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Gödel’s Completeness Theorem

We only consider countable languages L for first order logic with equality
which have only predicate symbols and constant symbols. We regard the
symbols “∃x”’ as an abbreviation for “¬∀x¬” or vice-versa if you prefer.

Propositional Tautologies

We take all propositional tautologies as Logical Axioms. For example,
for any L-formula θ the formula

(θ ∨ ¬θ)

is a logical axiom. More generally, for any proposition tautology we replace
the propositional letters with L-formulas and get a Logical Axiom.

The other axioms are axiom schemas, i.e, all formulas of a certain syn-
tactical form.

Equality Axioms

All formulas of the form:
u = u
u = v → v = u
(u = v ∧ v = w)→ u = w

(u1 = v1 ∧ u2 = v2 ∧ · · · ∧ un = vn)→ (R(u1, u2, . . . , un)↔ R(v1, v2, . . . , vn))
are Logical Axioms. Here u, v, w, ui, vi are terms, i.e., either variables or

constant symbols in any mix and R is an n-ary predicate symbol.

Substitution Axioms

For any formula θ(x) and constant symbol c the axiom:

(∀xθ(x))→ θ(c)

where θ(c) is the formula which results from substituting c for all free
occurrences of x in θ(x).
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And the axiom:
(∀xθ(x))→ θ(y)

where y is variable that does not occur in θ(x) at all.

Henkin Axioms

These aren’t in Enderton, so we probably don’t need them. However they
make the proof of Lemma 6 easier so why not add them. For any formula
θ(x) and variable y which doesn’t occur in θ(x) at all we have the axiom:

∃y[(∃xθ(x))→ θ(y)]

Generalization Axioms

These axioms are used to prove a weak form of the generalization Lemma
(see the Claim in the proof of Lemma 6). They are needed because we have
not taken Generalization as a proof rule. Which on the other hand makes
the Deduction Lemma easier to prove.

For all formulas θ and ψ and variables x the following is a logical axiom:

[∀x(θ(x)→ ψ(x))]→ [(∀xθ(x))→ (∀xψ(x))]

and for all formulas ρ and variables y such that y does not occur in ρ at
all (free or bound) the axiom:

ρ→ ∀yρ

Finally, (like Enderton) for any Logical Axiom we can and put as many
∀x1∀x2.. as we want in front of it and we get another Logical Axiom. This
concludes our list of logical axioms.
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Summary of the Logical Axioms

(P) All propositional tautologies

(E1) u = u
(E2) u = v → v = u
(E3) (u = v ∧ v = w)→ u = w
(E4)(u1 = v1 ∧ · · · ∧ un = vn)→ (R(u1, u2, . . . , un)↔ R(v1, v2, . . . , vn))

u, v, w, ui, vi are terms (constant symbols or variables)

(S1) (∀xθ(x))→ θ(c) where c constant symbol
(S2) (∀xθ(x))→ θ(y) where y is a variable that does not occur in θ(x)

(H) ∃y[(∃xθ(x))→ θ(y)] for any variable y that does not occur in θ(x)

(G1) [∀x(θ(x)→ ψ(x))]→ [(∀xθ(x))→ (∀xψ(x))]
(G2) ρ→ ∀yρ where y does not occur ρ
(G3) If θ any Logical Axiom, so is ∀xθ

Definition: For Σ a set of L-sentences and θ a L-formula Σ ` θ iff there is
a finite sequence of L-formulas θ1, θ2 . . . θn such that θ = θn and each θk

is either a logical axiom or member of Σ or follows from previous θi using
Modus Ponens.

Definition: Th(Σ) = {θ an L-formula : Σ ` θ}.
Note that Th(Σ) can also be characterized as the smallest family of L-

formulas which contain Σ∪Logical Axioms and is closed under Modus Po-
nens.

The Deduction Lemma only depends on the fact that we have included
all propositional tautologies as logical axioms and that our only proof rule is
Modus Ponens.

Lemma 1 (Deduction Lemma) For any set Σ ∪ {θ} of L-sentences and ψ
an L-formula

Σ ` θ → ψ iff Σ ∪ {θ} ` ψ

proof:
The direction → is easy from Modus Ponens.
For the direction ← we prove it by showing that the set of all ψ such that

Σ ` θ → ψ
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contains Σ ∪ {θ}∪Logical Axioms and is closed under Modus Ponens.
(1) Given ψ note that ψ → (θ → ψ) is a propositional tautology. Hence

if ψ ∈ Σ or if ψ is a logical axiom, then Σ ` θ → ψ by using Modus Ponens.
(2) Note that

(θ → ψ1)→ [(θ → (ψ1 → ψ2))→ (θ → ψ2)]

is a propositional tautology. Hence if Σ ` θ → ψ1 and Σ ` θ → (ψ1 → ψ2)
then by two uses of Modus Ponens, Σ ` θ → ψ2.

It follows from (1) and (2) that:

Th(Σ ∪ {θ}) ⊆ {ψ : Σ ` θ → ψ}

2

Definition: Σ is an inconsistent set of L-sentences iff Σ ` # where # is
some propositional contradiction, for example, # could be

# = P ∧ ¬P = (∃x x = x) ∧ ¬(∃x x = x)

Definition: Σ is consistent iff Σ is not inconsistent.
Note that since (# → θ) is a propositional tautology for any formula θ,

by Modus Ponens, if Σ ` # then Σ proves θ. Hence inconsistent Σ prove
everything, i.e., Th(Σ) is the set of all L-formulas. An equivalent definition
of Σ is inconsistent is that for some L-formula θ both Σ ` θ and Σ ` ¬θ.
This is because θ → (¬θ → #) is a propositional tautology and therefor by
Modus Ponens twice Σ ` #.

The next couple of lemmas only use the deduction lemma.

Lemma 2 The following two forms of the completeness theorem are equiva-
lent:
(a) For every set Σ ∪ {θ} of L-sentences

if every model of Σ is a model of θ, then Σ ` θ.
(b) Every consistent set Γ of L-sentences has a model.

proof:
Suppose (a). If Γ has no model, then every model of Γ is a model of #.

But then Γ ` #, hence it is inconsistent.
Suppose (b) and every model of Σ is a model of θ. Then Γ = Σ ∪ {¬θ}

has no model and so is inconsistent by (b). Hence Γ = Σ ∪ {¬θ} ` #.
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Now according to the deduction lemma:

Σ ` (¬θ → #)

But (¬θ → #)→ θ is a propositional tautology. So by Modus Ponens

Σ ` θ

2

The above proof also shows that:

Lemma 3 If Σ ∪ {θ} is an inconsistent set of L-sentences, then Σ ` ¬θ.

proof:
If Σ ∪ θ ` # then by the Deduction Lemma, Σ ` θ → #. But

(θ → #)→ ¬θ

is a propositional tautology and so by Modus Ponens, Σ ` ¬θ.
2

It also follows from the Deduction Lemma that:

Lemma 4 For any consistent Σ and sentence θ either Σ∪ {θ} is consistent
or Σ ∪ {¬θ} is consistent.

proof:
Otherwise by the Deduction Lemma Σ ` θ → # and Σ ` ¬θ → #. But

(¬θ → #)→ (θ → #)

is a propositional tautology and so by Modus Ponens twice Σ ` #.
2

The next lemma shows that adding new constant symbols can’t hurt.

Lemma 5 Suppose Σ is a consistent set of L-sentences and c is a new con-
stant symbol not appearing in L. Then Σ is a consistent set of L ∪ {c}-
sentences.
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proof:
Suppose

θ1(c), θ2(c), . . . , θn(c)

is a proof from Σ of #. Let y be any variable that does not occur in any of
the θi(c). Then we claim

θ1(y), θ2(y), . . . , θn(y)

is a proof of # from Σ in L. This is because
(1) if θi(c) ∈ Σ then c does not occur in θi(c), so θ(c) = θ(y).
(2) If θi(c) is a logical axiom and y is any variable that does not occur in

θi(c), then θi(y) is a logical axiom. (Note that an instance of S1 may turn
into an instance of S2.)

(3) Modus Ponens transfers over: e.g.
From θ(c) and θ(c)→ ψ(c) infer ψ(c).
From θ(y) and θ(y)→ ψ(c) infer ψ(y).

2

Lemma 6 Suppose Σ is a consistent set of L-sentences and θ(x) is an L-
formula with one free variable x. Let c be a new constant symbol not appearing
L. Then Σ ∪ {(∃xθ(x))→ θ(c)} is a consistent set of L ∪ {c}-sentences.

proof:
The following claim is why we need the generalization axioms. It says

basically that proving some statement about an arbitrary new constant is
the same as proving for all y the statement holds.

Claim. Suppose that ρ(c) is any L∪ {c}-sentence such that Σ ` ρ(c). Then
for all but finitely many variables y we have that Σ ` ∀yρ(y).
proof:

It is enough to prove that the set of such ρ which satisfy the claim contain
Σ and the Logical Axioms, and they are closed under Modus Ponens.

Case 1. ρ(c) is a logical axiom. In this case ρ(y) is also a logical ax-
iom provided that y does not occur in ρ. By (G3) closure under universal
quantification, ∀yρ(y) is also a logical axiom.

Case 2. ρ(c) ∈ Σ. In this case c does not appear in ρ = ρ(c). And so

ρ→ ∀yρ
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is a logical axiom and by Modus Ponens Σ ` ∀yρ.
Case 3. ρ(c) is obtained by Modus Ponens from formulas, ψ(c) → ρ(c)

and ψ(c) which Σ proves. By induction we assume that for all but finitely
many variables y that

Σ ` ∀y (ψ(y)→ ρ(y))

and
Σ ` ∀y ψ(y)

Now using the generalization axiom G1 and Modus Ponens we get that
(∀y(ψ(y))→ (∀yρ(y))) and so by Modus Ponens again we get ∀yρ(y).
This ends the proof of the Claim.

To prove the Lemma assume for contradiction that Σ∪{(∃xθ(x))→ θ(c)}
is inconsistent. Then by Lemma 3 we have that

Σ ` ρ(c)

where ρ(c) = ¬[(∃xθ(x)) → θ(c)]. By the claim for all but finitely many
variables y

Σ ` ∀yρ(y)

But this is exactly the negation of the Axiom H:

[∃y[(∃xθ(x))→ θ(y)]

is the same as
[¬∀y¬[(∃xθ(x))→ θ(y)]

which is the same as
¬∀yρ(y)

Thus Σ is inconsistent as a L∪ {c}-theory and hence by Lemma 5 an incon-
sistent L-theory.
2

Finally we prove part (b) of Lemma 2.

Theorem 7 (Gödel’s Completeness Theorem) Any consistent set Σ of L-
sentences has a model.
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proof:
The first step is to add to L infinitely many new constant symbols. Let

L′ = L ∪ {cn : n ∈ ω}. By an induction on N Lemma 5 shows that Σ is a
consistent set of L ∪ {cn : n < N}-sentences. Since proofs are finite it must
be that Σ is a consistent set of L′-sentences.

Now let {ψn : n ∈ ω} be the set of all L′-sentences and let the set of
all L′-formulas with exactly one free variable be {θn(xkn) : n ∈ ω}. These
sets are countable because L′ is. Construct an increasing sequence Σn of
consistent L′-sentences as follows.

Set Σ0 = Σ.
For even n = 2m put Σn+1 to be either Σn∪{ψm} or Σn∪{¬ψm} whichever

is consistent. One of the two must be consistent by Lemma 4.
For odd n = 2m + 1. Let c be a constant not appearing in any of the

sentences in Σn or in θm(x) and let

Σn+1 = Σn ∪ {(∃xmθm(x))→ θm(c)}

This is consistent by Lemma 6.
Now let

Γ = ∪n∈ωΣn

Since the notion of proof is finite the union of an increasing sequence of
consistent sets of sentences must be consistent. By construction Γ satisfies:

(1) Γ is consistent
(2) Γ is complete, i.e., for every L′-sentence ψ either ψ ∈ Γ or ¬ψ ∈ Γ
(3) Γ has the constant witness property: for any L′-formula θ(x) with one

free variable x, there is a constant c such that (∃xθ(x))→ θ(c) is in Γ.
Since Γ is a complete consistent theory it must contain all Logical Axioms

which are sentences and it must contain exactly one of θ or ¬θ for each
sentence θ.

Now we build the canonical model A from Γ and prove that for every
L′-sentence θ that

A |= θ iff θ ∈ Γ

Let C be the set of constant symbols in the language L′. Define a binary
relation on C by c ≈ d iff c = d ∈ Γ. Notice that the equality axioms
E1,E2,E3 imply that ≈ is an equivalence relation. Since Γ is consistent and
complete it must contain all Logical axioms which are sentences, in particular
the E1,E2,E3,E4 when the terms involved are constant symbols. It follows
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from E1,E2,E3 that ≈ is an equivalence relation. We define the universe A
of the canonical model A to be set of equivalence classes of ≈:

A = C/ ≈

For each constant symbol c we define

cA = [c] = {d ∈ C : c ≡ d}

the equivalence class containing c.
It follows from E4 and that of Γ that
if c1 ≈ d1, c2 ≈ d2, . . ., and cn ≈ dn,
then R(c1, c2, . . . , cn) ∈ Γ iff R(d1, d2, . . . , dn) ∈ Γ.
Thus we may define the relation RA on An by

([c1], [c2], . . . , [cn]) ∈ RA iff R(c1, c2, . . . , cn) ∈ Γ

This definition of the canonical model guarantees that for any atomic
L′-sentence θ:

A |= θ iff θ ∈ Γ

Inductive steps

¬θ:
A |= ¬θ iff not A |= θ iff θ /∈ Γ iff ¬θ ∈ Γ

The last “iff” requires proof. If θ /∈ Γ then ¬θ ∈ Γ since Γ is complete. If
¬θ ∈ Γ, then θ /∈ Γ because otherwise Γ is inconsistent.

(θ1 ∨ θ2):

A |= θ1 ∨ θ2 iff (A |= θ1 or A |= θ2) iff (θ1 ∈ Γ or θ2 ∈ Γ) iff (θ1 ∨ θ2) ∈ Γ)

The last “iff” is because Γ is complete and consistent, otherwise one would
get a propositional contradiction in Γ.

∃xθ(x):
If A |= ∃xθ(x), then for some constant symbol c we have that A |= θ(c).
By inductive hypothesis θ(c) ∈ Γ. Since Γ is complete either ∃xθ(x) ∈ Γ
or ¬∃xθ(x) ∈ Γ. If that latter is the case, then ¬¬∀x¬θ(x) ∈ Γ and we
may drop the double negation, since ¬¬A → A is propositional tautology.
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Buy by the substitution axiom S1 we would have ¬θ(c) provable from Γ and
therefore it would be inconsistent.

Conversely suppose that ∃xθ(x) ∈ Γ. Now by the constant witness prop-
erty (∃xθ(x))→ θ(c) ∈ Γ for some constant c. So by Modus ponens θ(c) ∈ Γ
and by inductive hypothesis A |= θ(c) and so A |= ∃xθ(x).

This completes the proof of the completeness theorem.
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