HW due Mar 5

Tao Ju

March 5, 2014

Problem 20

Let α be transcendental over \mathbb{Z}_2 . Let $F = \mathbb{Z}_2(\alpha)$ and let $p(x) = x^2 - \alpha$.

- (a) Prove that p is irreducible over F.
- (b) Prove that if β is a root of p in some extension field, then $p(x) = (x \beta)^2$.
- (c) Suppose that F is a finite field of characteristic 2. Prove that for every $a \in F$ there is a $b \in F$ such that $b^2 = a$.
- (d) Suppose that F is a finite field of odd characteristic. Prove that there exists $a \in F$ for every $b \in F$ such that $b^2 \neq a$.
- (e) Find a field F and an irreducible polynomial p(x) of degree three such that in any extension field in which p splits there exist a β such that $p(x) = (x \beta)^3$.

Proof:

(a)

Suppose p is not irreducible, so p(x) = (x - a)(x - b) for some $a, b \in F$. Notice that $x^2 - \alpha = x^2 - (a + b)x + ab$ implies a = -b and $\alpha = -ab = a^2$. Since $a \in F$, there exist two polynomials $f(\alpha), g(\alpha) \in \mathbb{Z}_2[\alpha]$ and $g(\alpha) \neq 0$ s.t. $a = f(\alpha)/g(\alpha)$.

Assume $f(\alpha) = t_n \alpha^n + t_{n-1} \alpha^{n-1} + \dots + t_0$ where $t_0, \dots, t_n \in \mathbb{Z}_2$. Since 2t = 0 and $t^2 = t$ for all $t \in \mathbb{Z}_2$, we have

$$(f(\alpha))^2 = \left(\sum_{i=0}^n t_i \alpha^i\right)^2 = \sum_{i=0}^n t_i^2 \alpha^{2i} + \sum_{0 \le i \le j \le n} 2t_i t_j \alpha^{i+j} = \sum_{i=0}^n t_i \alpha^{2i} = f(\alpha^2).$$

As the same reason we have $(g(\alpha))^2 = g(\alpha^2)$. Thus

$$\alpha = a^2 = \frac{(f(\alpha))^2}{(g(\alpha))^2} = \frac{f(\alpha^2)}{g(\alpha^2)} \quad \Rightarrow \quad \alpha g(\alpha^2) - f(\alpha^2) = 0$$

which is not trivial since $\alpha g(\alpha^2) - f(\alpha^2)$ must include some odd power of α . Then α is the root of $xg(x^2) - f(x^2) = 0$, which contradicts against that α is transcendental over \mathbb{Z}_2 . Therefore p is irreducible.

(b) Assume $\beta \in E$ for some extension field E. Then $0 = p(\beta) = \beta^2 - \alpha$. Thus over field E, $p(x) = x^2 - \beta^2 = x^2 - 2x\beta + \beta^2 = (x - \beta)^2$.

(c) Since F is a finite field of characteristic 2, by Corollary 30, $|F| = 2^n$ for some $n \in \mathbb{N}^*$. Then $F^* = F \setminus \{0\} \cong \mathbb{Z}_{2^n-1}$. Assume α generates F^* . Consider $\beta = \alpha^{2^{n-1}}$, then $\beta^2 = \alpha^{2^n} = \alpha$. Thus every element a in F^* can be denoted as b^2 for some $b \in F^*$. It is clear $0 = 0^2$. Thus we've achieved our goal.

(d) Assume F is a finite field of odd characteristic p, by Corollary 30, $|F| = p^n$ for some $n \in \mathbb{N}^*$. Then

 $F^* = F \setminus \{0\} \cong \mathbb{Z}_{p^n-1}$. Assume a generates F^* . Suppose there exists some $a^k \in F^*$ s.t. $(a^k)^2 = a$, as to say $2k = 1 \mod p^n - 1$. 2k and $p^n - 1$ are both even numbers but 1 is odd, contradiction. Thus $a \neq b^2$ for every $b \in F^*$. Of course $0^2 \neq a$, so we've reached our goal.

(e)

(The example and proof are almost the same as (a) and (b).) Let α be transcendental over \mathbb{Z}_3 , for instance α . Let $F = \mathbb{Z}_3(\alpha)$ and let $p(x) = x^3 - \alpha$. Divide the proof into two parts:

(1) Prove that p is irreducible over F.

Suppose p is not irreducible, so p(x) = f(x)g(x) for some $f(x), g(x) \in F[x]$. It is clear that deg f = 1 or deg g = 1, we assume deg f = 1 and f(x) = x - a for some $a \in F$ without loss of generality. And we have $0 = f(a)g(a) = p(a) = a^3 - \alpha$. Since $a \in F$, there exist two polynomials $f(\alpha), g(\alpha) \in \mathbb{Z}_2[\alpha]$ and $g(\alpha) \neq 0$ s.t. $a = f(\alpha)/g(\alpha)$.

Assume $f(\alpha) = t_n \alpha^n + t_{n-1} \alpha^{n-1} + \dots + t_0$ where $t_0, \dots, t_n \in \mathbb{Z}_3$. Since 3t = 0 and $t^3 = t$ for all $t \in \mathbb{Z}_3$, we have

$$(f(\alpha))^3 = \sum_{i=0}^n t_i^3 \alpha^{3i} + \sum_{0 \le i < j \le n} 3t_i t_j (\alpha^{2i+j} + \alpha^{i+2j}) + \sum_{0 \le i < j < k \le n} 6t_i t_j t_k \alpha^{i+j+k} = \sum_{i=0}^n t_i \alpha^{3i} = f(\alpha^2).$$

As the same reason we have $(g(\alpha))^3 = g(\alpha^3)$. Thus

$$lpha = a^3 = rac{(f(lpha))^3}{(g(lpha))^3} = rac{f(lpha^3)}{g(lpha^3)} \quad \Rightarrow \quad lpha g(lpha^3) - f(lpha^3) = 0$$

which is not trivial since $\alpha g(\alpha^3) - f(\alpha^3)$ must include some α^{3k+1} for $k \in \mathbb{N}$. Then α is the root of $xg(x^3) - f(x^3) = 0$, which contradicts against that α is transcendental over \mathbb{Z}_3 . Therefore p is irreducible.

(2) Prove that if β is a root of p in some extension field, then $p(x) = (x - \beta)^3$.

Assume $\beta \in E$ for some extension field E. Then $0 = p(\beta) = \beta^3 - \alpha$. Thus over field E, $p(x) = x^3 - \beta^3 = x^3 - 3x^2\beta + 3x\beta^2 - \beta^3 = (x - \beta)^3$.

Math 542

Killian Kvalvik

March 5, 2014

OL

- 20. Let α be transcendental over \mathbb{Z}_2 . Let $F = \mathbb{Z}_2(\alpha)$ and let $p(x) = x^2 \alpha$.
 - (a) Prove that p is irreducible over F. Suppose not. Then p is divisible by a polynomial of lower order—which is a linear polynomial. Therefore p has a root in F; call it β . Since $\beta \in F = \mathbb{Z}_2(\alpha)$, there exist relatively prime polynomials $q, r \in \mathbb{Z}_2[x]$ such that $\beta = \frac{q(\alpha)}{r(\alpha)}$. But $\beta^2 - \alpha = p(\beta) = 0$, so $(q(\alpha))^2 - \alpha \cdot (r(\alpha))^2 = 0$. But this implies that α is algebraic over \mathbb{Z}_2 , a contradiction. Therefore p is irreducible.

 Next to $\alpha = p(\beta)$ and then $\alpha = p(\beta)$ and the $\alpha = p(\beta)$ are $\alpha = p(\beta)$.
 - (b) Prove that if β is a root of p in some extension field, then $p(x) = (x \beta)^2$. Since $p(\beta) = \beta^2 - \alpha = 0$, $\beta^2 = \alpha$. Thus $(x - \beta)^2 = (x - \beta)(x - \beta) = x^2 - \beta x - \beta x + \beta^2 = x^2 + \alpha = x^2 - \alpha = p(x)$.
 - (c) Suppose that F is a finite field of characteristic 2. Prove that for every $a \in F$ there exists $a \ b \in F$ such that $b^2 = a$. Let $c, d \in F$. Assume $c^2 = d^2$. Then $c^2 - d^2 = (c+d)(c-d) = (c-d)^2 = 0$, so c-d=0 and c = d. Therefore, the function $\alpha : F \to F$ such that $\alpha(c) = c^2$ is injective, so it must also be surjective. Therefore, for every $a \in F$, there exists a $b \in F$ such that $b^2 = a$.
 - (d) Suppose that F is a finite field of odd characteristic. Prove that there exists a ∈ F such that for all b ∈ F, b² ≠ a.
 Since F does not have characteristic 2, there exists a c ∈ F such that c+c≠ 0, so c≠-c. But c² = (-c)², so the function x → x² is not injective. Therefore it cannot be surjective, so there exists an a ∈ F such that for all b ∈ F, b² ≠ a.
 - (e) Find a field F and an irreducible polynomial p(x) of degree 3 such that in any extension field in which p splits, there exists a β such that p(x) = (x β)³.

degree of $(q(x))^2$ even degree of $x(r(x))^2$ odd so $(g(x))^2 - x(r(x))^2$ non trivial.