Problem 11

Yining Li

Problem 1 (Wed Feb 12)

- (a) Prove that there are no simple groups of order either 575 or 272.
- (b) For any prime p prove there are no simple groups of order p(p-1) or p(p+2).
- (a) Proof. Since $575 = 5^2 \times 23$, by Sylow 3, n(23) = 23k + 1 and n(23)|25. So n(23) = 1. By Sylow 2, we know G has a normal subgroup of order 23. Since $272 = 2^4 \times 17$, by Sylow 3, n(17) = 17k + 1 and $n(17)|2^4$. So n(17) = 1. By Sylow 2, we know G has a normal subgroup of order 17.

6h

(b) Proof. Since (p, p-1)=1, by Sylow 3, n(p)=pk+1 and n(p)|p-1. So n(p)=1. By Sylow 2, we know G has a normal subgroup of order p. Suppose $p(p+2)=p^nm$, where $(p^n,m)=1$. If $p\geq 3$, then n=1 for $p\nmid 2$. By Sylow 3, n(p)=pk+1 and n(p)|p+2. So n(p)=1. By Sylow 2, we know G has a normal subgroup of order p. If p=2, then the order of G is 2^3 . So G is a 2-group. Since every p-group has nontrivial center, G is not simple.