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1 Finite abelian groups

Theorem 1.1 (Chinese remainder theorem) Given n, m relatively prime in-
tegers for every i,j € 7Z there is an x € Z such that x =i mod n and x = j
mod m.

Theorem 1.2 Z,, X Zy, =~ Ly iff n, m are relatively prime.

Lemma 1.3 Suppose n,m are relatively prime, G is a finite abelian group
such that ™™ = e for every v € G. Let G, = {x € G : 2" = e} and
Gn={xe€G : ax™=e}. Then

e GG, and G,, are subgroups of G,
o G,NG, ={e},

o G,G,, =G, and therefore

e G~G,xGp

Corollary 1.4 ‘(Decomposz'tion into p-groups) Suppose G is an abelian group
and |G| = pit - pi? - - pir where py < py < -+ < p, are primes. Then

GZGIXGQX"'XGTL
where for each j if x € G; then 2™ = e where n; = p;j.

Lemma 1.5 Suppose G is a finite abelian p-group and a € G has maximum
order, then there exists a subgroup K C G such that

e (a)- K =G and
o (a) N K = {e}.

The proof given in class is like the one in Gallian or Judson.



Theorem 1.6 Any finite abelian group is isomorphic to a product of cyclic
groups each of which has prime-power order.

Theorem 1.7 (Uniqueness) Suppose
Cp"l X Cp"l X+ X Cpnk ~ Cpml X Cpml X - X Cpml

where ny > ng > ---nip > 1 and my > me > ---my > 1. Then k =1 and
n; = m; for all i.

2 Group Actions and Sylow Theorems

For the group G acting on the set X the orbit of a € X is
orb(a) = {ga : g€ G} C X.
Proposition 2.1 Orbits are either disjoint or the same.

For a given group action of group G on set X, define Stab(a) = {g € G :
ga = a} for each a € X. Called stabilizer or fixed subgroup.

Proposition 2.2 Stab(a) is a subgroup of G.

For H C G a subgroup the index of H, [G : H] is the number of H-cosets,
{gH : g € G}|. Lagrange’s Theorem says |G| =[G : H| - |H|.

Proposition 2.3 (Orbit-stabilizer formula) |orb(a)| = [G : Stab(a)].

The conjugacy action of G on G is given by (g,h) — ghg™'. Under this
action the orbits are called the conjugacy classes. Z(G) the center of G is the
subgroup of all elements of G which commute with every other element of g.
Equivalently it is the set of elements of G with orbits (conjugacy classes) of
size one. C(g) = Stab(g) is called the centralizer subgroup of g.

Theorem 2.4 (Class formula) If conj(g1), -+, conj(g,) are the conjugacy
classes of size greater than one, then

Gl =12(G)] +)_[G : Clge)]



Theorem 2.5 (Cauchy) If p is a prime which divides |G|, then G has an
element of order p.

Corollary 2.6 Groups of order p* are abelian.

Theorem 2.7 (Sylow 1) If G is a finite group and p" divides |G|, then there
exists a subgroup H C G with |H| = p™.

Proposition 2.8 Any two n-cycles in Sy are conjugates. If T = cica--- ¢y
and p = c\cy--- ¢l are disjoint cycle decomposition with |c;| = |ci| all i, then
T and p are conjugates. Similarly for the converse.

Definition 2.9 H C G is a p-subgroup iff its order is a power of p. P C G
is a p-Sylow subgroup of G iff |P| = p™ where |G| = p"m and p does not
divide m.

Lemma 2.10 Suppose P is a p-Sylow subgroup of G, g € G has order a
power of p, and gPg~' = P. Then g € P.

Theorem 2.11 (Sylow 2) If G is a finite group, H a p-subgroup of G, and
P a p-Sylow subgroup of G, then there exists g € G such that H C gPg™*.

Corollary 2.12 Let G be a finite group such that p divides |G)|.

(a) Any p-subgroup of G is contained in a p-Sylow subgroup of G.

(b) Any two p-Sylow subgroups of G are conjugates.

(¢) Any two p-Sylow subgroups of G are isomorphic.

(d) A p-Sylow subgroup of G is normal iff it is the only p-Sylow subgroup
of G.

Theorem 2.13 (Sylow 3) If |G| = p™m where p does not divide m and n(p)
s the number of p-Sylow subgroups of G, then:

(a) n(p) =[G : N(P)] for any P a p-Sylow subgroup of G,

(b) n(p) divides m, and

(¢) n(p) =1 mod p

Theorem 2.14 If p < q are primes and q is not 1 mod p, then every group
of order pq is abelian.

Theorem 2.15 aut(Z,, +,) is isomorphic to (Z,\{0}, x,) the multiplicative
group of nonzero elements.



Example 2.16 Ifp < q are primes and ¢ = 1 mod p, then there is a twisted
product of Z,, and Z, which has order pq and is not abelian.

Theorem 2.17 If p < q are primes and ¢ = 1 mod p, then up to isomor-
phism there is a unique nonabelian group of order pq.
3 Polynomials and finite field extensions

Theorem 3.1 Suppose that p(z) is a polynomial over the field F and for
some a € F' p(a) =0. Then p(x) = (x — a)q(z) for some polynomial q(z).

Corollary 3.2 Any polynomial p € Flx| of degree < n with more than n
roots must be identically zero.

Theorem 3.3 Let the exponent of G be the least n such that x™ = e for
every x € G. If G is finite abelian group then G is cyclic iff exp(G) = |G].

Corollary 3.4 The multiplicative group of a finite field is cyclic.

4 Vector spaces over an abstract field

Before taking up finite field extensions we review some elementary results on
vector spaces. See:
http://www.math.wisc.edu/~miller/o0ld/mb542-00/vector.pdf

Lemma 4.1 (Ezchange Lemma) Suppose span(AU B) =V and a is not in
span(A). Then there ezists b € B such that span(AU {a} U (B\ {b})) =V.

Theorem 4.2 Fvery vector space has a basis. Any two bases have the same
cardinality. Any set of n + 1 wvectors in a vector space of dimension n is
linearly dependent.

Corollary 4.3 Any finite field F of characteristic p has cardinality p™ for
some integer n.


http://www.math.wisc.edu/~miller/old/m542-00/vector.pdf

5 Extension fields

Theorem 5.1 (Kronecker) If p(x) € Flx] is a non-constant polynomial,
then there exists a field E O F and o € E with p(a) = 0.

Corollary 5.2 (Kronecker) If p(x) € F[z] is a polynomial of degree n, then
there exists a field E O F and «; € E such that

p(r) = a(z — an)(z — ag) -~ (z — a)

Theorem 5.3 If p(x) € Flx] is irreducible and o, B are roots in some ex-
tension fields of F' then F(«) and F(() are isomorphic via an isomorphism
which fixes F.

Corollary 5.4 If p(x) € F[z] is irreducible and splits in an extension field
E of F then the multiplicity of each root of p is the same.

Theorem 5.5 The formal derivative for an abstract polynomial f(x) € F|x]
satisfies the usual derivative laws:

(a) If a € F and f € Flx], then (af) = af’.
(b) If f.g € Flal, then (f+9)" = [+ 4"
(c) If f.g € Fla], then (fg)' = f'g+ fg"

Theorem 5.6 For any o € F and f € Flx]
a 18 repeated root of fiff it is a root of f.

Corollary 5.7 The roots of an irreducible polynomial in a field of charac-
teristic zero, are always distinct.

Lemma 5.8 If E is any field of characteristic p, then for any o, 5 € E
(a4 By =a?" + 5
Theorem 5.9 For any p" and there is a field F' with |F| = p".

Definition 5.10 For fields F C E define [E : F| to be the dimension of E
viewed as a vector space over F.



Theorem 5.11 For fields FC K C E
[E:F)=[F:K] - [K:F|

Theorem 5.12 For p(x) € F[x] irreducible and o a root of p in some ez-
tension field, [F|a] : F] is the degree of p.

Theorem 5.13 If E O F is the splitting field of some polynomial in F|x],
then [E : F) is finite.

Theorem 5.14 If [E : F] is finite and o € E, then there is an irreducible
polynomial p € F|x] with p(a) = 0.
6 Algebraic closure

Definition 6.1 « is algebraic over F iff it is the root of a nontrivial poly-
nomial in Flx]|. A field K is algebraically closed iff every nonconstant poly-
nomial f € K[z] has a root in K.

Theorem 6.2 If F C E are fields define
K ={a€FE : «ais algebraic over F'}

Then K s a field and F C K C F.

Steinitz proved that every field F' is a subfield of an algebraically closed
field K. This requires the Axiom of Choice.

Theorem 6.3 Suppose FF C K and K 1is algebraically closed. Let E be the
elements of K which are algebraic over F. Then E is algebraically closed.

7 Compass and straight-edge

Theorem 7.1 (Wantzel 1837) Let C C R x R be the smallest set containing
(0,0) and (1,0) and closed under constructions using straight edge and com-
pass. Then C = F,. x F, where F, is the smallest subfield of R which closed

under square 100ts.



Lemma 7.2 For any «
a € F, iff for some n there are fields Fy, for k =0,1,...,n with o € F,
and such that Fy = Q and for each k <n  Fii1 = Fi[\/ay] for some ay, € F},.

Theorem 7.3 For any o € F,

Q[a] : Q] =2 for some integer n.
Corollary 7.4 3.2 ¢ F. so it is impossible to “double the cube”.
Corollary 7.5 cos(20°) ¢ F. so it is impossible to trisect every angle.
Corollary 7.6 Since m is transcendental and every element of F. is alge-
braic, it 1s tmpossible to “square the circle”.
8 Irreducibility criterion

Lemma 8.1 (Gauss’s Lemma) Suppose f € Z[x], then
f is irreducible in Qx| iff f is irreducible in Z[x].

Lemma 8.2 (Fisenstein’s Criterion) Suppose f € Z|x] has degree n
f(z) = ag + a1w + agx® + - - - + a,z"

and for some prime p
(a) p does not divide a,,
(b) p divides ay, for all k=0,1,...,n—1, and
(c) p* does not divide ay.

Then f is irreducible in Z|x].

Theorem 8.3 For any prime p the polynomial f(x) = 1+x+x?+- - 4P~
is irreducible in Q[z].

Proposition 8.4 If 2™ + 1 is prime, then m is a power of 2.

Theorem 8.5 (Gauss) If the reqular p-gon is constructible with straight edge
and compass, then p = 22" + 1 for some integer n.



9 Solvability by radicals

For Tartaglia method of solving a cubic polynomial see
https://www.math.wisc.edu/~miller/0ld/m542-00/galois.pdf
For a brief history see:
www.dwick.org/pages/cubicquartic.pdf

Theorem 9.1 (Steinitz 1910) Suppose F' C E are fields of characteristic 0
and [E : F] is finite. Then there exists « € E such that E = Fla]. The same
is true if E is a finite field.

Example 9.2 There is a field F' and «, § with [Fla, 5] : F] finite but there
is mo vy with Fla, B] = F[y].

See
http://www.math.wisc.edu/~miller/o0ld/mb42-00/examp.pdf

10 Galois Theory

Proofs and definitions can be found in galois.pdf see:
https://www.math.wisc.edu/~miller/old/mb42-00/galois.pdf

Proposition 10.1 (2.4 galois.pdf) aut(E|F) is a group. Furthermore, if
F C E C K are fields, then aut(K|E) is a subgroup of aut(K|F).

Lemma 10.2 (2.5 galois.pdf) Suppose o,p € aut(F(«)|F). Then o = p iff
o(a) = p(a). Similarly, if o,p € aut(F(aq,ag,...,a,)|F) then o = p iff
o(ag) = playg) forallk=1,2,... n.

Theorem 10.3 (2.6 galois.pdf) Suppose that K is the splitting field of a
polynomial in F[x] of degree n. Then aut(K|F') is isomorphic to a subgroup
of Sy.

Definition 10.4 For fields F C K we say that K is a splitting field over F
iff K is the splitting field of some polynomial in F[z].

Every polynomial in Q[z] splits in C but C is not a splitting field over Q.


https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf
www.dwick.org/pages/cubicquartic.pdf
http://www.math.wisc.edu/~miller/old/m542-00/examp.pdf
https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf

Lemma 10.5 (Extension Lemma 2.9 galois.pdf) Suppose that F C F; C K
and FF C Fy, C K are fields, K is a splitting field over F', and o : F} —
Fy is an isomorphism which fixes F. Then there exists p : K — K an
automorphism which extends o.

Theorem 10.6 (3.1 galois.pdf) Suppose FF C K, K is a splitting field over
F, p € F[z] is irreducible, and there is o € K such that p(a) = 0. Then p
splits in K.

Theorem 10.7 (2.8 galois.pdf) Suppose F C K, K is a splitting field over
F, and these fields have characteristic zero. Then |aut(K, F')| = [K : F].

Theorem 10.8 (2.10 galois.pdf) Suppose F C K C E, K and E are split-
ting fields over F. Then aut(E|K) <aut(E|F) and

aut(E|F)
ant(B|K) aut(K|F)

Proposition 10.9 Suppose ' C K C E, E is a splitting fields over F', and
aut(E|K) <aut(E|F). Then K is a splitting field over F.

Theorem 10.10 (5.3 galois.pdf) Suppose F' C E is a radical Galois exten-
sion, then aut(E|F) is a solvable group.

Example 10.11 If 2 generates the multiplicative group of Z,, then
fx)=1+a+2>+ - a2
18 irreducible over Zo.

See Gurrier 1968
http://www.jstor.org/stable/2315109

See also Artin’s conjecture on primitive roots
http://en.wikipedia.org/wiki/Artin_conjecture

Theorem 10.12 (5.4 galois.pdf) Subgroups of solvable groups are solvable
and homomorphic images of solvable groups are solvable.

Theorem 10.13 Suppose K is the splitting field of a polynomial in F}|x]
and Iy C F, C--- C F,, satisfies F} C K C F,,, and Fyy1 1s a radical Galois
extension of Fy for each k < m. Then aut(K|F}) is a solvable group.

9


http://www.jstor.org/stable/2315109
http://en.wikipedia.org/wiki/Artin_conjecture

Lemma 10.14 .

(a) {(i,i+1):1<1i<mn} generates S,. (adjacent swaps)

(b) {(1,2),(1,2,3,...,n)} generates S,.

(c) {(1,7),(1,2,3,...,n)} generates S, if n is prime.

(d) If n is prime, then any subgroup of S,, which contains an n-cycle and
at least one transposition must be S,,.

Theorem 10.15 Suppose f(z) € Q[z] is an irreducible polynomial of prime
degree p such that f has exactly p — 2 real roots. If K is the splitting field of
f, then aut(K, Q) is isomorphic to S,.

Example 10.16 If f(x) = 2° — bz —|—g then f is irreducible and has exactly
three real roots.

Theorem 10.17 The alternating group As is simple. Hence Sy is not solv-
able.

Corollary 10.18 There is polynomial in Q[z]| of degree 5 which cannot be
solved by radicals.

Theorem 10.19 For any n there are fields E C K such that K is the split-
ting field of a polynomial in E[x] and aut(K|E) is isomorphic to S,,.

Theorem 10.20 (char 0) Suppose F C K and K is the splitting field of a
polynomial in Flx] and H C aut(K|F) is a subgroup. Then there exists a
field E with F C EC K and aut(K|E) = H.

Corollary 10.21 FEvery finite group is a Galois group.

Proof of the fundamental theorem of algebra using Galois theory:
http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

Definition 10.22 A polynomial f(x) € Qlx] is solvable by real radicals iff
its roots are in the smallest subfield S C R which is closed under taking real
roots, i.e., ifa € S, a >0 and n € N then "\/a € S.

Lemma 10.23 Suppose F' C C s a subfield, p a prime, and a € F. Then
f(z) = aP — a is reducible in F iff it has a root in F.

Theorem 10.24 Suppose f(x) € Q[z] is an irreducible cubic with three real
roots. Then f(x) is not solvable by real radicals.
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http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

11 Similar Matrices

For this material see
http://www.math.wisc.edu/~miller/o0ld/mb42-00/similar.pdf

Theorem 11.1 Suppose F is an infinite field, A and B are F-matrices,
and for some field extension E O F there is an E-matriz P such that A =
PBP~t. Then there is an F-matriz P such that A= PBP~!.

For algebraically closed fields A and B are similar iff they have the same
Jordan Normal forms up to a permutation of the Jordan blocks. So without
loss we may as well assume that F is the algebraic closure of F'. By adding
one new element at a time it suffices to prove the Theorem for F = F[a] with
[E : F| finite. Let p(z) € F[z] be the minimal polynomial for o. Consider
the vector space

M={P : AP = PB}

where the P are F-matrix. Note that any such P has entries which are a
polnomial in a. So we can write

P:PO—I—ozP1+...—I—oz”Pn
where the P; are F-matrices. Let f(x) € F[z] be the determinate of

Since f(a) # 0 and F'is an infinite field there is an 5 € F' such that f(5) # 0.
The F-matrix
P =P+ B8P +...+3"P,

is invertible and witnesses the similarity of A and B.
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