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1 Finite abelian groups

Theorem 1.1 (Chinese remainder theorem) Given n,m relatively prime in-
tegers for every i, j ∈ Z there is an x ∈ Z such that x = i mod n and x = j
mod m.

Theorem 1.2 Zn × Zm ' Znm iff n,m are relatively prime.

Lemma 1.3 Suppose n,m are relatively prime, G is a finite abelian group
such that xnm = e for every x ∈ G. Let Gn = {x ∈ G : xn = e} and
Gm = {x ∈ G : xm = e}. Then

• Gn and Gm are subgroups of G,

• Gn ∩Gm = {e},

• GnGm = G, and therefore

• G ' Gn ×Gm

Corollary 1.4 (Decomposition into p-groups) Suppose G is an abelian group
and |G| = pi11 · pi22 · · · pinn where p1 < p2 < · · · < pn are primes. Then

G ' G1 ×G2 × · · · ×Gn

where for each j if x ∈ Gj then xnj = e where nj = p
ij
j .

Lemma 1.5 Suppose G is a finite abelian p-group and a ∈ G has maximum
order, then there exists a subgroup K ⊆ G such that

• 〈a〉 ·K = G and

• 〈a〉 ∩K = {e}.

The proof given in class is like the one in Gallian or Judson.
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Theorem 1.6 Any finite abelian group is isomorphic to a product of cyclic
groups each of which has prime-power order.

Theorem 1.7 (Uniqueness) Suppose

Cpn1 × Cpn1 × · · · × Cpnk ' Cpm1 × Cpm1 × · · · × Cpml

where n1 ≥ n2 ≥ · · ·nk ≥ 1 and m1 ≥ m2 ≥ · · ·ml ≥ 1. Then k = l and
ni = mi for all i.

2 Group Actions and Sylow Theorems

For the group G acting on the set X the orbit of a ∈ X is

orb(a) =def {ga : g ∈ G} ⊆ X.

Proposition 2.1 Orbits are either disjoint or the same.

For a given group action of group G on set X, define Stab(a) = {g ∈ G :
ga = a} for each a ∈ X. Called stabilizer or fixed subgroup.

Proposition 2.2 Stab(a) is a subgroup of G.

For H ⊆ G a subgroup the index of H, [G : H] is the number of H-cosets,
|{gH : g ∈ G}|. Lagrange’s Theorem says |G| = [G : H] · |H|.

Proposition 2.3 (Orbit-stabilizer formula) |orb(a)| = [G : Stab(a)].

The conjugacy action of G on G is given by (g, h) → ghg−1. Under this
action the orbits are called the conjugacy classes. Z(G) the center of G is the
subgroup of all elements of G which commute with every other element of g.
Equivalently it is the set of elements of G with orbits (conjugacy classes) of
size one. C(g) = Stab(g) is called the centralizer subgroup of g.

Theorem 2.4 (Class formula) If conj(g1), · · · , conj(gn) are the conjugacy
classes of size greater than one, then

|G| = |Z(G)|+
n∑

k=1

[G : C(gk)]
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Theorem 2.5 (Cauchy) If p is a prime which divides |G|, then G has an
element of order p.

Corollary 2.6 Groups of order p2 are abelian.

Theorem 2.7 (Sylow 1) If G is a finite group and pn divides |G|, then there
exists a subgroup H ⊆ G with |H| = pn.

Proposition 2.8 Any two n-cycles in SN are conjugates. If τ = c1c2 · · · cn
and ρ = c′1c

′
2 · · · c′n are disjoint cycle decomposition with |ci| = |c′i| all i, then

τ and ρ are conjugates. Similarly for the converse.

Definition 2.9 H ⊆ G is a p-subgroup iff its order is a power of p. P ⊆ G
is a p-Sylow subgroup of G iff |P | = pn where |G| = pnm and p does not
divide m.

Lemma 2.10 Suppose P is a p-Sylow subgroup of G, g ∈ G has order a
power of p, and gPg−1 = P . Then g ∈ P .

Theorem 2.11 (Sylow 2) If G is a finite group, H a p-subgroup of G, and
P a p-Sylow subgroup of G, then there exists g ∈ G such that H ⊆ gPg−1.

Corollary 2.12 Let G be a finite group such that p divides |G|.
(a) Any p-subgroup of G is contained in a p-Sylow subgroup of G.
(b) Any two p-Sylow subgroups of G are conjugates.
(c) Any two p-Sylow subgroups of G are isomorphic.
(d) A p-Sylow subgroup of G is normal iff it is the only p-Sylow subgroup

of G.

Theorem 2.13 (Sylow 3) If |G| = pnm where p does not divide m and n(p)
is the number of p-Sylow subgroups of G, then:

(a) n(p) = [G : N(P )] for any P a p-Sylow subgroup of G,
(b) n(p) divides m, and
(c) n(p) = 1 mod p

Theorem 2.14 If p < q are primes and q is not 1 mod p, then every group
of order pq is abelian.

Theorem 2.15 aut(Zp,+p) is isomorphic to (Zp\{0},×p) the multiplicative
group of nonzero elements.
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Example 2.16 If p < q are primes and q = 1 mod p, then there is a twisted
product of Zp and Zq which has order pq and is not abelian.

Theorem 2.17 If p < q are primes and q = 1 mod p, then up to isomor-
phism there is a unique nonabelian group of order pq.

3 Polynomials and finite field extensions

Theorem 3.1 Suppose that p(x) is a polynomial over the field F and for
some α ∈ F p(α) = 0. Then p(x) = (x− α)q(x) for some polynomial q(x).

Corollary 3.2 Any polynomial p ∈ F [x] of degree ≤ n with more than n
roots must be identically zero.

Theorem 3.3 Let the exponent of G be the least n such that xn = e for
every x ∈ G. If G is finite abelian group then G is cyclic iff exp(G) = |G|.

Corollary 3.4 The multiplicative group of a finite field is cyclic.

4 Vector spaces over an abstract field

Before taking up finite field extensions we review some elementary results on
vector spaces. See:

http://www.math.wisc.edu/~miller/old/m542-00/vector.pdf

Lemma 4.1 (Exchange Lemma) Suppose span(A ∪ B) = V and a is not in
span(A). Then there exists b ∈ B such that span(A ∪ {a} ∪ (B \ {b})) = V .

Theorem 4.2 Every vector space has a basis. Any two bases have the same
cardinality. Any set of n + 1 vectors in a vector space of dimension n is
linearly dependent.

Corollary 4.3 Any finite field F of characteristic p has cardinality pn for
some integer n.
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5 Extension fields

Theorem 5.1 (Kronecker) If p(x) ∈ F [x] is a non-constant polynomial,
then there exists a field E ⊇ F and α ∈ E with p(α) = 0.

Corollary 5.2 (Kronecker) If p(x) ∈ F [x] is a polynomial of degree n, then
there exists a field E ⊇ F and αi ∈ E such that

p(x) = a(x− α1)(x− α2) · · · (x− αn)

Theorem 5.3 If p(x) ∈ F [x] is irreducible and α, β are roots in some ex-
tension fields of F then F (α) and F (β) are isomorphic via an isomorphism
which fixes F .

Corollary 5.4 If p(x) ∈ F [x] is irreducible and splits in an extension field
E of F then the multiplicity of each root of p is the same.

Theorem 5.5 The formal derivative for an abstract polynomial f(x) ∈ F [x]
satisfies the usual derivative laws:

(a) If a ∈ F and f ∈ F [x], then (af)′ = af ′.

(b) If f, g ∈ F [x], then (f + g)′ = f ′ + g′.

(c) If f, g ∈ F [x], then (fg)′ = f ′g + fg′.

Theorem 5.6 For any α ∈ F and f ∈ F [x]
α is repeated root of f iff it is a root of f ′.

Corollary 5.7 The roots of an irreducible polynomial in a field of charac-
teristic zero, are always distinct.

Lemma 5.8 If E is any field of characteristic p, then for any α, β ∈ E

(α + β)p
n

= αpn + βpn

Theorem 5.9 For any pn and there is a field F with |F | = pn.

Definition 5.10 For fields F ⊆ E define [E : F ] to be the dimension of E
viewed as a vector space over F .
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Theorem 5.11 For fields F ⊆ K ⊆ E

[E : F ] = [E : K] · [K : F ]

Theorem 5.12 For p(x) ∈ F [x] irreducible and α a root of p in some ex-
tension field, [F [α] : F ] is the degree of p.

Theorem 5.13 If E ⊇ F is the splitting field of some polynomial in F [x],
then [E : F ] is finite.

Theorem 5.14 If [E : F ] is finite and α ∈ E, then there is an irreducible
polynomial p ∈ F [x] with p(α) = 0.

6 Algebraic closure

Definition 6.1 α is algebraic over F iff it is the root of a nontrivial poly-
nomial in F [x]. A field K is algebraically closed iff every nonconstant poly-
nomial f ∈ K[x] has a root in K.

Theorem 6.2 If F ⊆ E are fields define

K = {α ∈ E : α is algebraic over F}

Then K is a field and F ⊆ K ⊆ F .

Steinitz proved that every field F is a subfield of an algebraically closed
field K. This requires the Axiom of Choice.

Theorem 6.3 Suppose F ⊆ K and K is algebraically closed. Let E be the
elements of K which are algebraic over F . Then E is algebraically closed.

7 Compass and straight-edge

Theorem 7.1 (Wantzel 1837) Let C ⊆ R×R be the smallest set containing
(0, 0) and (1, 0) and closed under constructions using straight edge and com-
pass. Then C = Fc × Fc where Fc is the smallest subfield of R which closed
under square roots.
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Lemma 7.2 For any α
α ∈ Fc iff for some n there are fields Fk for k = 0, 1, . . . , n with α ∈ Fn

and such that F0 = Q and for each k < n Fk+1 = Fk[
√
ak] for some ak ∈ Fk.

Theorem 7.3 For any α ∈ Fc

[Q[α] : Q] = 2n for some integer n.

Corollary 7.4 3
√

2 /∈ Fc so it is impossible to “double the cube”.

Corollary 7.5 cos(20◦) /∈ Fc so it is impossible to trisect every angle.

Corollary 7.6 Since π is transcendental and every element of Fc is alge-
braic, it is impossible to “square the circle”.

8 Irreducibility criterion

Lemma 8.1 (Gauss’s Lemma) Suppose f ∈ Z[x], then
f is irreducible in Q[x] iff f is irreducible in Z[x].

Lemma 8.2 (Eisenstein’s Criterion) Suppose f ∈ Z[x] has degree n

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and for some prime p
(a) p does not divide an,
(b) p divides ak for all k = 0, 1, . . . , n− 1, and
(c) p2 does not divide a0.

Then f is irreducible in Z[x].

Theorem 8.3 For any prime p the polynomial f(x) = 1+x+x2 + · · ·+xp−1

is irreducible in Q[x].

Proposition 8.4 If 2m + 1 is prime, then m is a power of 2.

Theorem 8.5 (Gauss) If the regular p-gon is constructible with straight edge
and compass, then p = 22n + 1 for some integer n.
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9 Solvability by radicals

For Tartaglia method of solving a cubic polynomial see
https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf

For a brief history see:
www.dwick.org/pages/cubicquartic.pdf

Theorem 9.1 (Steinitz 1910) Suppose F ⊆ E are fields of characteristic 0
and [E : F ] is finite. Then there exists α ∈ E such that E = F [α]. The same
is true if E is a finite field.

Example 9.2 There is a field F and α, β with [F [α, β] : F ] finite but there
is no γ with F [α, β] = F [γ].

See
http://www.math.wisc.edu/~miller/old/m542-00/examp.pdf

10 Galois Theory

Proofs and definitions can be found in galois.pdf see:
https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf

Proposition 10.1 (2.4 galois.pdf) aut(E|F ) is a group. Furthermore, if
F ⊆ E ⊆ K are fields, then aut(K|E) is a subgroup of aut(K|F ).

Lemma 10.2 (2.5 galois.pdf) Suppose σ, ρ ∈ aut(F (α)|F ). Then σ = ρ iff
σ(α) = ρ(α). Similarly, if σ, ρ ∈ aut(F (α1, α2, . . . , αn)|F ) then σ = ρ iff
σ(αk) = ρ(αk) for all k = 1, 2, . . . , n.

Theorem 10.3 (2.6 galois.pdf) Suppose that K is the splitting field of a
polynomial in F [x] of degree n. Then aut(K|F ) is isomorphic to a subgroup
of Sn.

Definition 10.4 For fields F ⊆ K we say that K is a splitting field over F
iff K is the splitting field of some polynomial in F [x].

Every polynomial in Q[x] splits in C but C is not a splitting field over Q.
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Lemma 10.5 (Extension Lemma 2.9 galois.pdf) Suppose that F ⊆ F1 ⊆ K
and F ⊆ F2 ⊆ K are fields, K is a splitting field over F , and σ : F1 →
F2 is an isomorphism which fixes F . Then there exists ρ : K → K an
automorphism which extends σ.

Theorem 10.6 (3.1 galois.pdf) Suppose F ⊆ K, K is a splitting field over
F , p ∈ F [x] is irreducible, and there is α ∈ K such that p(α) = 0. Then p
splits in K.

Theorem 10.7 (2.8 galois.pdf) Suppose F ⊆ K, K is a splitting field over
F , and these fields have characteristic zero. Then |aut(K,F )| = [K : F ].

Theorem 10.8 (2.10 galois.pdf) Suppose F ⊆ K ⊆ E, K and E are split-
ting fields over F . Then aut(E|K) / aut(E|F ) and

aut(E|F )

aut(E|K)
' aut(K|F )

Proposition 10.9 Suppose F ⊆ K ⊆ E, E is a splitting fields over F , and
aut(E|K) / aut(E|F ). Then K is a splitting field over F .

Theorem 10.10 (5.3 galois.pdf) Suppose F ⊆ E is a radical Galois exten-
sion, then aut(E|F ) is a solvable group.

Example 10.11 If 2 generates the multiplicative group of Zp, then

f(x) = 1 + x+ x2 + · · ·+ xp−1

is irreducible over Z2.

See Gurrier 1968
http://www.jstor.org/stable/2315109

See also Artin’s conjecture on primitive roots
http://en.wikipedia.org/wiki/Artin_conjecture

Theorem 10.12 (5.4 galois.pdf) Subgroups of solvable groups are solvable
and homomorphic images of solvable groups are solvable.

Theorem 10.13 Suppose K is the splitting field of a polynomial in F1[x]
and F1 ⊆ F2 ⊆ · · · ⊆ Fm satisfies F1 ⊆ K ⊆ Fm and Fk+1 is a radical Galois
extension of Fk for each k < m. Then aut(K|F1) is a solvable group.
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Lemma 10.14 .
(a) {(i, i+ 1) : 1 ≤ i < n} generates Sn. (adjacent swaps)
(b) {(1, 2), (1, 2, 3, . . . , n)} generates Sn.
(c) {(1, i), (1, 2, 3, . . . , n)} generates Sn if n is prime.
(d) If n is prime, then any subgroup of Sn which contains an n-cycle and

at least one transposition must be Sn.

Theorem 10.15 Suppose f(x) ∈ Q[x] is an irreducible polynomial of prime
degree p such that f has exactly p− 2 real roots. If K is the splitting field of
f , then aut(K,Q) is isomorphic to Sp.

Example 10.16 If f(x) = x5− 5x+ 5
2

then f is irreducible and has exactly
three real roots.

Theorem 10.17 The alternating group A5 is simple. Hence S5 is not solv-
able.

Corollary 10.18 There is polynomial in Q[x] of degree 5 which cannot be
solved by radicals.

Theorem 10.19 For any n there are fields E ⊆ K such that K is the split-
ting field of a polynomial in E[x] and aut(K|E) is isomorphic to Sn.

Theorem 10.20 (char 0) Suppose F ⊆ K and K is the splitting field of a
polynomial in F [x] and H ⊆ aut(K|F ) is a subgroup. Then there exists a
field E with F ⊆ E ⊆ K and aut(K|E) = H.

Corollary 10.21 Every finite group is a Galois group.

Proof of the fundamental theorem of algebra using Galois theory:
http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

Definition 10.22 A polynomial f(x) ∈ Q[x] is solvable by real radicals iff
its roots are in the smallest subfield S ⊆ R which is closed under taking real
roots, i.e., if a ∈ S, a > 0 and n ∈ N then n

√
a ∈ S.

Lemma 10.23 Suppose F ⊆ C is a subfield, p a prime, and a ∈ F . Then
f(x) = xp − a is reducible in F iff it has a root in F .

Theorem 10.24 Suppose f(x) ∈ Q[x] is an irreducible cubic with three real
roots. Then f(x) is not solvable by real radicals.

10

http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra


11 Similar Matrices

For this material see
http://www.math.wisc.edu/~miller/old/m542-00/similar.pdf

Theorem 11.1 Suppose F is an infinite field, A and B are F -matrices,
and for some field extension E ⊇ F there is an E-matrix P such that A =
PBP−1. Then there is an F -matrix P such that A = PBP−1.

For algebraically closed fields A and B are similar iff they have the same
Jordan Normal forms up to a permutation of the Jordan blocks. So without
loss we may as well assume that E is the algebraic closure of F . By adding
one new element at a time it suffices to prove the Theorem for E = F [α] with
[E : F ] finite. Let p(x) ∈ F [x] be the minimal polynomial for α. Consider
the vector space

M = {P : AP = PB}

where the P are E-matrix. Note that any such P has entries which are a
polnomial in α. So we can write

P = P0 + αP1 + . . .+ αnPn

where the Pi are F -matrices. Let f(x) ∈ F [x] be the determinate of

P0 + xP1 + . . .+ xnPn

Since f(α) 6= 0 and F is an infinite field there is an β ∈ F such that f(β) 6= 0.
The F -matrix

P ′ = P0 + βP1 + . . .+ βnPn

is invertible and witnesses the similarity of A and B.
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