# Math 542 Exercise 32

### Joe Timmerman

## April 21, 2014

# Compute the Galois groups of the following polynomials:

$$p(x) = x^5 - 1$$
:

Note that the roots of p are simply the fifth roots of unity: numbers of the form  $\zeta^k$ , for  $\zeta = e^{\frac{2\pi i}{5}}$  and  $0 \le k \le 4$ . Since  $\zeta^0 = 1$ , the identity, any automorphism of the Galois field must fix 1. Thus, there are 4 possible permutations, each induced by  $\sigma_k : \zeta \mapsto \zeta^k$  for  $1 \le k \le 4$ . Note that since  $\sigma$  is a field homomorphism, this completely characterizes each permutation, i.e.,  $\sigma_k(\zeta^\ell) = \sigma_k(\prod^\ell \zeta) = \prod^\ell \sigma_k(\zeta)$ . Then we have the following:

$$\sigma_2(\zeta) = \zeta^2 \implies \sigma_2^2(\zeta) = \sigma_2(\zeta^2) = \zeta^4 = \sigma_4(\zeta) \implies \sigma_2^2 = \sigma_4$$

$$\sigma_2^3(\zeta) = \sigma_2(\zeta^4) = \zeta^8 = \zeta^3 = \sigma_3(\zeta) \implies \sigma_2^3 = \sigma_3$$

$$\sigma_2^4(\zeta) = \sigma_2(\zeta^3) = \zeta = \sigma_1(\zeta) \implies \sigma_2^4 = \sigma_1$$

Thus, every element of the four-element Galois group is generated by a signal element, so the Galois group is the cyclic group of four elements, i.e., isomorphic to  $\mathbb{Z}_4$ .

$$p(x) = x^4 - 2$$
:

We have  $p(x)=(x^2+\sqrt{2})(x^2-\sqrt{2})$ , so it has roots  $\pm\sqrt[4]{2}$ ,  $\pm i\sqrt[4]{2}$ . Letting  $\alpha=\sqrt[4]{2}$ , we can rewrite these roots as  $\alpha, -\alpha, i\alpha, -i\alpha$ . We know  $G\subseteq S_4$ . Further, since p is irreducible (by Eisenstein), G must be transitive, i.e., for every pair of elements, there's a permutation that swaps them (I got this from Artin, chapter 16 section 9). The only transitive subgroups of  $S_4$  are  $S_4, A_4, D_4, \mathbb{Z}_4, D_2$ .

Let  $F = \mathbb{Q}[\alpha, i\alpha]$ . Since p is irreducible and deg(p) = 4,  $[\mathbb{Q}[\alpha] : \mathbb{Q}] = 4$ . Further, since i is the root of a quadratic  $(x^2 + 1 = 0)$ , we get that  $[F : \mathbb{Q}] = 8 = |G|$ , by theorem 10.7. Note that of the above transitive subgroups of  $S_4$ ,  $D_4$  is the only one with 8 elements, so it must be that the Galois group of p is isomorphic to  $D_4$ .

$$p(x) = x^4 - 2x^2 - 2$$
:

The roots of p are of the form  $\pm\sqrt{1\pm\sqrt{3}}$ . Let  $\alpha=\sqrt{1+\sqrt{3}}, \alpha'=\sqrt{1-\sqrt{3}}$ , so our roots are  $\alpha, -\alpha, \alpha', -\alpha'$ . Let F be the Galois field for p. Since p is irreducible and degree 4,  $[\mathbb{Q}[\alpha]:\mathbb{Q}]=4$ . We once again need i, so as in the previous part we get  $[F:\mathbb{Q}]=8=|G|$ . By the same reasoning as in the previous part (we need an eight element transitive subgroup of  $S_4$ ), it must be that  $G=D_4$ .

#### Note:

I also used Sage to verify parts (b) and (c):

```
sage: G = NumberField(x^4-2, 'theta').galois_group(type="pari")
sage: H = G.group(); H
PARI group [8, -1, 3, "D(4)"] of degree 4
sage: G = NumberField(x^4 - 2*x^2 - 2, 'theta').galois_group(type="pari")
sage: H = G.group(); H
PARI group [8, -1, 3, "D(4)"] of degree 4
```