Last revised: May 16, 2014

A.Miller M542 www.math.wisc.edu/~miller/

1 Finite abelian groups

Theorem 1.1 (Chinese remainder theorem) Given n, m relatively prime integers for every $i, j \in \mathbb{Z}$ there is an $x \in \mathbb{Z}$ such that $x = i \mod n$ and $x = j \mod m$.

Theorem 1.2 $\mathbb{Z}_n \times \mathbb{Z}_m \simeq \mathbb{Z}_{nm}$ iff n, m are relatively prime.

Lemma 1.3 Suppose n, m are relatively prime, G is a finite abelian group such that $x^{nm} = e$ for every $x \in G$. Let $G_n = \{x \in G : x^n = e\}$ and $G_m = \{x \in G : x^m = e\}$. Then

- G_n and G_m are subgroups of G,
- $G_n \cap G_m = \{e\},\$
- $G_nG_m = G$, and therefore
- $G \simeq G_n \times G_m$

Corollary 1.4 (Decomposition into p-groups) Suppose G is an abelian group and $|G| = p_1^{i_1} \cdot p_2^{i_2} \cdots p_n^{i_n}$ where $p_1 < p_2 < \cdots < p_n$ are primes. Then

 $G \simeq G_1 \times G_2 \times \cdots \times G_n$

where for each j if $x \in G_j$ then $x^{n_j} = e$ where $n_j = p_j^{i_j}$.

Lemma 1.5 Suppose G is a finite abelian p-group and $a \in G$ has maximum order, then there exists a subgroup $K \subseteq G$ such that

- $\langle a \rangle \cdot K = G$ and
- $\langle a \rangle \cap K = \{e\}.$

The proof given in class is like the one in Gallian or Judson.

Theorem 1.6 Any finite abelian group is isomorphic to a product of cyclic groups each of which has prime-power order.

Theorem 1.7 (Uniqueness) Suppose

$$C_{p^{n_1}} \times C_{p^{n_1}} \times \cdots \times C_{p^{n_k}} \simeq C_{p^{m_1}} \times C_{p^{m_1}} \times \cdots \times C_{p^{m_l}}$$

where $n_1 \ge n_2 \ge \cdots n_k \ge 1$ and $m_1 \ge m_2 \ge \cdots m_l \ge 1$. Then k = l and $n_i = m_i$ for all i.

2 Group Actions and Sylow Theorems

. .

For the group G acting on the set X the orbit of $a \in X$ is

$$orb(a) = {}^{def} \{ga : g \in G\} \subseteq X.$$

Proposition 2.1 Orbits are either disjoint or the same.

For a given group action of group G on set X, define $Stab(a) = \{g \in G : ga = a\}$ for each $a \in X$. Called stabilizer or fixed subgroup.

Proposition 2.2 Stab(a) is a subgroup of G.

For $H \subseteq G$ a subgroup the index of H, [G : H] is the number of H-cosets, $|\{gH : g \in G\}|$. Lagrange's Theorem says $|G| = [G : H] \cdot |H|$.

Proposition 2.3 (Orbit-stabilizer formula) |orb(a)| = [G : Stab(a)].

The conjugacy action of G on G is given by $(g, h) \to ghg^{-1}$. Under this action the orbits are called the conjugacy classes. Z(G) the center of G is the subgroup of all elements of G which commute with every other element of g. Equivalently it is the set of elements of G with orbits (conjugacy classes) of size one. C(g) = Stab(g) is called the centralizer subgroup of g.

Theorem 2.4 (Class formula) If $conj(g_1), \dots, conj(g_n)$ are the conjugacy classes of size greater than one, then

$$|G| = |Z(G)| + \sum_{k=1}^{n} [G : C(g_k)]$$

Theorem 2.5 (Cauchy) If p is a prime which divides |G|, then G has an element of order p.

Corollary 2.6 Groups of order p^2 are abelian.

Theorem 2.7 (Sylow 1) If G is a finite group and p^n divides |G|, then there exists a subgroup $H \subseteq G$ with $|H| = p^n$.

Proposition 2.8 Any two n-cycles in S_N are conjugates. If $\tau = c_1 c_2 \cdots c_n$ and $\rho = c'_1 c'_2 \cdots c'_n$ are disjoint cycle decomposition with $|c_i| = |c'_i|$ all *i*, then τ and ρ are conjugates. Similarly for the converse.

Definition 2.9 $H \subseteq G$ is a p-subgroup iff its order is a power of p. $P \subseteq G$ is a p-Sylow subgroup of G iff $|P| = p^n$ where $|G| = p^n m$ and p does not divide m.

Lemma 2.10 Suppose P is a p-Sylow subgroup of G, $g \in G$ has order a power of p, and $gPg^{-1} = P$. Then $g \in P$.

Theorem 2.11 (Sylow 2) If G is a finite group, H a p-subgroup of G, and P a p-Sylow subgroup of G, then there exists $g \in G$ such that $H \subseteq gPg^{-1}$.

Corollary 2.12 Let G be a finite group such that p divides |G|.

(a) Any p-subgroup of G is contained in a p-Sylow subgroup of G.

(b) Any two p-Sylow subgroups of G are conjugates.

(c) Any two p-Sylow subgroups of G are isomorphic.

(d) A p-Sylow subgroup of G is normal iff it is the only p-Sylow subgroup of G.

Theorem 2.13 (Sylow 3) If $|G| = p^n m$ where p does not divide m and n(p) is the number of p-Sylow subgroups of G, then:

(a) n(p) = [G : N(P)] for any P a p-Sylow subgroup of G,

- (b) n(p) divides m, and
- (c) $n(p) = 1 \mod p$

Theorem 2.14 If p < q are primes and q is not 1 mod p, then every group of order pq is abelian.

Theorem 2.15 $aut(\mathbb{Z}_p, +_p)$ is isomorphic to $(\mathbb{Z}_p \setminus \{0\}, \times_p)$ the multiplicative group of nonzero elements.

Example 2.16 If p < q are primes and $q = 1 \mod p$, then there is a twisted product of \mathbb{Z}_p and \mathbb{Z}_q which has order pq and is not abelian.

Theorem 2.17 If p < q are primes and $q = 1 \mod p$, then up to isomorphism there is a unique nonabelian group of order pq.

3 Polynomials and finite field extensions

Theorem 3.1 Suppose that p(x) is a polynomial over the field F and for some $\alpha \in F$ $p(\alpha) = 0$. Then $p(x) = (x - \alpha)q(x)$ for some polynomial q(x).

Corollary 3.2 Any polynomial $p \in F[x]$ of degree $\leq n$ with more than n roots must be identically zero.

Theorem 3.3 Let the exponent of G be the least n such that $x^n = e$ for every $x \in G$. If G is finite abelian group then G is cyclic iff exp(G) = |G|.

Corollary 3.4 The multiplicative group of a finite field is cyclic.

4 Vector spaces over an abstract field

Before taking up finite field extensions we review some elementary results on vector spaces. See:

```
http://www.math.wisc.edu/~miller/old/m542-00/vector.pdf
```

Lemma 4.1 (Exchange Lemma) Suppose $\operatorname{span}(A \cup B) = V$ and a is not in $\operatorname{span}(A)$. Then there exists $b \in B$ such that $\operatorname{span}(A \cup \{a\} \cup (B \setminus \{b\})) = V$.

Theorem 4.2 Every vector space has a basis. Any two bases have the same cardinality. Any set of n + 1 vectors in a vector space of dimension n is linearly dependent.

Corollary 4.3 Any finite field F of characteristic p has cardinality p^n for some integer n.

5 Extension fields

Theorem 5.1 (Kronecker) If $p(x) \in F[x]$ is a non-constant polynomial, then there exists a field $E \supseteq F$ and $\alpha \in E$ with $p(\alpha) = 0$.

Corollary 5.2 (Kronecker) If $p(x) \in F[x]$ is a polynomial of degree n, then there exists a field $E \supseteq F$ and $\alpha_i \in E$ such that

$$p(x) = a(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$

Theorem 5.3 If $p(x) \in F[x]$ is irreducible and α, β are roots in some extension fields of F then $F(\alpha)$ and $F(\beta)$ are isomorphic via an isomorphism which fixes F.

Corollary 5.4 If $p(x) \in F[x]$ is irreducible and splits in an extension field E of F then the multiplicity of each root of p is the same.

Theorem 5.5 The formal derivative for an abstract polynomial $f(x) \in F[x]$ satisfies the usual derivative laws:

- (a) If $a \in F$ and $f \in F[x]$, then (af)' = af'.
- (b) If $f, g \in F[x]$, then (f + g)' = f' + g'.
- (c) If $f, g \in F[x]$, then (fg)' = f'g + fg'.

Theorem 5.6 For any $\alpha \in F$ and $f \in F[x]$

 α is repeated root of f iff it is a root of f'.

Corollary 5.7 The roots of an irreducible polynomial in a field of characteristic zero, are always distinct.

Lemma 5.8 If E is any field of characteristic p, then for any $\alpha, \beta \in E$

$$(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n}$$

Theorem 5.9 For any p^n and there is a field F with $|F| = p^n$.

Definition 5.10 For fields $F \subseteq E$ define [E : F] to be the dimension of E viewed as a vector space over F.

Theorem 5.11 For fields $F \subseteq K \subseteq E$

$$[E:F] = [E:K] \cdot [K:F]$$

Theorem 5.12 For $p(x) \in F[x]$ irreducible and α a root of p in some extension field, $[F[\alpha] : F]$ is the degree of p.

Theorem 5.13 If $E \supseteq F$ is the splitting field of some polynomial in F[x], then [E:F] is finite.

Theorem 5.14 If [E : F] is finite and $\alpha \in E$, then there is an irreducible polynomial $p \in F[x]$ with $p(\alpha) = 0$.

6 Algebraic closure

Definition 6.1 α is algebraic over F iff it is the root of a nontrivial polynomial in F[x]. A field K is algebraically closed iff every nonconstant polynomial $f \in K[x]$ has a root in K.

Theorem 6.2 If $F \subseteq E$ are fields define

 $K = \{ \alpha \in E : \alpha \text{ is algebraic over } F \}$

Then K is a field and $F \subseteq K \subseteq F$.

Steinitz proved that every field F is a subfield of an algebraically closed field K. This requires the Axiom of Choice.

Theorem 6.3 Suppose $F \subseteq K$ and K is algebraically closed. Let E be the elements of K which are algebraic over F. Then E is algebraically closed.

7 Compass and straight-edge

Theorem 7.1 (Wantzel 1837) Let $C \subseteq \mathbb{R} \times \mathbb{R}$ be the smallest set containing (0,0) and (1,0) and closed under constructions using straight edge and compass. Then $C = F_c \times F_c$ where F_c is the smallest subfield of \mathbb{R} which closed under square roots.

Lemma 7.2 For any α

 $\alpha \in F_c$ iff for some *n* there are fields F_k for k = 0, 1, ..., n with $\alpha \in F_n$ and such that $F_0 = \mathbb{Q}$ and for each k < n $F_{k+1} = F_k[\sqrt{a_k}]$ for some $a_k \in F_k$.

Theorem 7.3 For any $\alpha \in F_c$

 $[\mathbb{Q}[\alpha]:\mathbb{Q}] = 2^n \quad for some integer n.$

Corollary 7.4 ${}^{3}\sqrt{2} \notin F_{c}$ so it is impossible to "double the cube".

Corollary 7.5 $\cos(20^\circ) \notin F_c$ so it is impossible to trisect every angle.

Corollary 7.6 Since π is transcendental and every element of F_c is algebraic, it is impossible to "square the circle".

8 Irreducibility criterion

Lemma 8.1 (Gauss's Lemma) Suppose $f \in \mathbb{Z}[x]$, then f is irreducible in $\mathbb{Q}[x]$ iff f is irreducible in $\mathbb{Z}[x]$.

Lemma 8.2 (Eisenstein's Criterion) Suppose $f \in \mathbb{Z}[x]$ has degree n

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

and for some prime p(a) p does not divide a_n , (b) p divides a_k for all k = 0, 1, ..., n - 1, and (c) p^2 does not divide a_0 . Then f is irreducible in $\mathbb{Z}[x]$.

Theorem 8.3 For any prime p the polynomial $f(x) = 1 + x + x^2 + \cdots + x^{p-1}$ is irreducible in $\mathbb{Q}[x]$.

Proposition 8.4 If $2^m + 1$ is prime, then m is a power of 2.

Theorem 8.5 (Gauss) If the regular p-gon is constructible with straight edge and compass, then $p = 2^{2^n} + 1$ for some integer n.

9 Solvability by radicals

For Tartaglia method of solving a cubic polynomial see

https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf For a brief history see:

www.dwick.org/pages/cubicquartic.pdf

Theorem 9.1 (Steinitz 1910) Suppose $F \subseteq E$ are fields of characteristic 0 and [E:F] is finite. Then there exists $\alpha \in E$ such that $E = F[\alpha]$. The same is true if E is a finite field.

Example 9.2 There is a field F and α, β with $[F[\alpha, \beta] : F]$ finite but there is no γ with $F[\alpha, \beta] = F[\gamma]$.

```
See http://www.math.wisc.edu/~miller/old/m542-00/examp.pdf
```

10 Galois Theory

Proofs and definitions can be found in galois.pdf see: https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf

Proposition 10.1 (2.4 galois.pdf) $\operatorname{aut}(E|F)$ is a group. Furthermore, if $F \subseteq E \subseteq K$ are fields, then $\operatorname{aut}(K|E)$ is a subgroup of $\operatorname{aut}(K|F)$.

Lemma 10.2 (2.5 galois.pdf) Suppose $\sigma, \rho \in \operatorname{aut}(F(\alpha)|F)$. Then $\sigma = \rho$ iff $\sigma(\alpha) = \rho(\alpha)$. Similarly, if $\sigma, \rho \in \operatorname{aut}(F(\alpha_1, \alpha_2, \ldots, \alpha_n)|F)$ then $\sigma = \rho$ iff $\sigma(\alpha_k) = \rho(\alpha_k)$ for all $k = 1, 2, \ldots, n$.

Theorem 10.3 (2.6 galois.pdf) Suppose that K is the splitting field of a polynomial in F[x] of degree n. Then $\operatorname{aut}(K|F)$ is isomorphic to a subgroup of S_n .

Definition 10.4 For fields $F \subseteq K$ we say that K is a splitting field over F iff K is the splitting field of some polynomial in F[x].

Every polynomial in $\mathbb{Q}[x]$ splits in \mathbb{C} but \mathbb{C} is not a splitting field over \mathbb{Q} .

Lemma 10.5 (Extension Lemma 2.9 galois.pdf) Suppose that $F \subseteq F_1 \subseteq K$ and $F \subseteq F_2 \subseteq K$ are fields, K is a splitting field over F, and $\sigma : F_1 \rightarrow F_2$ is an isomorphism which fixes F. Then there exists $\rho : K \rightarrow K$ an automorphism which extends σ .

Theorem 10.6 (3.1 galois.pdf) Suppose $F \subseteq K$, K is a splitting field over $F, p \in F[x]$ is irreducible, and there is $\alpha \in K$ such that $p(\alpha) = 0$. Then p splits in K.

Theorem 10.7 (2.8 galois.pdf) Suppose $F \subseteq K$, K is a splitting field over F, and these fields have characteristic zero. Then $|\operatorname{aut}(K, F)| = [K : F]$.

Theorem 10.8 (2.10 galois.pdf) Suppose $F \subseteq K \subseteq E$, K and E are splitting fields over F. Then $\operatorname{aut}(E|K) \triangleleft \operatorname{aut}(E|F)$ and

$$\frac{\operatorname{aut}(E|F)}{\operatorname{aut}(E|K)} \simeq \operatorname{aut}(K|F)$$

Proposition 10.9 Suppose $F \subseteq K \subseteq E$, E is a splitting fields over F, and $\operatorname{aut}(E|K) \triangleleft \operatorname{aut}(E|F)$. Then K is a splitting field over F.

Theorem 10.10 (5.3 galois.pdf) Suppose $F \subseteq E$ is a radical Galois extension, then $\operatorname{aut}(E|F)$ is a solvable group.

Example 10.11 If 2 generates the multiplicative group of \mathbb{Z}_p , then

$$f(x) = 1 + x + x^2 + \dots + x^{p-1}$$

is irreducible over \mathbb{Z}_2 .

See Gurrier 1968 http://www.jstor.org/stable/2315109 See also Artin's conjecture on primitive roots http://en.wikipedia.org/wiki/Artin_conjecture

Theorem 10.12 (5.4 galois.pdf) Subgroups of solvable groups are solvable and homomorphic images of solvable groups are solvable.

Theorem 10.13 Suppose K is the splitting field of a polynomial in $F_1[x]$ and $F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m$ satisfies $F_1 \subseteq K \subseteq F_m$ and F_{k+1} is a radical Galois extension of F_k for each k < m. Then $\operatorname{aut}(K|F_1)$ is a solvable group.

Lemma 10.14 .

(a) $\{(i, i+1) : 1 \le i < n\}$ generates S_n . (adjacent swaps)

(b) $\{(1,2), (1,2,3,\ldots,n)\}$ generates S_n .

(c) $\{(1, i), (1, 2, 3, ..., n)\}$ generates S_n if n is prime.

(d) If n is prime, then any subgroup of S_n which contains an n-cycle and at least one transposition must be S_n .

Theorem 10.15 Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible polynomial of prime degree p such that f has exactly p-2 real roots. If K is the splitting field of f, then $\operatorname{aut}(K, \mathbb{Q})$ is isomorphic to S_p .

Example 10.16 If $f(x) = x^5 - 5x + \frac{5}{2}$ then f is irreducible and has exactly three real roots.

Theorem 10.17 The alternating group A_5 is simple. Hence S_5 is not solvable.

Corollary 10.18 There is polynomial in $\mathbb{Q}[x]$ of degree 5 which cannot be solved by radicals.

Theorem 10.19 For any *n* there are fields $E \subseteq K$ such that *K* is the splitting field of a polynomial in E[x] and $\operatorname{aut}(K|E)$ is isomorphic to S_n .

Theorem 10.20 (char 0) Suppose $F \subseteq K$ and K is the splitting field of a polynomial in F[x] and $H \subseteq \operatorname{aut}(K|F)$ is a subgroup. Then there exists a field E with $F \subseteq E \subseteq K$ and $\operatorname{aut}(K|E) = H$.

Corollary 10.21 Every finite group is a Galois group.

Proof of the fundamental theorem of algebra using Galois theory: http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

Definition 10.22 A polynomial $f(x) \in \mathbb{Q}[x]$ is solvable by real radicals iff its roots are in the smallest subfield $S \subseteq \mathbb{R}$ which is closed under taking real roots, i.e., if $a \in S$, a > 0 and $n \in \mathbb{N}$ then $\sqrt[n]{a \in S}$.

Lemma 10.23 Suppose $F \subseteq \mathbb{C}$ is a subfield, p a prime, and $a \in F$. Then $f(x) = x^p - a$ is reducible in F iff it has a root in F.

Theorem 10.24 Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible cubic with three real roots. Then f(x) is not solvable by real radicals.

11 Similar Matrices

For this material see

http://www.math.wisc.edu/~miller/old/m542-00/similar.pdf

Theorem 11.1 Suppose F is an infinite field, A and B are F-matrices, and for some field extension $E \supseteq F$ there is an E-matrix P such that $A = PBP^{-1}$. Then there is an F-matrix P such that $A = PBP^{-1}$.

For algebraically closed fields A and B are similar iff they have the same Jordan Normal forms up to a permutation of the Jordan blocks. So without loss we may as well assume that E is the algebraic closure of F. By adding one new element at a time it suffices to prove the Theorem for $E = F[\alpha]$ with [E : F] finite. Let $p(x) \in F[x]$ be the minimal polynomial for α . Consider the vector space

$$\mathcal{M} = \{ P : AP = PB \}$$

where the P are E-matrix. Note that any such P has entries which are a polnomial in α . So we can write

$$P = P_0 + \alpha P_1 + \ldots + \alpha^n P_n$$

where the P_i are F-matrices. Let $f(x) \in F[x]$ be the determinate of

$$P_0 + xP_1 + \ldots + x^n P_n$$

Since $f(\alpha) \neq 0$ and F is an infinite field there is an $\beta \in F$ such that $f(\beta) \neq 0$. The F-matrix

$$P' = P_0 + \beta P_1 + \ldots + \beta^n P_n$$

is invertible and witnesses the similarity of A and B.