py, P, Py, ...}, or {S, : 7 € R}. The set of propositional sentences S is
the smallest set of finite strings of symbols such that P C S, and if 8 € §
and ¢ € S, then (=0) € S,(0AY) € S,(0VY) € §,(0 — ¢) € S, and
(0 — ) eS.

The semantics (meaning) of propositional logic consists of truth evalua-
tions. A truth evaluation is a function e : S — {T, F'}, that is consistent
with the following truth tables:

0 v -0 (AY) (VYY) (0—=1) (0<9)
T T F T T T T
T F F F T F F
FT T F T T F
FF T F F T T

For example if e(§) =T and e(¢)) = F, then e(6 — o) = F. Also e(—0) =T
iff e(d) = F. For example, if P = {P, : x € R} and we define e¢(P,) = T
if z is a rational and e(P,) = 7' if x is a irrational, then e((P, A =P 3)) =
T. However if we define ¢'(P,) = T iff = is an algebraic number, then
6/((P2 VAN _‘P\/i)) =F.

A sentence 0 is called a validity iff for every truth evaluation e, e(f) =T

We say that two sentences 6 and v are logically equivalent iff for every
truth evaluation e, e(6) = e(¢)). A set of logical symbols is adequate for
propositional logic iff every propositional sentence is logically equivalent to
one whose only logical symbols are from the given set.

Define Sy = P the atomic sentences and define
Spi1 =8, U{0:0€ S, U{(0#¢) 0,0 €S,,# € {NV,—,<}}
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Prove that for any function f : P — {7, F} there exists a unique truth
evaluation e : § — {T, F'} such that f = e[P. The symbol e|P stands for
the restriction of the function e to P.

Let 6 and ¢ be two propositional sentences. Show that 6 and 1 are logically
equivalent iff (6 < 1)) is a validity.

Suppose 6 is a propositional validity, P and () are two of the propositional
letters occurring in 6, and 1 is the sentence obtained by replacing each oc-
currence of P in 6 by (). Prove that v is a validity.

Can you define V using only —? Can you define A using only —7
Show that {V,—} is an adequate set for propositional logic.

The definition of the logical connective nor ( o ) is given by the following
truth table:

6 v (Bov)
T T F
T F F
F T F
F F T

Show that {o} is an adequate set for propositional logic.

(Sheffer) Find another binary connective that is adequate all by itself.
Show that {—} is not adequate.

Show that {V} is not adequate.

How many binary logical connectives are there? We assume two connectives
are the same if they have the same truth table.

Show that there are exactly two binary logical connectives that are adequate
all by themselves. Two logical connectives are the same iff they have the
same truth table.

Suppose P = {P, P, ..., P,}. How many propositional sentences (up to
logical equivalence) are there in this language?

Show that every propositional sentence is equivalent to a sentence in disjunc-
tive normal form, i.e. a disjunction of conjunctions of atomic or the negation
of atomic sentences:

m ki

izl(/\jzleij)
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where each 0ij is atomic or —atomic. The expression V] ,1); abbreviates

(1 V (W2 V(o V(P Vb)) ).

In the following definitions and problems ¥ is a set of propositional sen-
tences in some fixed language and all sentences are assumed to be in this
same fixed language. ¥ is realizable iff there exists a truth evaluation e such
that for all 6 € X, e(§) = T. ¥ is finitely realizable iff every finite subset of
Y is realizable. ¥ is complete iff for every sentence 6 in the language of ¥
either 6 is in X or —f is in 3.

Show that if ¥ is finitely realizable and € is any sentence then either ¥ U {6}
is finitely realizable or 3 U {—6} is finitely realizable.

Show that if ¥ is finitely realizable and (6 V1) is in X, then either X U {0} is
finitely realizable or ¥ U {¢} is finitely realizable.

Show that if ¥ is finitely realizable and complete and if # and (6 — ) are
both in X, then v is in X.

Show that if ¥ is finitely realizable and complete, then ¥ is realizable.

Suppose that the set of all sentences in our language is countable, e.g., S =
{0, : n=0,1,2,...}. Show that if ¥ is finitely realizable, then there exists a
complete finitely realizable >’ with ¥ C >,

(Compactness theorem for propositional logic) Show that every finitely
realizable Y. is realizable. You may assume there are only countably many
sentences in the language.

A family of sets C is a chain iff for any X, Y in C either X C Y or Y C X.
The union of the family A is

JA={b:3cecAbec)

M is a maximal member of a family A iff M € A and for every B if B € A
and M C B, then M = B. A family of sets A is closed under the unions of
chains iff for every subfamily, C, of A which is a chain the union of the chain,
UC, is also a member of A.

Maximality Principle: Every family of sets closed under the unions of
chains has a maximal member.

Show that the family of finitely realizable ¥ is closed under unions of chains.
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22.  Show how to prove the compactness theorem without the assumption that

there are only countably many sentences. (You may use the Maximality
Principle.)

23.  Suppose Y is a set of sentences and 6 is some sentence such that for every
truth evaluation e if e makes all sentences in ¥ true, then e makes 6 true.
Show that for some finite {11, s, ¢, ..., } C 3 the sentence

(1 ANpa N A=+ Napy) — 0

is a validity.

A binary relation R on a set A is a subset of A x A. Often we write z Ry
instead of (x,y) € R. A binary relation < on a set A is a partial order iff
a. (reflexive) Va € A a < q;
b. (transitive) Ya,b,c € A[(a <bAb<c¢)— a<c|; and
c. (antisymmetric) Va,b € A [(a <bAb<a) — a=Db|.
Given a partial order < we define the strict order < by

r<ye(x<ynz#y)

A binary relation < on a set A is a linear order iff < is a partial order and
d. (total) Va,b € A(a <bVb<a).
A binary relation R on a set A extends a binary relation S on A iff S C R.

24.  Show that for every finite set A and partial order < on A there exists a linear
order <* on A extending <.

25. Let A be any set and let our set of atomic sentences P be:
P={Pw:abe A}

For any truth evaluation e define <, to be the binary relation on A defined
by
a< biff e(Py) =T.

Construct a set of sentences ¥ such that for every truth evaluation e,
e makes X true iff <, is a linear order on A.

26.  Without assuming the set A is finite prove for every partial order < on A
there exists a linear order <* on A extending <.

In the next problems n is an arbitrary positive integer.
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If X C A and R is a binary relation on A then the restriction of R to X is the
binary relation S = RN (X x X). For a partial order < on A, a set B C A
is an <-chain iff the restriction of < to B is a linear order. Show that given
a partial order < on A:

the set A is the union of less than n <-chains iff every finite subset of A
is the union of less than n <-chains.

A partial order < on a set A has dimension less than n + 1 iff there exists n
linear orders {<y, <5, <j3,...,<,} on A (not necessarily distinct) such that:

Ve,ye Ale <y iff (v <;yfori=1,2,...,n).

Show that a partial order < on a set A has dimension less than n + 1 iff for
every finite X included in A the restriction of < to X has dimension less
than n + 1.

A binary relation E (called the edges) on a set V' (called the vertices) is a
graph iff

a. (irreflexive) Vo € V-zEx; and

b. (symmetric) Vz,y € V (xEy — yFx).
We say = and y are adjacent iff zEy. (V' E’) is a subgraph of (V, E) iff
V' CV and E' is the restriction of £ to V. For a graph (V, E) an n coloring
isamap c:V — {1,2,...,n} satisfying Va,y € V(zEy — c(z) # c(y)), i.e.
adjacent vertices have different colors. A graph (V, E) has chromatic number
< n iff there is a n coloring on its vertices. Show that a graph has chromatic
number < n iff every finite subgraph of it has chromatic number < n.

A triangle in a graph (V| F) is a set A = {a,b,c} C V such that aFEb, bEc,
and cFa. Suppose that every finite subset of V' can be partitioned into n or
fewer sets none of which contain a triangle. Show that V' is the union of n
sets none of which contain a triangle.

(Henkin) A transversal for a family of sets F is a one-to-one choice function.
That is a one-to-one function f with domain F and for every x € F f(x) € x.
Suppose that F is a family of finite sets such that for every finite 7/ C F, F’
has a transversal. Show that F has a transversal. Is this result true if F
contains infinite sets?

Let F be a family of subsets of a set X. We say that C C F is an exact cover
of Y C X iff every element of Y is in a unique element of C. Suppose that
every element of X is in at most finitely many elements of F. Show that



there exists an exact cover C C F of X iff for every finite Y C X there exists
C C F an exact cover of Y. Is it necessary that every element of X is in at
most finitely many elements of F7

33. If F is a family of subsets of X and Y C X then we say Y splits F iff for any
ZeF,ZNY and Z\ Y are both nonempty. Prove that if F is a family of
finite subsets of X then F is split by some Y C X iff every finite 7/ C F is
split by some Y C X. What if F is allowed to have infinite sets in it?

34.  Given a set of students and set of classes, suppose each student wants one
of a finite set of classes, and each class has a finite enrollment limit. Show
that if each finite set of students can be accommodated, they all can be
accommodated.

35.  Show that the compactness theorem of propositional logic is equivalent to the
statement that for any set I, the space 2/, with the usual Tychonov product
topology is compact, where 2 = {0, 1} has the discrete topology. (You should
skip this problem if you do not know what a topology is.)



