Last revised: May 16, 2014

A.Miller M542 www.math.wisc.edu/~miller/

Problem 1 (Fri Jan 24) (a) Find an integer x such that $x = 6 \mod 10$ and $x = 15 \mod 21$ and $0 \le x \le 210$. (b) Find the smallest positive integer y such that $y = 6 \mod 10$ and $y = 15 \mod 21$ and $y = 8 \mod 11$.

Problem 2 (Fri Jan 24) (a) Find integers i, j such that there is no integer x with $x = i \mod 6$ and $x = j \mod 15$. (b) Find all pairs i, j with i = 0, 1, ..., 5 and j = 0, 1, ..., 14 such that there is an integer x with $x = i \mod 6$ and $x = j \mod 15$.

Problem 3 (Mon Jan 27) Prove that for any n there is only one abelian group (up to isomorphism) of size n iff n is square-free. Square-free mean that no p^2 divides n for p a prime.

Problem 4 (Wed Jan 29) Let G be a finite abelian group. Prove that the following are equivalent

- 1. For every subgroup H of G there is a subgroup K of G with HK = Gand $H \cap K = \{e\}$.
- 2. Every element of G has square-free order.

Problem 5 (Fri Jan 31) How many abelian groups of order 144 are there up to isomorphism? Explain.

Problem 6 (Mon Feb 3) Suppose G_1, G_2, H_1, H_2 are finite abelian groups, $G_1 \times G_2 \simeq H_1 \times H_2$ and $G_1 \simeq H_1$. Prove that $G_2 \simeq H_2$.

Give a counterexample if the word finite is dropped, i.e., $G_1 \times G_2 \simeq H_1 \times H_2$ and $G_1 \simeq H_1$ but G_2 is not isomorphic to H_2 .

Problem 7 (Wed Feb 5) Prove or disprove:

For any finite abelian groups G_1 and G_2 with subgroups, $H_1 \subseteq G_1$ and $H_2 \subseteq G_2$ such that $H_1 \simeq H_2$, if $G_1/H_1 \not\simeq G_2/H_2$ then $G_1 \not\simeq G_2$.

Problem 8 (Wed Feb 5) Prove that $Stab(ga) = g Stab(a) g^{-1}$.

Problem 9 This is due in lecture on valentines day. It will be graded in class so do not hand-in.

(a) Suppose G is a finite abelian group which contains an element which has non-square-free order. Prove that for some prime p it has an element of order p^2 .

(b) Suppose a is an element of a finite abelian group G with order p^2 let $b = a^p$, let $H = \langle b \rangle$ be the subgroup generated by b and suppose K is a subgroup of G with $K \cap H = \{e\}$. Prove that a is not an element of HK.

(c) Suppose G_1, G_2 are finite abelian groups with $|G_1|$ and $|G_2|$ relatively prime. Show that for any subgroup $H \subseteq G_1 \times G_2$ there are subgroups $H_1 \subseteq G_1$ and $H_2 \subseteq G_2$ such that $H = H_1 \times H_2$. (Warning: the relatively prime hypothesis is necessary.)

(d) Suppose G_1, G_2 are finite abelian groups with $|G_1|$ and $|G_2|$ relatively prime. Show that if G_1 and G_2 both have the CP then $G_1 \times G_2$ has CP.¹

(e) Prove that $C_p \times C_p \times \cdots \times C_p$ has the CP.

(f) Prove Problem 4.

Problem 10 (Mon Feb 10) Prove for any $n \ge 3$ that $Z(S_n) = \{id\}$.

Problem 11 (Wed Feb 12)

(a) Prove that there are no simple groups of order either 575 or 272.

(b) For any prime p prove there are no simple groups of order p(p-1) or p(p+2).

Problem 12 (Fri Feb 14) Question (August J.) Suppose every subgroup of finite group G is a normal subgroup. Must G be abelian?

Problem 13 (Fri Feb 14)

(a) Suppose P is a p-Sylow subgroup of G and H a subgroup such that $P \triangleleft H$ and $H \triangleleft G$. Prove that $P \triangleleft G$.

(b) If $K \triangleleft H$ and $H \triangleleft G$, does it follow that $K \triangleleft G$? Show that the answer is No. Consider $G = S_4$, $K = \{id, \sigma\}$ where $\sigma = (12)(34)$ and $H = \{id, \sigma, \tau, \rho\}$ where τ and ρ are conjugates of σ . Determine what τ and ρ are and show that $K \triangleleft H$ and $H \triangleleft G$, but K is not a normal subgroup of G.

Problem 14 (Mon Feb 17) Suppose for every $x \in G$ that $x^2 = e$. Prove that G is abelian.

 $^{^{1}}CP$ is defined after Problem 4.

Problem 15 (Mon Feb 17) Suppose $H \subseteq G$ is subgroup of index 2, i.e., [G:H] = 2. Prove that it is a normal subgroup of G.

Problem 16 (Wed Feb 19) For F a finite field call $a \in F$ a generator of F iff every nonzero element of F is a power of a.

- (a) Find a generator of \mathbb{Z}_7 .
- (b) How many generators does \mathbb{Z}_{17} have?
- (c) How many generators does \mathbb{Z}_{31} have?

Problem 17 (Fri Feb 21) Prove that v_1, v_2, \ldots, v_n are linearly dependent iff $v_1 = \vec{0}$ or $v_{i+1} \in \text{span}\{v_1, v_2, \ldots, v_i\}$ for some i with $1 \le i < n$.

Problem 18 (Mon Feb 24) Let R be a commutative ring with 1. Let I be a maximal ideal in R. Suppose ab = 0. Prove that $a \in I$ or $b \in I$.

Problem 19 (Mon Feb 24) Consider $p(x) = x^3 + x + 1$ as a polynomial in $\mathbb{Z}_2[x]$. Suppose p has a root α is in some field extension. Construct the multiplication table for

$$\mathbb{Z}_2[\alpha] =^{def} \{ a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Z}_2 \}$$

Problem 20 (Wed Feb 26) Let α be transcendental over \mathbb{Z}_2 . Let $F = \mathbb{Z}_2(\alpha)$ and let $p(x) = x^2 - \alpha$.

(a) Prove that p is irreducible over F.

(b) Prove that if β is a root of p in some some extension field, then $p(x) = (x - \beta)^2$.

(c) Suppose that F is a finite field of characteristic 2. Prove that for every $a \in F$ there is a $b \in F$ such that $b^2 = a$.

(d) Suppose that F is a finite field of odd characteristic. Prove that there exists $a \in F$ for every $b \in F$ such that $b^2 \neq a$.

(e) Find a field F and an irreducible polynomial p(x) of degree three such that in any extension field in which p splits there exist a β such that $p(x) = (x - \beta)^3$.

Problem 21 (Fri Feb 28) Prove that the formal derivative for polynomials in F[x] satisfies

- (a) The power rule: $(f^n)' = n(f^{n-1})f'$
- (b) The chain rule: f(g(x))' = f'(g(x))g'(x)

Problem 22 (Mon Mar 3) Prove for any prime p and positive integer n that p divides $\begin{pmatrix} p^n \\ k \end{pmatrix}$ for any k with $0 < k < p^n$.

Problem 23 (Wed Mar 5) p is a prime and n a positive integer. Prove:

(a) If F is a field such that $|F| = p^n$ and m is a positive integer then there is a field E with $F \subseteq E$ and $E = p^{nm}$.

(b) If $F \subseteq E$ are fields, $|F| = p^n$ and $|E| = p^N$, then n divides N.

Problem 24 (Wed Mar 26) Prove or disprove:

Using a straight edge and compass it is possible to construct an equilateral triangle with area 1.

Problem 25 (Fri Mar 28) Prove that $[F_c : \mathbb{Q}]$ is infinite. F_c is the field of constructible reals (straight edge and compass).

Problem 26 (Fri Mar 28) Prove that if $2^m - 1$ is prime, then m is prime.

Problem 27 (Mon Mar 31) Find the roots of

 $x^3 + 3x^2 + 6x + 5 = 0$

using addition, subtraction, multiplication, division, and extraction of roots, *i.e.*, solvability by radicals.

Problem 28 (Wed Apr 2) Suppose $[F[\alpha] : F] = n$, $[F[\beta] : F] = m$, and gcd(n,m) = 1. Prove that $[F[\alpha,\beta] : F] = nm$.

Problem 29 (Fri Apr 4) Prove the following:

(a) Suppose $\alpha + \beta$ is algebraic over F, then α is algebraic over $F[\beta]$.

(b) Suppose $\alpha + \beta$ and $\alpha\beta$ are both algebraic over F, then α is algebraic over F.

Problem 30 (Mon Apr 7) Suppose that $F \subseteq K_1 \subseteq L$ and $F \subseteq K_2 \subseteq L$ and K_1 and K_2 are splitting fields over F. Prove that $K_1 \cap K_2$ is a splitting field over F.

Problem 31 (Wed Apr 9) Suppose that E is a splitting field over F and $p \in F[x]$ splits in E as $p(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ where $\alpha_i \neq \alpha_j$ whenever $i \neq j$. Prove that the following are equivalent:

(1) p is irreducible.

(2) for any i, j there is $\sigma \in \operatorname{aut}(E|F)$ such $\sigma(\alpha_i) = \alpha_j$.

Problem 32 (Mon Apr 14) For each of the following polynomials compute its Galois group, i.e., $\operatorname{aut}(K|\mathbb{Q})$ where K is the splitting field of the polynomial.

(a) $x^5 - 1$ (b) $x^4 - 2$ (c) $x^4 - 2x^2 - 2$

Problem 33 (Wed Apr 16) In the Lemma ?? (d) must n be prime? Prove or disprove: $\{(1, 2, 3, 4), (1, 3)\}$ generates S_4 .

Problem 34 (Mon Apr 21) $\sigma, \tau \in A_5$ are conjugate in A_5 iff there is $\rho \in A_5$ such that $\sigma = \rho^{-1}\tau\rho$. Prove that every element of A_5 except the identity is conjugate to exactly one of the following:

 $\begin{array}{l} (a) \ (1,2,3) \\ (b) \ (1,2)(3,4) \\ (c) \ (1,2,3,4,5) \\ (d) \ (2,1,3,4,5) \end{array}$

In particular (c) and (d) are not conjugates.

Problem 35 (Wed Apr 23) Let $K \supseteq \mathbb{Q}$ be the splitting field of

 $f(x) = (x^{2} + 1) \cdot (x^{2} - 2) = x^{4} - x^{2} - 2$

(a) Prove that $\operatorname{aut}(K|\mathbb{Q}) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$

(b) Find an irreducible polynomial p(x) whose splitting field is K.

Problem 36 (Mon Apr 28) Suppose A and B are matrices with real entries and there exists a matrix P with complex entries such that $A = PBP^{-1}$. Prove there exists a matrix P with real entries such that $A = PBP^{-1}$.

Hint: Show $\{Q : AQ = QB\}$ is a subspace.