A. Miller
M571
Homework

(1-23)
(A) Use Venn Diagrams to prove that

AN(BUC) = (ANB)U(ANC)

(B) Let A = {1,2,...,n}. How many binary relations R on A, (ie.
A?), are there such that
no conditions)

R C
(1)
(2) R is reflexive
(3)
(4)
(

(A, R) is a linear order
(A, R) is a graph, ie. R is irreflexive and symmetric
(A, R) is an equivalence relation with exactly two equivalence classes.

(1-25)
(A) Suppose f: A— B and g: B — C are functions. Prove

1. if f and g are 1-1, then go f is 1-1.
2. if f and ¢ are onto, then g o f is onto.
3. Show by examples that neither of the above implications reverse.
(B) Suppose A is a nonempty set. Prove the following are equivalent:
1. thereisal-1g: A —w
2. there is an onto f : w — A.
(1-28)
(A) Prove that for every set X there is no map f : X — P(X) which is

onto.
(B) Let Q[z] be the polynomials with rational coefficients, i.e.,

Q[z] ={p : forsomen €w, a; €Q p=ag+ a1z + ax® + -+ a,a"}

Prove that Q[z] is countable.



(C) Let A C C be the set of algebraic numbers. A complex number is
algebraic iff it is the root of a nontrivial polynomial p € Q[z]. Prove that A
is countable.

(1-30)
p-19: 235

(2-1)
p.27-29 : 5,9,10,14

(2-4)

(A) Prove or disprove: For every WFF 6 there exists a WFF 6* which
is logically equivalent to # and does not contain the negation symbol, i.e.,
WEFF which are strings of the symbols:

{\/a /\a 7, )7 (,Al,AQ,Ag, .. }

(B) For each of the 16 binary logical connectives o, let WFF, be the set
of well-formed formulas in the language L = {o,(,), A1, A, ...}. The con-
nective o is called adequate for propositional logic iff every WFF is logically
equivalent to one in WFF,. Determine (with proof) all adequate binary
logical connectives.

(2-6)

p.53-9 : It is not clear what (A < B < (') means. Probably Enderton
means ((A < B) < C) or (A < (B < ()) which are logically equivalent.
Every other mathematician would mean ((A < B) A (B < ().

p.54-12

(2-8)
proplog handout: 21,22,23

(2-11)

(A). Suppose ¥ C WFF is complete and finitely satisfiable. Suppose
F C ¥ is finite and # is a WFF such that F' = 6.

Prove that 6 € X.

(2-13)
(A). Suppose A C WFF is complete and finitely satisfiable and 6 and 1)
are logically equivalent WFFs. Prove that 8 € A iff ¢ € A.
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(2-15)
proplog handout: 24,25,26,27

(2-18)
proplog handout: 30,32,34

(2-20)
p.65-1,2,3

(2-22)

U and V are unary predicates, x and y distinct variables, and = means
logically equivalent.

Prove or disprove

(A) (FzU(x)) A (FzV (z)) = J2(U(x) AV (x))

(B) (VaU(x)) V (VaV(x)) = Vavy(U(z) V V(y))

(2-25)
p. 79-125

(2-27)
p. 100-104 : 9,16,18,27

(3-13)
p. 146 - 6,8,9

(3-20)
p. 145 - 3,7

(4-3)
p.100- 11,12,15

(4-8)
p.180- 1,4,5

Hint (1)
(R,Q,<,..) EVaVy (z <y —FqQ(g) Nx < qg<y)
Hint (4) If A is finite,then say A = {ay,a9,...,a,}.

(R,A,.) Ve (Alz) » (z=a1 Ve =ayV---VT=ay,)
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If A is infinite, then A is either unbounded or contains a limit point. Or you
can use that A contains an infinite sequence.

(4-12)

(A) In the language with one binary relation symbol and one unary re-
lation (say £ = {<,U}) prove that the following two structures are elemen-
tarily equivalent

R, <,Q) =(Q <, D)

where D, is the set of diyadic rational numbers:
Dgz{?—n :m€eZ n=123 ..}

Prove that
R, <,Q) # (R, <, Z)

(B) In the language of one binary relation let
A = (R*, &) where x ~ y iff z and y are infinitesimally close.
B=(R,~q) where z =gy iff 3¢ € Q z=y+¢q
C=(Q,~z) where g~y riff¢q—reZ

Prove that A=B=C

(C) In the same language let Dy = (Z,=g) for k = 2,3, ... where m =, n
iff m — n is divisible by k (i.e. m =n mod k).
Prove that for every k, Dy # C.
Prove that for every sentence 6 if C |= 6 then there exists NV such that for all
k> N Dy = 0.

Hint (A). Suppose the language of these structures is {<, U} where U is
a unary predicate symbol. Let DLO* be the theory of dense linear orders
without end points plus

VaVy(x <y) — JuFv(Uu) A-Uw) ANz <u<yAhz<v<y)

Use the Los-Vaught Test to prove that DLO* is a complete theory.

(B). Write down axioms ¥ which say that the binary relation is an equiv-
alence relation, with infinitely many equivalence classes, and all equivalence
classes are infinite. Prove the ¥ is complete by using the Los-Vaught Test.



(4-22)

Prove that the definable subsets of (w,S,0) are the finite and cofinite
subsets of w.

Hint: (w,S,0) = (w,S,0)4(Z, S) or you can use elimination of quantifiers
as in book.

(4-24)
Prove that Th(w,+,|) is undecidable where | is the binary predicate
n|m iff n divides m.
Hints: Show multiplication is definable in this structure. n? 4 1 is the least
common multiple of n and n + 1, (a 4+ b)? = a® + 2ab + V?

(5-1)

(A) An integer z is square-free iff z > 2 and no integer y > 2 exists such
that y? divides z. Let S(n) be the sum of the first n square-free integers.
Prove that S : w — w is primitive recursive.

(B) Prove there exists an integer n such that 5 divides n, 7 divides n+1,
9 divides n+2, 11 divides n+3, and 13 divides n+4.



