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Vector Spaces

A vector space, V, is a set with two operations, vector addition (written
u + v) and scalar multiplication (written av). The elements of V' will be
denoted using u, v, w, etc. The formula ‘u € V’ is short hand for ‘u is an
element of V’ or ‘u in V’ or just ‘u is a vector’. Vector spaces will be written
using capital letters V, W, etc. Scalars are elements of some field F', for
example, the real numbers, R, or the complex numbers, C. Scalars will be
written using the letters a, b, ¢, etc.

Closure axioms:

1. fueVandv eV, thenu4+veV.
2. If u € V and a a scalar, then au € V.
Associative, commutative, distributive axioms:
1. Forall u,v,w eV  (u+v)+w=u+(v+w).
2. Forall u,v e V uU+v=0v-+u.
3. For all scalars a and b and vectors u € V' (ab)u = a(bu).
4. For all scalars a and b and vectors u € V' (a + b)u = au + bu.

5. For all scalars a and vectors u,v € V. a(u+v) = au + av.
Zero vector, additive inverse, identity axioms:

1. There exists a vector 0 € V such that for all u € V O+u=ut0=w.

2. For every u € V there exists a vector v € V (for which we write v = —u)
such that u +v=v+u = 0.

3. For every u € V, lu = u.



Any abstract set V' with two operations, vector addition and scalar mul-
tiplication which satisfy all the above axioms is a vector space.

Most author’s use either 0 or 0 to denote the zero vector. Note that it is
not the same as the zero element 0 of the field.

Exercise 1 Prove that Ou = 0 for any u € V' a vector space.
Exercise 2 Prove that (—1)u = —u for any u € V' a vector space.

Definition 3 For W a subset of a vector space V (written W C V)
we say that W is a subspace of V iff

1. for every u,v eV ifue W and v € W, then u+v € W, and

2. for every u € V and scalar a if u € W, then au € W.

Theorem 4 If W is a subspace of V', then W is itself a vector space under
the operations defined in V.

proof:

The closure axioms are easy since they are practically the same as the
definition of subspace. The associative, commutative, distributive axioms
are true in W because they are true in V' and W is a subset of V. The zero
vector 0 is in W because Ou = 0 (exercise 1) so (assuming W is nonempty)
if anything is in T, then 0 is in W. Similarly (—1)u = —u (exercise 2), so if
u € W, then also —u € W. O

Theorem 5 Suppose W is a subset of V' (i.e., W C V). Then

1. W is a subspace of V
uf
2. for every u,v € W and scalars a,b we have au + bv € W.

proof:

(1) implies (2):

Assume W is a subspace of V. Suppose u,v € W and a, b are scalars. By
the second axiom of subspaces we have that au € W and bv € W. Letting
wy; = au and we = bv we have that w; € W and wy € W, therefore by the
first axiom of subspaces we have that wy + wy € W and so au + bv € W.



(2) implies (1):

Assume (2): for every u,v € W and scalars a,b we have au + bv € W.
We must show the two axioms of a subspace hold for W. Suppose u,v € W.
Then letting a = b =1 we have that lu4+1lv € W,so lu+1lv=u+v e W.
For the second axiom, suppose u € W and a any scalar, then we have that
au + 0u € W by (2), but au = au + 0 = au + 0u so au € W. O

Definition 6 For w4, ..., u, elements of a vector space V', define their
span:
span({uy, ug, ..., up}) = {auy + agus + - - - + ayuy, : aq,as, ..., a, scalars}

Each of the vectors aju;+asus+- - -+a,u, is called a linear combination of
the u’s so we could also say that the span is the set of all linear combinations.
If W = span({uy, us, ..., u,}), we say that ‘W is spanned by uy,us, ..., u,’
or ‘uy,us,...,u, span W’. The closure axioms of a vector space V' guarantee
that if wy,ug,...,u, € V, then span({uy,us,...,u,}) € V. This is true
because the second closure axiom says each a;u; is in V', while the first axiom
guarantees that their sum isin V', e.g., if we write v; = a;u;, v, v2 € V implies
v1 + vy € V and 80 vy + vg,v3 € V implies v1 + vg + v3 = (v1 +v3) +v3 € V,
and so on.

Theorem 7 Suppose ui,us,...,u, are elements of W which is a subspace
of V. Then span({uy,usy, ..., u,}) CW.

proof:
Suppose v € span({uy, ug, ..., u,}). Then for some scalars, ay,...,a, we
have that
V= a1y + -+ aply.

Since W is a subspace of V' we have that a;u; € W for each i. Now let
v; = a;u; to simplify our writing. Since v; € W and vy € W we have by the
first axiom of subspaces that v; +wv, € W. Thus we have that the two vectors
v1 + v9 and vy are elements of W. This means their sum (v; + vo) + v3 is in
W. Continuing on like this we see that v; + vy + -+ -+ v, € W for each k and
SO

v=aiu; + -t ap, =0t + - +uv, €W

as we needed to show.O



Theorem 8 Suppose uy,us, ..., u, are elements of a vector space V.. Then
span({uy, ug, ..., u,}) is a subspace of V.

proof:
We verify each of the axioms of a subspace. Let

W = Span<{u17 Uz, - - . 7un})

Suppose v, w are elements of WW. Then since W is the span of the u's
there exists scalars ¢,...,c, and dq,...,d, such that

v=cCcu + -+ cpuy, and w = dyug + - -+ dpuy,.
But then
v+w=(c1 +dy)us + (o + do)ug + - -+ + (¢ + dp)uy

and so v+ u € span({uy, ug, ..., u,}) =W
For the second axiom, suppose v € W and a a scalar. Then for some
scalars ¢q,...,c,

V=cCcu+ -+ g
but then
av = a(ciuy + - - + cpuy) = (ac))uy + -+ - + (acy)uy,

and so av € span({uy, ug, ..., up}) = W.
(]

It follows from these last two theorems that span({u,us,...,u,}) is the
smallest subspace of V' which contains the vectors uy, us, ..., u,.

Theorem 9 Suppose u € span({uy,...,u,}) then
span({u, u, ..., u,}) = span({uq, ..., u,})

proof:

To show two sets A and B are equal, A = B,
show that
AC B and B C A.

4



To show that A C B
suppose that x € A and then show z € B.

First we show span({u,us,...,u,}) C span({uq,...,u,}). Since u €
span({uq, ..., u,}) there exists scalars by, ..., b, so that u = byu; +- - -+ by u,.
Now let w be any element of span({w,uy,...,u,}). This means there are
scalars a, aq, ..., a, such that

wW=au~+ aiuy + -+ aUy,.
But then substituting for u:
w = a(bju; + -+ + byuy,) + ajuy + -+ - + ayuy,

= (aby + ay)uy + - - - + (ab, + an)uy,

and so w € span({uy,...,u,}) as was to be shown.

Second we show span({us,...,u,}) C span({w, uq,...,u,}). This is eas-
ier. Suppose w € span({uy,...,u,}). Then there are scalars cy,..., ¢, so
that

W= ClUy + -+ Crln

but then

w=0u-4+cru; + -+ cyu,
so w € span({u,uy,...,u,}) as was to be shown. O
Definition 10 For v, vs,...,v, vectors in a vector space V we say
that they are linearly independent iff for any scalars a;,as,...,a,

U1+ agUs + -+ apty =0 = ay =as =+ =a, =0

Definition 11 We say vy, vs, ..., v, are linearly dependent iff v, ..., v,

are not linearly independent.

Definition 12 v, vs,...,v, is a basis for the vector space V iff
1. vy,v9,...,v, are linearly independent and

2. V =span({v1,va,...,0,}).



Theorem 13 Let A be any n X n matriz. Then A is invertible iff the set of
columns of A is a basis for R", i.e., colj(A),cola(A),. .., col,(A) is a basis

for R™.

proof:

Before proving this result we first prove the following Lemma.

Lemma 14 Suppose A is an m X n matriz and

by
- | ™
by,
isnx 1. Then
by
bs n
AB=A| | =bicoli(A) + bycoly(A) + - -+ + bycol, (A) = > brcoly(A)
: k=1
by,
proof:
Write the matrix A as follows:
[ 11 Q12 ai3 - QAin |
Q21 G292 G23 --- Q2p
A= | a31 as2 aszsz --- azn
i Qm,1 Am2 Am3 ' Amn i

ie., a;; = entry, ;(A). Then



11 Q12 ai3 - Qin b
1
Q21 Q22 Q23 -+ Q2p b
2
AB = a3l Q32 A33 - A3n
bn,
i Qm,1 Am2 Am3 ' Amn i

al,lbl + (11’21)2 + CL173b3 + -+ al,nbn
az,1b1 + az 20y + az 3b3 + - - - + as by
= a371b1 + a3,2b2 + a3,3b3 + -+ agmbn

i am,lbl + am,ZbQ + am,SbB +-+ am,nbn

4 mx1

ai ay2 a3 Q1.n
2.1 2.2 a2,3 ag.n
= by | @1 | +by| @2 [ +b3| 3 | +---+b, | BBn

L CLm,l i L A2 i | Qm,3 i | Qm,n i

This proves the Lemma. ONow to prove the Theorem we first assume that
A is invertible and show that the columns of A are a basis for R™. To see
that they are independent, suppose that

blCOll (A) + -+ anOIH(A) =7
where 7,1 is the zero vector. By the lemma
AB =7

where B is the column vector made from bq,...,b,. Since A is invertible we
have that B=A"'Z =7 so B= 2 and so b; =0 for all s with 1 < < n.
This shows the the columns of A are linearly independent. To see that they
span R", let C' be an arbitrary element of R™ so that

&1
Co
C =

Cn



Since A is invertible if we set B = A~7'C then we know that AB = C and by
the lemma we have that

bicoly(A) 4+ -+ + byeol, (A) = C

and so C' is in the span of the columns of A. This shows that if A is in-
vertible then its columns are a basis. Next we prove the converse, using the
contrapositive.

The contrapositive of the implication:
P implies Q
1s
(Not Q) implies (Not P)
They are logically equivalent.

Assume that A is not invertible. Then as was shown the algorithm for
attempting to invert A produces a B, 1 # Z such that AB = Z. This means
by the Lemma that

blCOll (A) + -+ anOIH(A) =7

and since B # Z at least one b; # 0. But this means that the columns of A
are linearly dependent and hence not a basis. This finishes the proof of the
Theorem. O

Theorem 15 vy, vy, ..., v, are linearly dependent iff there are scalars
ai, @z, ..., 0n
such that a1v1 + agvg + « - - + a,v, = 0 and for at least one i we have a; # 0.

proof:

Not For ALL x Statement(x)
is logically equivalent to
There exists x such that Not Statement(x)

So negating linear independence gives us:
There exists scalars aq, ..., a, such that
Not [ ajv; + -+ + a, = 0 implies a; =as =+~ =a, =0].



The negation of an implication
Not [P implies Q]
is logically equivalent to

P and Not Q.

So in this case we get

ajvy + -+ a, =0 and Not [a; =as =--- =a, =0].

But Not [a; = as = -+ = a,, = 0] is the same as saying ‘at least one of
the a; is not equal to 0. O
Exercise 16 Prove that vy,...,v, are linearly dependent iff v = 0 or v; €
span({vy,...,vj_1) for some j with 1 < j < n.
Lemma 17 (Ezchange) Suppose vi,va, ..., Vg1, W1, ..., Wy are vectors in a
vector space V' and

1. vi,v9, ..., 041 are linearly independent, and

2. span({vy, va, ..., Vg, Wy, ..., Wy }) = V.

Then for some i with 1 <1 <m

span({vy, Vg, ..., Vg1, W1, Wa . .., Wi 1, Wig1, ... Wy}) =V
(i.e., we have added viy1 and removed w;.)

proof:
By (2) there are scalars a;, b; such that

ki1 = Q101 + GV + - - - + apU + bywy + bowsg + -+ -+ + by Wiy, .

It must be that for some ¢ with 1 < i < m that b; # 0, because otherwise we
would have that
V41 = Q11 + agUy + - - - + agUg

and therefore
0= ajvi + agvg + - - - + AUk + (_1)Uk+1

contradicting their independence (1).
Therefore we have that

—biwi = a1 + -+ AV + (—1)Uk+1+
+ biwi+ -+ biawiog + biwisr + -+ b w,
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and since b; # 0

. a a (_1)
w; = i e el ol T i RS e
b bi— b; b
+ Zpwi e+ Wi+ Wi e 2wy
7 1 k2 T
Hence
w; € span({vl, vy U1, W1y e v o s Wi—1, Wi 1y - - - ,’U)m})

and so by Theorem 9 we have
span({vi, Uz, . -+, Upp1, W1, W+« o, Wi 1, Wity - - - Wy })

= span({vy, Vg, ..., Vg1, W1, Wa ..., W })

and by (2) we have
span({vy, v, ..., Vg1, W1, We ..., wWy}) =V
and so we are done. O

Theorem 18 (Main Theorem) If a vector space V' can be spanned by n vec-
tors, then any set of n + 1 wvectors in V is linearly dependent.

proof:
Suppose for contradiction that span({uy,...,u,}) =V and vy,..., 0,41
are linearly independent.

Step 1. Apply the Exchange Lemma with £k = 0 to obtain ¢ so that
span({vy, uy, ..., Ui 1, Uity - Up}) = V.

Step 2. Rename (relabel? reorder?) the u’s so that
(W1, .oy Wy1) = (Upy ooy Uiy Uiy 1y - - U
and apply the Exchange Lemma with k£ = 1 to obtain ¢ so that
span({vy, Vo, W, ..., Wi, Wiyt ... Wy_1}) = V.
Step k. Given {wy,...,w,_x} C {uq,...,u,} such that
span({vy, v, ..., Vg, W1, ..., Wh_k}) =V,
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apply the Exchange Lemma to find 7 so that
Span({vbv% sy Uy Up41, W1y« v Wi1, Wit 15 - - - wn—k}) =V

Last Step: Given that span({vy,vs,...,v,_1,w1}) = V, apply the Ex-
change Lemma to get that

span({vy,vq, ..., v, }) = V.

But this is a contradiction, since v,,; € span({vy,vs,...,v,}) implies
that
Un4+1 = A1V + -t apvy,

for some scalars a;, but then
0= (—1)Vps1 + arv1 + - - - + apvy,
and therefore vy, ..., v,+1 would be linearly dependent, a contradiction. O

Definition 19 The dimension of a vector space V is n, written
dim(V) = n iff V has a basis of size n.

Theorem 20 Any two bases for a vector space V' have the same size.

proof:

Otherwise, if uq, ..., u,, is a basis for V and v, ..., v, is another basis for
V and m < n, then since the u’s span V' it must be that the v’s are linearly
dependent (by 18), contradicting that they are a basis. O

Theorem 21 IfV is a vector space, dim(V) = n, and uy,...,u, € V are
linearly independent, then uy,...,u, are a basis for V.

proof:

It is enough to show span({us,...,u,}) = V. By the main theorem (18)
for any v € V we know that wuy, us, ..., u,,v are linearly dependent. Hence
there are scalars ay, as, .. .,a,,a (at least one of which is nonzero) such that

a1uy + asus + - - - + ayu, + av = 0.

Since uq, ..., u, are linearly independent, it cannot be that a = 0 and so
1
v = —E(alul + agug + -+ - + anuy,)
and so v € span({uy,...,u,}) and since v was an arbitrary element of V' we

have that span({us,...,u,}) =V.0
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Theorem 22 Suppose dim(V') = n and
span({u, ..., u, }) = V.
Then uq, ..., u, s a basis for V.

proof:
It is enough to prove that wuq, ..., u, are linearly independent.

In a proof by contradiction
assume the negation of what you are trying to prove
and then reason to a contradiction.
It follows logically
that what you are trying to prove must be true

Suppose for contradiction that they are linearly dependent. Then there
are scalars aq, ..., a, such that

a1u1+---+anun:6
and for some i we have a; # 0. But then we have that

u; € span({uy, ..., Uis1, Uity -, Un})

and so by Theorem 9, we have that V' is spanned by n — 1 vectors. This
would imply by the main theorem (18) that any set of n vectors is linearly
dependent, contradicting the fact the dimension of V' is n.0

Theorem 23 Fvery vector space has a basis.

proof:

This theorem is true in general but requires a more sophisticated proof
for the infinite dimensional case. Here we prove it just for the case that
our vector space W is a subspace of a vector space V with finite dimension.
Suppose the dimension of V' is n.

If W = {0}, then the dimension of W is 0 and the empty set is a basis
for it. Otherwise let v; € W be an arbitrary vector in W not equal to the
zero vector, 0. If vy spans W, then the dimension of W is 1 and v; is a basis
for it. Otherwise choose any vy € W such that vy ¢ span{v; }. Continue this
procedure. That is given vy, ..., v, € W if vy, ... v span W then stop.
Otherwise choose vgy1 € W arbitrary but not in the span of vy,...,v;. By
an exercise 16 vy,...,v; are linearly independent for every k. By the main
theorem k£ < n so this process must stop after < n steps and when it stops
we have found a basis for W. O
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Exercise 24 Prove:

If dim(V) =n and uy, ..., u, €V are linearly independent, then we can
extend this sequence to a basis of V. That is, we can find Upi1, Umio, - - -, Uy
so that uq, ..., u, is a basis for V.

Exercise 25 If uy,...,u, span a vector space V', then there exists

{v1,.. o} CH{ug, ..., uy}

such that vy, ..., vy, is a basis for V. In other words, any spanning set con-
tains a basis.

Theorem 26 If W is a subspace of V and dim(V') = n, then dim(W) =m
for some m <n. Ifm=mn then W =1V.

proof:
Any basis for W is a set of m linearly independent vectors in V. But the
main theorem (18) implies that m < n. Suppose m = n, then let uy, ..., u,

be a basis for W. Since they are linearly independent vectors in V', by
Theorem 21 they must also be a basis for V', and so

W =span({uy,...,u,}) =V.
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