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Problem 1 :

1.

Suppose G is a finite abelian group which contains an element which has non-square-
free order. Prove that for some prime p it has an element of order p°.

. Suppose a is an element of o finite abelian group G with order p* let b = a?, let

H =< b > be the subgroup generated by b and suppose K is a subgroup of G with
K N H = {e}. Prove that a is not an element of HK.

Suppose G1, Gy are finite abelian groups with |G1| and |Gy| relatively prime. Show that
Jor any subgroup H C Gy X Gy there are subgroups Hy C G1 and Hy C Gy such that
H = Hy x Hy. (Warning: the relatively prime hypothesis is necessary.)

. Suppose G'1, G are finite abelian groups with |Gy| and |Gy| relatively prime. Show that

if G1 and Gy both have the CP then Gy x Gy has CP.1

. Prove that Cp, X Cp % -+ x C,, has the CP.

. Prove Problem 4.

Problem 1 Solution:

ek 1
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Suppose claim 1 is true, then there exists an element @ € G,a # e and a prime p, such
that |a| = p?n. Then we look at the element a”, by the definition of order we can
know that (a")?* = a™" = ¢ and any positive integar less than p? can not be its order
( otherwise the order of a will be smaller than p®n ). So @™ is the elment we want.

Suppose not in the claim two that @ is an element of H x K, then there exists k € K
and positive integar I, such that (a?)'k = a, which means k = a!~?". Then using the
fact that |a| = p? :

kP = q(-Plp — op—Pl — 0 _p

then we can conclude that b is an element in H (K. So b = e, we get a contradiction.
So a is not an element of HK.

1CP is defined after Problem 4.
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3. we prove it by constructing two mappings :¢; maps H — Hy, where ¢1(hy, he) = by

and ¢, maps H — Hs, where ¢g(h1, hy) = ho. It is simple to notice that H; and
H, is a subgroup of G; and G5, Since it is similar we can just prove it for Hy. Let
g1,92 € Hy, then there exists (g1,l1) € H and (go,ls) € H. Then ¢((g1,11)(g2,l2)) =
#((g192,l1l2)) = g192. So we proved that g1go € Hi. Moreover since (eq,eq) is the
identity in H, then we can conclude that e; is in Hy. And for any (g1,1;) € H, its
inverse (g7?, lfl) € H, so gl_l € Hy. So Hy is indeed an subgroup of Gy. Similarly Hy
is indeed an subgroup of Gj. )

Then we will prove that H; x H, = H. By the construction we can know that H; x Hy D
H, it is sufficient to prove that Hy; x Hy C H. We choose any hy € Hy, hy € Hy, we need
to prove that (hq, hy) € H. Since |G1] and |Gq| are relatively prime, then there exists
s,t, such that s|G1| +t|Ga| = 1. As hy € Hy, there exists hj, such that (hy, h}) € H.
Then

(ha, 151921 = (), B2y = (™19, e5) = (haye0) € H

Similarly (e1, ho) € H. So (hy,eq)(e1, ha) = (h1, hy) € H. So we proved that Hy x Hy C
H. In conclusion : for any subgroup H C G x G there are subgroups H; C G7 and
Hy € Gg such that H = Hy x Hy. (|G1] and |Gy relatively prime)

. Since |G4| and |Gy relatively prime,we can use the claim above. Suppose G; x G has

CP, then we prove Gy has CP(G5 is similarly proved that has CP). Suppose H; is a
subgroup of Gy, then we know that H = H; X {ey} is a subgroup of . Since G has
CP then using the claim above, we can conclude that there exists K = K; x Kj, such
that H x K = (. Then we claim that H; x K; = GG1. Obviously H; x K; C (G;. Then
suppose there exists g € G, such that g ¢ Hy x Kj, then we can know that (g,ez)
can not be in H X K, which contradicts with the fact that H x K = G x G4. So in
conclusion G has CP.

Suppose G; and Gg has CP. Since any subgroup of G x G5 has the form H = H; X Ha,
then by the CP, we know there exists K, K that satisfy the condition H; x K; = Gy
and Hy X Ky = (5. Then we let K = Ky x Ky, we need to prove that K is a subgroup
and H x K = . It is obviously a subgroup since K; and K, are both subgroups, then
there product, identity and inverse will be in K; X K5. Then we notice that H x K C G
because it is the product of two subgroups. It is sufficient to prove that G C H x K.
Let any (g1, 92) € G. Since H; x K; = G, then there exists hy, k1 such that hik; = g;.
Similarly, there exists hq, ko such that hoks = ga. So (g1, 92) = (hy, he)(k1, ko) € HX K.
So in conclusion: G = G x G5 has CP.

. Suppose each cyclic group are generated by g;, where 1 = 1,2...,n. Suppose K is a

subgroup of Gi. Then K =~ CF, where C’;,fl = Cp, x Cp, X ... x Cp, for k times.
Then let K’ to be the subgroup of Gy while K’ has the maximum order among the
subgroups which intersects K are just {e}. Claim that K - K’ is just G;. Otherwise,
suppose K - K' is just a proper subgroup of Gy, then there exists a subgourp (g),
which satisfy the condition that it is not in K - K’. Since (¢;) has only trivial groups,
so (q;) () K - K’ = {e}, which implies that K (K’ (g;)) = 0. But it condicts with the
fact that K’ is the subgroup of G' has the maximum order which intersects G equals

{e} (K" (@) is a subgroup of G is a trivial fact.) So In conclusion:K - K’ = Gj.
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0. By the first two claim we can know that if G' has CP but exists an element has non-
square-free order, we will get a contradiction by the second claim. So each element is
square-free,

Then Since G is finite abelian, we could use the structure theorem to decompose it into
p-groups. Since G; can be expressed as a product of cyclic groups and every element
of G has square-free order, we could get:

Gi~Cpx Cpx...xCp

By the previous claim we can know that G; has CP. And then by claim 4 we can
conclude that G has CP. So 2 — 1 is proved.




