Math 542-Modern Algebra II

Taylor Lee

OK

Febuary 7, 2014

Solution:

 \mathbb{Z}_{144}

 $\mathbb{Z}_{72} \times \mathbb{Z}_2$

 $\mathbb{Z}_{36} \times \mathbb{Z}_2 \times \mathbb{Z}_2$

 $\mathbb{Z}_{36} \times \mathbb{Z}_4$

 $\mathbb{Z}_{18} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

 $\mathbb{Z}_{48}\times\mathbb{Z}_3$

 $\mathbb{Z}_{24} \times \mathbb{Z}_6$

 $\mathbb{Z}_{12} \times \mathbb{Z}_{12}$

 $\mathbb{Z}_{12}\times\mathbb{Z}_6\times\mathbb{Z}_2$

 $\mathbb{Z}_6 \times \mathbb{Z}_6 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

Homework 4

Yuan Chaojie (Ernest)

February 1, 2014

Problem 5: How many abelian groups of order 144 are there up to isomorphism? Explain.

Problem 5 solution : First according to the theorem, since $144 = 2^4 \cdot 3^2$ We can conclude that :

$$G \simeq G_1 \times G_2$$

Where $|G_1| = 2^4$ and $|G_2| = 3^2$.

Since any finite p-groups is isomorphic to a product of cyclic groups each of which has prime order of p. So we can get all the possible possibilities of G_1 and G_2

$$G_1 \simeq C_{16}$$
 $G_1 \simeq C_8 \times C_2$ $G_1 \simeq C_4 \times C_4$ $G_1 \simeq C_2 \times C_2 \times C_2$ $G_2 \simeq C_9$ $G_2 \simeq C_3 \times C_3$

Then we can get all ten abelian group of order 144:

1.
$$G \simeq C_{16} \times C_9$$

2.
$$G \simeq C_{16} \times C_3 \times C_3$$

3.
$$G \simeq C_8 \times C_2 \times C_9$$

4.
$$G \simeq C_8 \times C_2 \times C_3 \times C_3$$

5.
$$G \simeq C_4 \times C_4 \times C_9$$

6.
$$G \simeq C_4 \times C_4 \times C_3 \times C_3$$

7.
$$G \simeq C_4 \times C_2 \times C_2 \times C_9$$

8.
$$G \simeq C_4 \times C_2 \times C_2 \times C_3 \times C_3$$

9.
$$G \simeq C_2 \times C_2 \times C_2 \times C_2 \times C_9$$

10.
$$G \simeq C_2 \times C_2 \times C_2 \times C_2 \times C_3 \times C_3$$