Problem 12,13

Yining Li

Problem 1 (Fri Feb 14) Question (August J.) Suppose every subgroup of finite group G is a normal subgroup. Must G be abelian?

Counterexample. Consider quaternion group

$$Q_8 = \langle x, y \mid x^2 = y^4 = 1, x^2 = y^2, y^{-1}xy = x^{-1} \rangle.$$

It is easy to compute that the conjugate class of Q_8 is

Óh

$$\{1\}, \{x^2\}, \{x, x^3\}, \{y, x^2y\}, \{xy, x^3y\}.$$

It follows that $Z(Q_8) = \{1, x^2\}$. By computation, we know Q_8 has only one 2-order element, so $Z(Q_8)$ is the only 2-order subgroup. Since $Z(Q_8)$ is normal, then each 2-order subgroup of Q_8 is normal. Let G be 4-order subgroup, then $[Q_8 : G] = 2$, which implies $Q_8 = G \cup gG = G \cup Gg$ for each $g \notin G$. So gG = Gg for all $g \in Q_8$, and hence G is normal in Q_8 . It is clear that the other subgroups of Q_8 , namely 1 and Q_8 , are normal too.

Problem 2 (Fri Feb 14)

- (a) Suppose P is a p-Sylow subgroup of G and H a subgroup such that $P \triangleleft H$ and $H \triangleleft G$. Prove that $P \triangleleft G$.
- (b) If $K \triangleleft H$ and $H \triangleleft G$, does it follow that $K \triangleleft G$? Show that the answer is No. Consider $G = S_4$, $K = \{id, \sigma\}$ where $\sigma = (12)(34)$ and $H = \{id, \sigma, \tau, \rho\}$ where τ and ρ are conjugates of σ . Determine what τ and ρ are and show that $K \triangleleft H$ and $H \triangleleft G$, but K is not a normal subgroup of G.
- (a) Proof. Let gPg^{-1} be an arbitrary p-Sylow subgroup of G, where $g \in G$. Since $P \subset H$ and $H \lhd G$, $gPg^{-1} \subset H$ for all $g \in G$. Since $P \lhd H$, $gPg^{-1} \subset P$ for all $g \in G$, which implies P is a normal subgroup of G.
- (b) Proof. Since $\sigma = (12)(34)$ has type of two 2-cycles, so without loss of generality we can write $\tau = (13)(24)$ and $\rho = (14)(23)$. It is easy to see H is a subgroup. Since H is disjoint union of two conjugate classes $\{e\}$ and $\{\sigma, \tau, \rho\}$, H is normal in G. Since [H, K] = 2, $K \triangleleft H$. Since σ is conjugate to τ , ρ in G. It is obvious K is not normal in G.

Homework 10

Yuan Chaojie (Ernest)

February 21, 2014

Problem 1: (Fri Feb 14) Question (August J.) Suppose every subgroup of finite group G is a normal subgroup. Must G be abelian?

Problem 1 Solution: G can be not abelian. One of the examples is Quaternion group:

$$G=\langle i,j,k\mid i^2=j^2=k^2=ijk=-1\rangle$$

OR

Since ij = k and ji = -k it is obvious that G is not abelian.

Then it is easy to observe that it has four nontrivial subgroup, we need to check whether they are normal.

- 1. $H = \{1, -1\}$ It is obviously normal because for any $g \in G$, $gHg^{-1} = H$ with $g1g^{-1} = 1$ and $g(-1)g^{-1} = -1$
- 2. $H = \{1, -1, i, -i\}, H = \{1, -1, j, -j\}, H = \{1, -1, k, -k\}$ These three nontrivial subgroups are equivalent, so we just need to prove one of them are normal. For the first group $H = \{1, -1, i, -i\}$, since we have proved that $H = \{1, -1\}$ is normal, we just need to show that any conjugation act on $\{i, -i\}$ is in H. we begin by calculation:

$$jij^{-1} = (-k)(-j) = kj = -i$$
$$kik^{-1} = j(-k) = -jk = -i$$
$$j(-i)j^{-1} = k(-j) = -kj = i$$
$$k(-i)k^{-1} = (-j)(-k) = -jk = -i$$

So we can conclude that H is normal.

So G is an non-abelian group whose subgroups are all normal groups.

12

Problem 2: (Fri Feb 14)

- (a) Suppose P is a p-Sylow subgroup of G and H a subgroup such that $P \triangleleft H$ and $H \triangleleft G$. Prove that $P \triangleleft G$.
- (b) If $K \triangleleft H$ and $H \triangleleft G$, does it follow that $K \triangleleft G$? Show that the answer is No. Consider $G = S_4$, $K = \{id, \sigma\}$ where $\sigma = (12)(34)$ and $H = \{id, \sigma, \tau, \rho\}$ where τ and ρ are conjugates of σ . Determine what τ and ρ are and show that $K \triangleleft H$ and $H \triangleleft G$, but K is not a normal subgroup of G.

Problem 2 Solution:

part (a): Suppose P is not a normal subgroup of G. Then there exists another p-Sylow subgroup P_1 and $g \in G$, such that $gPg^{-1} = P_1$. Since H is a normal subgroup of G, then we can conclude that $gPg^{-1} \subset gHg^{-1} = H$. Apparently P_1 is still a p-Sylow subgroup of G. Then we can know that P and P_1 are both p-Sylow subgroup of H. According to Corollary 18 we can conclude that P is not a normal subgroup of H, where we get a contradiction. So P is a normal subgroup of G.

6/2

part (b): First it is easy to notice that τ and ρ are conjugate of σ . Since it is the product of two two-cycles, we can conclude that $\tau = (13)(24)$ and $\rho = (14)(23)$. K is obviously not normal because we can find an element $(123) \in S_4$ such that:

$$(123)(12)(34)(321) = (14)(23) \notin K$$

But H is normal in G because the conjugate of all elements are in H, which follow from the fact that σ, τ, ρ is a conjugate classes. And K is normal in H because

$$\tau \sigma \tau^{-1} = (13)(24)(12)(34)(13)(24) = (12)(34)$$
$$\rho \sigma \rho^{-1} = (14)(23)(12)(34)(14)(23) = (12)(34)$$

So if $K \triangleleft H$ and $H \triangleleft G$, K may not be normal in G

verity hat sup.