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A.Miller M542
www.math.wisc.edu/∼miller/

Each Problem is due one week from the date it is assigned. Do not hand
them in early. Please put them on the desk in front of the room at the
beginning or end of class. Include the statement of the problem as part of
your solution.

The date the problem was assigned in class is in parentheses.

1 Finite abelian groups

Theorem 1.1 (Chinese remainder theorem) Given n,m relatively prime in-
tegers for every i, j ∈ Z there is an x ∈ Z such that x = i mod n and x = j
mod m.

Problem 1 (Fri Jan 24) (a) Find an integer x such that x = 6 mod 10 and
x = 15 mod 21 and 0 ≤ x ≤ 210. (b) Find the smallest positive integer y
such that y = 6 mod 10 and y = 15 mod 21 and y = 8 mod 11.

Problem 2 (Fri Jan 24) (a) Find integers i, j such that there is no integer x
with x = i mod 6 and x = j mod 15. (b) Find all pairs i, j with i = 0, 1, . . . 5
and j = 0, 1, . . . , 14 such that there is an integer x with x = i mod 6 and
x = j mod 15.

Theorem 1.2 Zn × Zm ' Znm iff n,m are relatively prime.

Lemma 1.3 Suppose n,m are relatively prime, G is a finite abelian group
such that xnm = e for every x ∈ G. Let Gn = {x ∈ G : xn = e} and
Gm = {x ∈ G : xm = e}. Then

• Gn and Gm are subgroups of G,

• Gn ∩Gm = {e},

• GnGm = G, and therefore

1



• G ' Gn ×Gm

Corollary 1.4 (Decomposition into p-groups) Suppose G is an abelian group
and |G| = pi11 · pi22 · · · pinn where p1 < p2 < · · · < pn are primes. Then

G ' G1 ×G2 × · · · ×Gn

where for each j if x ∈ Gj then xnj = e where nj = p
ij
j .

Problem 3 (Mon Jan 27) Prove that for any n there is only one abelian
group (up to isomorphism) of size n iff n is square-free. Square-free mean
that no p2 divides n for p a prime.

Lemma 1.5 Suppose G is a finite abelian p-group and a ∈ G has maximum
order, then there exists a subgroup K ⊆ G such that

• 〈a〉 ·K = G and

• 〈a〉 ∩K = {e}.

The proof given in class is like the one in Gallian or Judson.

Theorem 1.6 Any finite abelian group is isomorphic to a product of cyclic
groups each of which has prime-power order.

Problem 4 (Wed Jan 29) Let G be a finite abelian group. Prove that the
following are equivalent

1. For every subgroup H of G there is a subgroup K of G with HK = G
and H ∩K = {e}.

2. Every element of G has square-free order.

Hint: Polya’s Dictum: “If you can’t do a problem, then there is an easier
problem you can’t do. Find it.”

Lets call property (1) the Complementation Property for G or CP for
short. Here are some easier problems:

(a) Prove that Cp2 fails to have CP.

(b) Prove that Cp × Cp has CP.
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(c) Let |G| and |H| be relatively prime. Prove that G × H has CP
iff both G and H have CP.

Theorem 1.7 (Uniqueness) Suppose

Cpn1 × Cpn1 × · · · × Cpnk ' Cpm1 × Cpm1 × · · · × Cpml

where n1 ≥ n2 ≥ · · ·nk ≥ 1 and m1 ≥ m2 ≥ · · ·ml ≥ 1. Then k = l and
ni = mi for all i.

Problem 5 (Fri Jan 31) How many abelian groups of order 144 are there
up to isomorphism? Explain.

Problem 6 (Mon Feb 3) Suppose G1, G2, H1, H2 are finite abelian groups,
G1 ×G2 ' H1 ×H2 and G1 ' H1. Prove that G2 ' H2.

Give a counterexample if the word finite is dropped, i.e., G1 × G2 '
H1 ×H2 and G1 ' H1 but G2 is not isomorphic to H2.

I do not know if problem 6 is true or false for finite non-abelian groups.

2 Group Actions and Sylow Theorems

For the group G acting on the set X the orbit of a ∈ X is

orb(a) =def {ga : g ∈ G} ⊆ X.

Proposition 2.1 Orbits are either disjoint or the same.

Problem 7 (Wed Feb 5) Prove or disprove:
For any finite abelian groups G1 and G2 with subgroups, H1 ⊆ G1 and

H2 ⊆ G2 such that H1 ' H2, if G1/H1 6' G2/H2 then G1 6' G2.

For a given group action of group G on set X, define Stab(a) = {g ∈ G :
ga = a} for each a ∈ X. Called stabilizer or fixed subgroup.

Proposition 2.2 Stab(a) is a subgroup of G.

Problem 8 (Wed Feb 5) Prove that Stab(ga) = g Stab(a) g−1.
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For H ⊆ G a subgroup the index of H, [G : H] is the number of H-cosets,
|{gH : g ∈ G}|. Lagrange’s Theorem says |G| = [G : H] · |H|.

Proposition 2.3 (Orbit-stabilizer formula) |orb(a)| = [G : Stab(a)].

The conjugacy action of G on G is given by (g, h) → ghg−1. Under this
action the orbits are called the conjugacy classes. Z(G) the center of G is the
subgroup of all elements of G which commute with every other element of g.
Equivalently it is the set of elements of G with orbits (conjugacy classes) of
size one. C(g) = Stab(g) is called the centralizer subgroup of g.

Theorem 2.4 (Class formula) If conj(g1), · · · , conj(gn) are the conjugacy
classes of size greater than one, then

|G| = |Z(G)|+
n∑

k=1

[G : C(gk)]

Theorem 2.5 (Cauchy) If p is a prime which divides |G|, then G has an
element of order p.

Problem 9 This is due in lecture on valentines day. It will be graded in
class so do not hand-in.
(a) Suppose G is a finite abelian group which contains an element which has
non-square-free order. Prove that for some prime p it has an element of order
p2.
(b) Suppose a is an element of a finite abelian group G with order p2 let
b = ap, let H =< b > be the subgroup generated by b and suppose K is a
subgroup of G with K ∩H = {e}. Prove that a is not an element of HK.
(c) Suppose G1, G2 are finite abelian groups with |G1| and |G2| relatively
prime. Show that for any subgroup H ⊆ G1×G2 there are subgroups H1 ⊆ G1

and H2 ⊆ G2 such that H = H1 × H2. (Warning: the relatively prime
hypothesis is necessary.)
(d) Suppose G1, G2 are finite abelian groups with |G1| and |G2| relatively
prime. Show that if G1 and G2 both have the CP then G1 ×G2 has CP.1

(e) Prove that Cp × Cp × · · · × Cp has the CP.
(f) Prove Problem 4.

1CP is defined after Problem 4.

4



Corollary 2.6 Groups of order p2 are abelian.

Theorem 2.7 (Sylow 1) If G is a finite group and pn divides |G|, then there
exists a subgroup H ⊆ G with |H| = pn.

Proposition 2.8 Any two n-cycles in SN are conjugates. If τ = c1c2 · · · cn
and ρ = c′1c

′
2 · · · c′n are disjoint cycle decomposition with |ci| = |c′i| all i, then

τ and ρ are conjugates. Similarly for the converse.

Problem 10 (Mon Feb 10) Prove for any n ≥ 3 that Z(Sn) = {id}.

Definition 2.9 H ⊆ G is a p-subgroup iff its order is a power of p. P ⊆ G
is a p-Sylow subgroup of G iff |P | = pn where |G| = pnm and p does not
divide m.

Lemma 2.10 Suppose P is a p-Sylow subgroup of G, g ∈ G has order a
power of p, and gPg−1 = P . Then g ∈ P .

Theorem 2.11 (Sylow 2) If G is a finite group, H a p-subgroup of G, and
P a p-Sylow subgroup of G, then there exists g ∈ G such that H ⊆ gPg−1.

Corollary 2.12 Let G be a finite group such that p divides |G|.
(a) Any p-subgroup of G is contained in a p-Sylow subgroup of G.
(b) Any two p-Sylow subgroups of G are conjugates.
(c) Any two p-Sylow subgroups of G are isomorphic.
(d) A p-Sylow subgroup of G is normal iff it is the only p-Sylow subgroup

of G.

Theorem 2.13 (Sylow 3) If |G| = pnm where p does not divide m and n(p)
is the number of p-Sylow subgroups of G, then:

(a) n(p) = [G : N(P )] for any P a p-Sylow subgroup of G,
(b) n(p) divides m, and
(c) n(p) = 1 mod p

Problem 11 (Wed Feb 12)
(a) Prove that there are no simple groups of order either 575 or 272.
(b) For any prime p prove there are no simple groups of order p(p − 1)

or p(p+ 2).
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Theorem 2.14 If p < q are primes and q is not 1 mod p, then every group
of order pq is abelian.

Problem 12 (Fri Feb 14) Question (August J.) Suppose every subgroup of
finite group G is a normal subgroup. Must G be abelian?

Problem 13 (Fri Feb 14)
(a) Suppose P is a p-Sylow subgroup of G and H a subgroup such that

P / H and H / G. Prove that P / G.
(b) If K/H and H/G, does it follow that K/G? Show that the answer is

No. Consider G = S4, K = {id, σ} where σ = (12)(34) and H = {id, σ, τ, ρ}
where τ and ρ are conjugates of σ. Determine what τ and ρ are and show
that K / H and H / G, but K is not a normal subgroup of G.

Theorem 2.15 aut(Zp,+p) is isomorphic to (Zp\{0},×p) the multiplicative
group of nonzero elements.

Example 2.16 If p < q are primes and q = 1 mod p, then there is a twisted
product of Zp and Zq which has order pq and is not abelian.

Problem 14 (Mon Feb 17) Suppose for every x ∈ G that x2 = e. Prove
that G is abelian.

Problem 15 (Mon Feb 17) Suppose H ⊆ G is subgroup of index 2, i.e.,
[G : H] = 2. Prove that it is a normal subgroup of G.

Theorem 2.17 If p < q are primes and q = 1 mod p, then up to isomor-
phism there is a unique nonabelian group of order pq.

3 Polynomials and finite field extensions

Theorem 3.1 Suppose that p(x) is a polynomial over the field F and for
some α ∈ F p(α) = 0. Then p(x) = (x− α)q(x) for some polynomial q(x).

Corollary 3.2 Any polynomial p ∈ F [x] of degree ≤ n with more than n
roots must be identically zero.

Theorem 3.3 Let the exponent of G be the least n such that xn = e for
every x ∈ G. If G is finite abelian group then G is cyclic iff exp(G) = |G|.
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Corollary 3.4 The multiplicative group of a finite field is cyclic.

Problem 16 (Wed Feb 19) For F a finite field call a ∈ F a generator of F
iff every nonzero element of F is a power of a.

(a) Find a generator of Z7.
(b) How many generators does Z17 have?
(c) How many generators does Z31 have?

4 Vector spaces over an abstract field

Before taking up finite field extensions we review some elementary results on
vector spaces. See:

http://www.math.wisc.edu/~miller/old/m542-00/vector.pdf

Lemma 4.1 (Exchange Lemma) Suppose span(A ∪ B) = V and a is not in
span(A). Then there exists b ∈ B such that span(A ∪ {a} ∪ (B \ {b})) = V .

Theorem 4.2 Every vector space has a basis. Any two bases have the same
cardinality. Any set of n + 1 vectors in a vector space of dimension n is
linearly dependent.

Corollary 4.3 Any finite field F of characteristic p has cardinality pn for
some integer n.

Problem 17 (Fri Feb 21) Prove that v1, v2, . . . , vn are linearly dependent iff
v1 = ~0 or vi+1 ∈ span{v1, v2, . . . , vi} for some i with 1 ≤ i < n.

5 Extension fields

Theorem 5.1 (Kronecker) If p(x) ∈ F [x] is a non-constant polynomial,
then there exists a field E ⊇ F and α ∈ E with p(α) = 0.

Corollary 5.2 (Kronecker) If p(x) ∈ F [x] is a polynomial of degree n, then
there exists a field E ⊇ F and αi ∈ E such that

p(x) = a(x− α1)(x− α2) · · · (x− αn)
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Theorem 5.3 If p(x) ∈ F [x] is irreducible and α, β are roots in some ex-
tension fields of F then F (α) and F (β) are isomorphic via an isomorphism
which fixes F .

Corollary 5.4 If p(x) ∈ F [x] is irreducible and splits in an extension field
E of F then the multiplicity of each root of p is the same.

Problem 18 (Mon Feb 24) Let R be a commutative ring with 1. Let I be a
maximal ideal in R. Suppose ab = 0. Prove that a ∈ I or b ∈ I.

Problem 19 (Mon Feb 24) Consider p(x) = x3 + x + 1 as a polynomial
in Z2[x]. Suppose p has a root α is in some field extension. Construct the
multiplication table for

Z2[α] =def {a+ bα + cα2 : a, b, c ∈ Z2}

Problem 20 (Wed Feb 26) Let α be transcendental over Z2. Let F = Z2(α)
and let p(x) = x2 − α.

(a) Prove that p is irreducible over F .
(b) Prove that if β is a root of p in some some extension field, then

p(x) = (x− β)2.
(c) Suppose that F is a finite field of characteristic 2. Prove that for

every a ∈ F there is a b ∈ F such that b2 = a.
(d) Suppose that F is a finite field of odd characteristic. Prove that there

exists a ∈ F for every b ∈ F such that b2 6= a.
(e) Find a field F and an irreducible polynomial p(x) of degree three

such that in any extension field in which p splits there exist a β such that
p(x) = (x− β)3.

Theorem 5.5 The formal derivative for an abstract polynomial f(x) ∈ F [x]
satisfies the usual derivative laws:

(a) If a ∈ F and f ∈ F [x], then (af)′ = af ′.

(b) If f, g ∈ F [x], then (f + g)′ = f ′ + g′.

(c) If f, g ∈ F [x], then (fg)′ = f ′g + fg′.

Problem 21 (Fri Feb 28) Prove that the formal derivative for polynomials
in F [x] satisfies
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(a) The power rule: (fn)′ = n(fn−1)f ′

(b) The chain rule: f(g(x))′ = f ′(g(x))g′(x)

Theorem 5.6 For any α ∈ F and f ∈ F [x]
α is repeated root of f iff it is a root of f ′.

Corollary 5.7 The roots of an irreducible polynomial in a field of charac-
teristic zero, are always distinct.

Lemma 5.8 If E is any field of characteristic p, then for any α, β ∈ E

(α + β)p
n

= αpn + βpn

Theorem 5.9 For any pn and there is a field F with |F | = pn.

Problem 22 (Mon Mar 3) Prove for any prime p and positive integer n

that p divides

(
pn

k

)
for any k with 0 < k < pn.

Definition 5.10 For fields F ⊆ E define [E : F ] to be the dimension of E
viewed as a vector space over F .

Theorem 5.11 For fields F ⊆ K ⊆ E

[E : F ] = [E : K] · [K : F ]

Theorem 5.12 For p(x) ∈ F [x] irreducible and α a root of p in some ex-
tension field, [F [α] : F ] is the degree of p.

Theorem 5.13 If E ⊇ F is the splitting field of some polynomial in F [x],
then [E : F ] is finite.

Theorem 5.14 If [E : F ] is finite and α ∈ E, then there is an irreducible
polynomial p ∈ F [x] with p(α) = 0.

Problem 23 (Wed Mar 5) p is a prime and n a positive integer. Prove:
(a) If F is a field such that |F | = pn and m is a positive integer then

there is a field E with F ⊆ E and E = pnm.
(b) If F ⊆ E are fields, |F | = pn and |E| = pN , then n divides N .
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6 Algebraic closure

Definition 6.1 α is algebraic over F iff it is the root of a nontrivial poly-
nomial in F [x]. A field K is algebraically closed iff every nonconstant poly-
nomial f ∈ K[x] has a root in K.

Theorem 6.2 If F ⊆ E are fields define

K = {α ∈ E : α is algebraic over F}

Then K is a field and F ⊆ K ⊆ F .

Steinitz proved that every field F is a subfield of an algebraically closed
field K. This requires the Axiom of Choice.

Theorem 6.3 Suppose F ⊆ K and K is algebraically closed. Let E be the
elements of K which are algebraic over F . Then E is algebraically closed.

7 Compass and straight-edge

Theorem 7.1 (Wantzel 1837) Let C ⊆ R×R be the smallest set containing
(0, 0) and (1, 0) and closed under constructions using straight edge and com-
pass. Then C = Fc × Fc where Fc is the smallest subfield of R which closed
under square roots.

Lemma 7.2 For any α
α ∈ Fc iff for some n there are fields Fk for k = 0, 1, . . . , n with α ∈ Fn

and such that F0 = Q and for each k < n Fk+1 = Fk[
√
ak] for some ak ∈ Fk.

Theorem 7.3 For any α ∈ Fc

[Q[α] : Q] = 2n for some integer n.

Corollary 7.4 3
√

2 /∈ Fc so it is impossible to “double the cube”.

Corollary 7.5 cos(20◦) /∈ Fc so it is impossible to trisect every angle.

Corollary 7.6 Since π is transcendental and every element of Fc is alge-
braic, it is impossible to “square the circle”.

Problem 24 (Wed Mar 26) Prove or disprove:
Using a straight edge and compass it is possible to construct an equilateral

triangle with area 1.
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8 Irreducibility criterion

Lemma 8.1 (Gauss’s Lemma) Suppose f ∈ Z[x], then
f is irreducible in Q[x] iff f is irreducible in Z[x].

Lemma 8.2 (Eisenstein’s Criterion) Suppose f ∈ Z[x] has degree n

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and for some prime p
(a) p does not divide an,
(b) p divides ak for all k = 0, 1, . . . , n− 1, and
(c) p2 does not divide a0.

Then f is irreducible in Z[x].

Theorem 8.3 For any prime p the polynomial f(x) = 1+x+x2 + · · ·+xp−1

is irreducible in Q[x].

Proposition 8.4 If 2m + 1 is prime, then m is a power of 2.

Theorem 8.5 (Gauss) If the regular p-gon is constructible with straight edge
and compass, then p = 22n + 1 for some integer n.

Problem 25 (Fri Mar 28) Prove that [Fc : Q] is infinite. Fc is the field of
constructible reals (straight edge and compass).

Problem 26 (Fri Mar 28) Prove that if 2m − 1 is prime, then m is prime.

9 Solvability by radicals

For Tartaglia method of solving a cubic polynomial see
https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf

For a brief history see:
www.dwick.org/pages/cubicquartic.pdf

Problem 27 (Mon Mar 31) Find the roots of

x3 + 3x2 + 6x+ 5 = 0

using addition, subtraction, multiplication, division, and extraction of roots,
i.e., solvability by radicals.
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Theorem 9.1 (Steinitz 1910) Suppose F ⊆ E are fields of characteristic 0
and [E : F ] is finite. Then there exists α ∈ E such that E = F [α]. The same
is true if E is a finite field.

Example 9.2 There is a field F and α, β with [F [α, β] : F ] finite but there
is no γ with F [α, β] = F [γ].

See
http://www.math.wisc.edu/~miller/old/m542-00/examp.pdf

Problem 28 (Wed Apr 2) Suppose [F [α] : F ] = n, [F [β] : F ] = m, and
gcd(n,m) = 1. Prove that [F [α, β] : F ] = nm.

10 Galois Theory

Proofs and definitions can be found in galois.pdf see:
https://www.math.wisc.edu/~miller/old/m542-00/galois.pdf

Proposition 10.1 (2.4 galois.pdf) aut(E|F ) is a group. Furthermore, if
F ⊆ E ⊆ K are fields, then aut(K|E) is a subgroup of aut(K|F ).

Lemma 10.2 (2.5 galois.pdf) Suppose σ, ρ ∈ aut(F (α)|F ). Then σ = ρ iff
σ(α) = ρ(α). Similarly, if σ, ρ ∈ aut(F (α1, α2, . . . , αn)|F ) then σ = ρ iff
σ(αk) = ρ(αk) for all k = 1, 2, . . . , n.

Theorem 10.3 (2.6 galois.pdf) Suppose that K is the splitting field of a
polynomial in F [x] of degree n. Then aut(K|F ) is isomorphic to a subgroup
of Sn.

Problem 29 (Fri Apr 4) Prove the following:
(a) Suppose α + β is algebraic over F , then α is algebraic over F [β].
(b) Suppose α + β and αβ are both algebraic over F , then α is algebraic

over F .

Definition 10.4 For fields F ⊆ K we say that K is a splitting field over F
iff K is the splitting field of some polynomial in F [x].

Every polynomial in Q[x] splits in C but C is not a splitting field over Q.
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Lemma 10.5 (Extension Lemma 2.9 galois.pdf) Suppose that F ⊆ F1 ⊆ K
and F ⊆ F2 ⊆ K are fields, K is a splitting field over F , and σ : F1 →
F2 is an isomorphism which fixes F . Then there exists ρ : K → K an
automorphism which extends σ.

Theorem 10.6 (3.1 galois.pdf) Suppose F ⊆ K, K is a splitting field over
F , p ∈ F [x] is irreducible, and there is α ∈ K such that p(α) = 0. Then p
splits in K.

Problem 30 (Mon Apr 7) Suppose that F ⊆ K1 ⊆ L and F ⊆ K2 ⊆ L and
K1 and K2 are splitting fields over F . Prove that K1 ∩K2 is a splitting field
over F .

Theorem 10.7 (2.8 galois.pdf) Suppose F ⊆ K, K is a splitting field over
F , and these fields have characteristic zero. Then |aut(K,F )| = [K : F ].

Theorem 10.8 (2.10 galois.pdf) Suppose F ⊆ K ⊆ E, K and E are split-
ting fields over F . Then aut(E|K) / aut(E|F ) and

aut(E|F )

aut(E|K)
' aut(K|F )

Proposition 10.9 Suppose F ⊆ K ⊆ E, E is a splitting fields over F , and
aut(E|K) / aut(E|F ). Then K is a splitting field over F .

Problem 31 (Wed Apr 9) Suppose that E is a splitting field over F and
p ∈ F [x] splits in E as p(x) = (x − α1)(x − α2) · · · (x − αn) where αi 6= αj

whenever i 6= j. Prove that the following are equivalent:
(1) p is irreducible.
(2) for any i, j there is σ ∈ aut(E|F ) such σ(αi) = αj.

Theorem 10.10 (5.3 galois.pdf) Suppose F ⊆ E is a radical Galois exten-
sion, then aut(E|F ) is a solvable group.

Example 10.11 If 2 generates the multiplicative group of Zp, then

f(x) = 1 + x+ x2 + · · ·+ xp−1

is irreducible over Z2.
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See Gurrier 1968
http://www.jstor.org/stable/2315109

See also Artin’s conjecture on primitive roots
http://en.wikipedia.org/wiki/Artin_conjecture

Theorem 10.12 (5.4 galois.pdf) Subgroups of solvable groups are solvable
and homomorphic images of solvable groups are solvable.

Problem 32 (Mon Apr 14) For each of the following polynomials compute
its Galois group, i.e., aut(K|Q) where K is the splitting field of the polyno-
mial.

(a) x5 − 1
(b) x4 − 2
(c) x4 − 2x2 − 2

Theorem 10.13 Suppose K is the splitting field of a polynomial in F1[x]
and F1 ⊆ F2 ⊆ · · · ⊆ Fm satisfies F1 ⊆ K ⊆ Fm and Fk+1 is a radical Galois
extension of Fk for each k < m. Then aut(K|F1) is a solvable group.

Lemma 10.14 .
(a) {(i, i+ 1) : 1 ≤ i < n} generates Sn. (adjacent swaps)
(b) {(1, 2), (1, 2, 3, . . . , n)} generates Sn.
(c) {(1, i), (1, 2, 3, . . . , n)} generates Sn if n is prime.
(d) If n is prime, then any subgroup of Sn which contains an n-cycle and

at least one transposition must be Sn.

Problem 33 (Wed Apr 16) In the Lemma 10.14 (d) must n be prime?
Prove or disprove: {(1, 2, 3, 4), (1, 3)} generates S4.

Theorem 10.15 Suppose f(x) ∈ Q[x] is an irreducible polynomial of prime
degree p such that f has exactly p− 2 real roots. If K is the splitting field of
f , then aut(K,Q) is isomorphic to Sp.

Example 10.16 If f(x) = x5− 5x+ 5
2

then f is irreducible and has exactly
three real roots.

Theorem 10.17 The alternating group A5 is simple. Hence S5 is not solv-
able.
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Corollary 10.18 There is polynomial in Q[x] of degree 5 which cannot be
solved by radicals.

Problem 34 (Mon Apr 21) σ, τ ∈ A5 are conjugate in A5 iff there is ρ ∈ A5

such that σ = ρ−1τρ. Prove that every element of A5 except the identity is
conjugate to exactly one of the following:

(a) (1, 2, 3)
(b) (1, 2)(3, 4)
(c) (1, 2, 3, 4, 5)
(d) (2, 1, 3, 4, 5)

In particular (c) and (d) are not conjugates.

Theorem 10.19 For any n there are fields E ⊆ K such that K is the split-
ting field of a polynomial in E[x] and aut(K|E) is isomorphic to Sn.

Theorem 10.20 (char 0) Suppose F ⊆ K and K is the splitting field of a
polynomial in F [x] and H ⊆ aut(K|F ) is a subgroup. Then there exists a
field E with F ⊆ E ⊆ K and aut(K|E) = H.

Corollary 10.21 Every finite group is a Galois group.

Proof of the fundamental theorem of algebra using Galois theory:
http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

Problem 35 (Wed Apr 23) Let K ⊇ Q be the splitting field of

f(x) = (x2 + 1) · (x2 − 2) = x4 − x2 − 2

(a) Prove that aut(K|Q) ' Z2 × Z2

(b) Find an irreducible polynomial p(x) whose splitting field is K.

Definition 10.22 A polynomial f(x) ∈ Q[x] is solvable by real radicals iff
its roots are in the smallest subfield S ⊆ R which is closed under taking real
roots, i.e., if a ∈ S, a > 0 and n ∈ N then n

√
a ∈ S.

Lemma 10.23 Suppose F ⊆ C is a subfield, p a prime, and a ∈ F . Then
f(x) = xp − a is reducible in F iff it has a root in F .

Theorem 10.24 Suppose f(x) ∈ Q[x] is an irreducible cubic with three real
roots. Then f(x) is not solvable by real radicals.
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11 Similar Matrices

For this material see
http://www.math.wisc.edu/~miller/old/m542-00/similar.pdf

Problem 36 (Mon Apr 28) Suppose A and B are matrices with real entries
and there exists a matrix P with complex entries such that A = PBP−1.
Prove there exists a matrix P with real entries such that A = PBP−1.

Hint: Show {Q : AQ = QB} is a subspace.

Theorem 11.1 Suppose F is an infinite field, A and B are F -matrices,
and for some field extension E ⊇ F there is an E-matrix P such that A =
PBP−1. Then there is an F -matrix P such that A = PBP−1.

For algebraically closed fields A and B are similar iff they have the same
Jordan Normal forms up to a permutation of the Jordan blocks. So without
loss we may as well assume that E is the algebraic closure of F . By adding
one new element at a time it suffices to prove the Theorem for E = F [α] with
[E : F ] finite. Let p(x) ∈ F [x] be the minimal polynomial for α. Consider
the vector space

M = {P : AP = PB}

where the P are E-matrix. Note that any such P has entries which are a
polnomial in α. So we can write

P = P0 + αP1 + . . .+ αnPn

where the Pi are F -matrices. Let f(x) ∈ F [x] be the determinate of

P0 + xP1 + . . .+ xnPn

Since f(α) 6= 0 and F is an infinite field there is an β ∈ F such that f(β) 6= 0.
The F -matrix

P ′ = P0 + βP1 + . . .+ βnPn

is invertible and witnesses the similarity of A and B.
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