Problem 29

Yining Li

NY

Problem 1. (Fri Apr 4) Prove the following:

- (a) Suppose $\alpha + \beta$ is algebraic over F, then α is algebraic over $F(\beta)$.
- (b) Suppose $\alpha + \beta$ and $\alpha\beta$ are both algebraic over F, then α is algebraic over F.

Proof. (a) Since $\alpha + \beta$ is algebraic over F, $\alpha + \beta$ is algebraic over $F(\beta)$. Therefore,

$$[F(\beta, \alpha + \beta) : F(\beta)] < \infty.$$

Since $F(\alpha, \beta) = F(\beta, \alpha + \beta)$, α is algebraic over $F(\beta)$.

(b) Since both $\alpha + \beta$ and $\alpha\beta$ are algebraic over F,

$$[F(\alpha + \beta, \alpha\beta) : F] < \infty.$$

Consider polynomial $f(x) = x^2 - (\alpha + \beta)x + \alpha\beta \in F(\alpha + \beta, \alpha\beta)[x]$ and extension field $F(\alpha, \beta)$. Since α, β are two root of f in $F(\alpha, \beta)$, $[F(\alpha, \beta) : F(\alpha + \beta, \alpha\beta)] \leq 2$, and hence

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha + \beta, \alpha\beta)][F(\alpha + \beta, \alpha\beta) : F] < \infty.$$

Thus, both α and β are algebraic over F.