Last revised: May 2, 2014

A.Miller M542 www.math.wisc.edu/~miller/

Practice Final

Final exam:

Mon May 12 745am-945am B115 Van Vleck

1 (Gauss's Lemma) Suppose $f \in \mathbb{Z}[x]$, then f is irreducible in $\mathbb{Q}[x]$ iff f is irreducible in $\mathbb{Z}[x]$.

2 (char 0) Suppose $F \subseteq E$ are fields and [E : F] is finite. Then there exists γ such that $E = F[\gamma]$.

3 Suppose that K is the splitting field of a polynomial in F[x] of degree n. Then $\operatorname{aut}(K|F)$ is isomorphic to a subgroup of S_n .

4 Suppose $F \subseteq K$, K is a splitting field over F, $p \in F[x]$ is irreducible, and there is $\alpha \in K$ such that $p(\alpha) = 0$. Then p splits in K.

5 (char 0) Suppose $F \subseteq K$, K is a splitting field over F. Then

 $|\operatorname{aut}(K,F)| = [K:F]$

6 Subgroups of solvable groups are solvable.

7 (char 0) Suppose $F \subseteq K$ and K is the splitting field of a polynomial in F[x] and $H \subseteq \operatorname{aut}(K|F)$ is a subgroup. Then there exists a field E with $F \subseteq E \subseteq K$ and $\operatorname{aut}(K|E) = H$.

8 Every square matrix with entries in an algebraically closed field is similar to an upper triangular matrix.