Math 542 Exercises 7,8

7 - OK

Joe Timmerman

8 - 0

February 12, 2014

7

False. As a counterexample, take $G_1 = G_2 = \mathbb{Z}_4 \times \mathbb{Z}_2$, $H_1 = \langle 2 \rangle \times \{0\}$, $H_2 = \{0\} \times \mathbb{Z}_2$. Note that $H_1 = \{(2,0),(0,0)\}$, so $H_1 \cong H_2$ by $(2,0) \mapsto (0,1),(0,0) \mapsto (0,0)$. Now consider $G_1/H_1 = (\mathbb{Z}_4 \times \mathbb{Z}_2)/(\langle 2 \rangle \times \{0\}) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ and $G_2/H_2 = (\mathbb{Z}_4 \times \mathbb{Z}_2)/(\{0\} \times \mathbb{Z}_2) \cong \mathbb{Z}_4 \times \{0\} \cong \mathbb{Z}_4$. Note that for any prime p, $Z_{p^2} \not\cong \mathbb{Z}_p \times \mathbb{Z}_p$, because p is not relatively prime with itself (and so $\mathbb{Z}_p \times \mathbb{Z}_p$ is not cyclic, while \mathbb{Z}_{p^2} is). Thus, we have that $G_1 \cong G_2, H_1 \cong H_2$, but $G_1/H_1 \ncong G_2/H_2$, so the statement is not true.

8

Prove that $\operatorname{Stab}(ga) = g \operatorname{Stab}(a)g^{-1}$. Assume $G \curvearrowright X$, and let $a \in X$.

Claim 0.1.

$$\operatorname{Stab}(ga) \subseteq g \operatorname{Stab}(a)g^{-1}$$

Proof. Let $h \in \text{Stab}(ga)$. Then by definition of the stabilizer group, h(ga) = ga. Using the definition of a group action, this means that (hg)a = ga. Multiplying on the left by g^{-1} , we have $(g^{-1}hg)a = a$, which means $(g^{-1}hg) \in \text{Stab}(a)$. Then multiplying on left by g and on the right by g^{-1} , we get that $h \in g \operatorname{Stab}(a)g^{-1}$. Thus, every element of $\operatorname{Stab}(ga)$ is also in $g \operatorname{Stab}(a)g^{-1}$, so we have inclusion as desired.

Claim 0.2.

$$g\operatorname{Stab}(a)g^{-1}\subseteq\operatorname{Stab}(ga)$$

Proof. Let $h \in g \operatorname{Stab}(a)g^{-1}$. Some for some $x \in \operatorname{Stab}(a)$, $h = gxg^{1-} \Longrightarrow hg = gx$. Since $x \in \operatorname{Stab}(a)$, we have that (gx)a = g(xa) = ga. Then, using gx = hx, this becomes $(hg)a = ga \Longrightarrow g(ga) = ga$. Thus, $h \in \operatorname{Stab}(ga)$, and $\operatorname{Stab}(a)g^{-1} \subseteq \operatorname{Stab}(ga)$.

I've shown mutual inclusion, so $Stab(ga) = g Stab(a)g^{-1}$.