A. Miller M340 April 97 edited Jan 2000 for M542

Vector Spaces

A vector space, V, is a set with two operations, vector addition (written u + v) and scalar multiplication (written av). The elements of V will be denoted using u, v, w, etc. The formula ' $u \in V$ ' is short hand for 'u is an element of V' or 'u in V' or just 'u is a vector'. Vector spaces will be written using capital letters V, W, etc. Scalars are elements of some field F, for example, the real numbers, \mathbb{R} , or the complex numbers, \mathbb{C} . Scalars will be written using the letters a, b, c, etc.

Closure axioms:

- 1. If $u \in V$ and $v \in V$, then $u + v \in V$.
- 2. If $u \in V$ and a scalar, then $au \in V$.

Associative, commutative, distributive axioms:

- 1. For all $u, v, w \in V$ (u+v) + w = u + (v+w).
- 2. For all $u, v \in V$ u + v = v + u.
- 3. For all scalars a and b and vectors $u \in V$ (ab)u = a(bu).
- 4. For all scalars a and b and vectors $u \in V$ (a+b)u = au + bu.
- 5. For all scalars a and vectors $u, v \in V$ a(u+v) = au + av.

Zero vector, additive inverse, identity axioms:

- 1. There exists a vector $\vec{0} \in V$ such that for all $u \in V$ $\vec{0}+u=u+\vec{0}=u$.
- 2. For every $u \in V$ there exists a vector $v \in V$ (for which we write v = -u) such that $u + v = v + u = \vec{0}$.
- 3. For every $u \in V$, 1u = u.

Any abstract set V with two operations, vector addition and scalar multiplication which satisfy all the above axioms is a vector space.

Most author's use either $\mathbf{0}$ or $\mathbf{0}$ to denote the zero vector. Note that it is not the same as the zero element 0 of the field.

Exercise 1 Prove that $0u = \vec{0}$ for any $u \in V$ a vector space.

Exercise 2 Prove that (-1)u = -u for any $u \in V$ a vector space.

Definition 3 For W a subset of a vector space V (written $W \subseteq V$) we say that W is a subspace of V iff

- 1. for every $u, v \in V$ if $u \in W$ and $v \in W$, then $u + v \in W$, and
- **2.** for every $u \in V$ and scalar a if $u \in W$, then $au \in W$.

Theorem 4 If W is a subspace of V, then W is itself a vector space under the operations defined in V.

proof:

The closure axioms are easy since they are practically the same as the definition of subspace. The associative, commutative, distributive axioms are true in W because they are true in V and W is a subset of V. The zero vector $\vec{0}$ is in W because $0u = \vec{0}$ (exercise 1) so (assuming W is nonempty) if anything is in W, then $\vec{0}$ is in W. Similarly (-1)u = -u (exercise 2), so if $u \in W$, then also $-u \in W$. \Box

Theorem 5 Suppose W is a subset of V (i.e., $W \subseteq V$). Then

- 1. W is a subspace of V
 - $i\!f\!f$
- 2. for every $u, v \in W$ and scalars a, b we have $au + bv \in W$.

proof:

(1) implies (2):

Assume W is a subspace of V. Suppose $u, v \in W$ and a, b are scalars. By the second axiom of subspaces we have that $au \in W$ and $bv \in W$. Letting $w_1 = au$ and $w_2 = bv$ we have that $w_1 \in W$ and $w_2 \in W$, therefore by the first axiom of subspaces we have that $w_1 + w_2 \in W$ and so $au + bv \in W$. (2) implies (1):

Assume (2): for every $u, v \in W$ and scalars a, b we have $au + bv \in W$. We must show the two axioms of a subspace hold for W. Suppose $u, v \in W$. Then letting a = b = 1 we have that $1u + 1v \in W$, so $1u + 1v = u + v \in W$. For the second axiom, suppose $u \in W$ and a any scalar, then we have that $au + 0u \in W$ by (2), but $au = au + \vec{0} = au + 0u$ so $au \in W$. \Box

Definition 6 For u_1, \ldots, u_n elements of a vector space V, define their span:

 $span(\{u_1, u_2, \dots, u_n\}) = \{a_1u_1 + a_2u_2 + \dots + a_nu_n : a_1, a_2, \dots, a_n \text{ scalars}\}$

Each of the vectors $a_1u_1 + a_2u_2 + \cdots + a_nu_n$ is called a linear combination of the *u*'s so we could also say that the span is the set of all linear combinations. If $W = \text{span}(\{u_1, u_2, \ldots, u_n\})$, we say that 'W is spanned by u_1, u_2, \ldots, u_n ' or ' u_1, u_2, \ldots, u_n span W'. The closure axioms of a vector space V guarantee that if $u_1, u_2, \ldots, u_n \in V$, then $\text{span}(\{u_1, u_2, \ldots, u_n\}) \subseteq V$. This is true because the second closure axiom says each a_iu_i is in V, while the first axiom guarantees that their sum is in V, e.g., if we write $v_i = a_iu_i, v_1, v_2 \in V$ implies $v_1 + v_2 \in V$ and so $v_1 + v_2, v_3 \in V$ implies $v_1 + v_2 + v_3 = (v_1 + v_2) + v_3 \in V$, and so on.

Theorem 7 Suppose u_1, u_2, \ldots, u_n are elements of W which is a subspace of V. Then span $(\{u_1, u_2, \ldots, u_n\}) \subseteq W$.

proof:

Suppose $v \in \text{span}(\{u_1, u_2, \dots, u_n\})$. Then for some scalars, a_1, \dots, a_n we have that

$$v = a_1 u_1 + \dots + a_n u_n.$$

Since W is a subspace of V we have that $a_i u_i \in W$ for each *i*. Now let $v_i = a_i u_i$ to simplify our writing. Since $v_1 \in W$ and $v_2 \in W$ we have by the first axiom of subspaces that $v_1 + v_2 \in W$. Thus we have that the two vectors $v_1 + v_2$ and v_3 are elements of W. This means their sum $(v_1 + v_2) + v_3$ is in W. Continuing on like this we see that $v_1 + v_2 + \cdots + v_k \in W$ for each k and so

$$v = a_1 u_1 + \dots + a_n u_n = v_1 + v_2 + \dots + v_n \in W$$

as we needed to show. \Box

Theorem 8 Suppose u_1, u_2, \ldots, u_n are elements of a vector space V. Then $span(\{u_1, u_2, \ldots, u_n\})$ is a subspace of V.

proof:

We verify each of the axioms of a subspace. Let

 $W = \operatorname{span}(\{u_1, u_2, \dots, u_n\}).$

Suppose v, w are elements of W. Then since W is the span of the u's there exists scalars c_1, \ldots, c_n and d_1, \ldots, d_n such that

$$v = c_1 u_1 + \dots + c_n u_n$$
 and $w = d_1 u_1 + \dots + d_n u_n$.

But then

$$v + w = (c_1 + d_1)u_1 + (c_2 + d_2)u_2 + \dots + (c_n + d_n)u_n$$

and so $v + u \in \text{span}(\{u_1, u_2, ..., u_n\}) = W$

For the second axiom, suppose $v \in W$ and a scalar. Then for some scalars c_1, \ldots, c_n

$$v = c_1 u_1 + \dots + c_n u_n$$

but then

$$av = a(c_1u_1 + \dots + c_nu_n) = (ac_1)u_1 + \dots + (ac_n)u_n$$

and so $av \in \text{span}(\{u_1, u_2, ..., u_n\}) = W.$

It follows from these last two theorems that $\text{span}(\{u_1, u_2, \ldots, u_n\})$ is the smallest subspace of V which contains the vectors u_1, u_2, \ldots, u_n .

Theorem 9 Suppose $u \in \text{span}(\{u_1, \ldots, u_n\})$ then

$$\operatorname{span}(\{u, u_1, \dots, u_n\}) = \operatorname{span}(\{u_1, \dots, u_n\})$$

proof:

To show two sets A and B are equal,
$$A = B$$
,
show that
 $A \subseteq B$ and $B \subseteq A$.

To show that $A \subseteq B$
suppose that $x \in A$ and then show $x \in B$.

First we show span($\{u, u_1, \ldots, u_n\}$) \subseteq span($\{u_1, \ldots, u_n\}$). Since $u \in$ span($\{u_1, \ldots, u_n\}$) there exists scalars b_1, \ldots, b_n so that $u = b_1u_1 + \cdots + b_nu_n$. Now let w be any element of span($\{u, u_1, \ldots, u_n\}$). This means there are scalars a, a_1, \ldots, a_n such that

$$w = au + a_1u_1 + \dots + a_nu_n.$$

But then substituting for u:

$$w = a(b_1u_1 + \dots + b_nu_n) + a_1u_1 + \dots + a_nu_n$$
$$= (ab_1 + a_1)u_1 + \dots + (ab_n + a_n)u_n$$

and so $w \in \text{span}(\{u_1, \ldots, u_n\})$ as was to be shown.

Second we show span($\{u_1, \ldots, u_n\}$) \subseteq span($\{u, u_1, \ldots, u_n\}$). This is easier. Suppose $w \in$ span($\{u_1, \ldots, u_n\}$). Then there are scalars c_1, \ldots, c_n so that

$$w = c_1 u_1 + \dots + c_n u_n$$

but then

$$w = 0u + c_1u_1 + \dots + c_nu_n$$

so $w \in \text{span}(\{u, u_1, \dots, u_n\})$ as was to be shown. \Box

Definition 10 For v_1, v_2, \ldots, v_n vectors in a vector space V we say that they are linearly independent iff for any scalars a_1, a_2, \ldots, a_n

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = \vec{0} \to a_1 = a_2 = \dots = a_n = 0$$

Definition 11 We say v_1, v_2, \ldots, v_n are <u>linearly dependent</u> iff v_1, \ldots, v_n are not linearly independent.

Definition 12 v_1, v_2, \ldots, v_n is a <u>basis</u> for the vector space V iff

- 1. v_1, v_2, \ldots, v_n are linearly independent and
- **2.** $V = \text{span}(\{v_1, v_2, \dots, v_n\}).$

Theorem 13 Let A be any $n \times n$ matrix. Then A is invertible iff the set of columns of A is a basis for \mathbb{R}^n , i.e., $\operatorname{col}_1(A), \operatorname{col}_2(A), \ldots, \operatorname{col}_n(A)$ is a basis for \mathbb{R}^n .

proof:

Before proving this result we first prove the following Lemma.

Lemma 14 Suppose A is an $m \times n$ matrix and

$$B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

is $n \times 1$. Then

$$AB = A \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = b_1 \operatorname{col}_1(A) + b_2 \operatorname{col}_2(A) + \dots + b_n \operatorname{col}_n(A) = \sum_{k=1}^n b_k \operatorname{col}_k(A)$$

proof:

Write the matrix A as follows:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \cdots & a_{m,n} \end{bmatrix}$$

i.e., $a_{i,j} = \text{entry}_{i,j}(A)$. Then

$$AB = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & & & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \cdots & a_{m,n} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$= \begin{bmatrix} a_{1,1}b_1 + a_{1,2}b_2 + a_{1,3}b_3 + \cdots + a_{1,n}b_n \\ a_{2,1}b_1 + a_{2,2}b_2 + a_{2,3}b_3 + \cdots + a_{2,n}b_n \\ a_{3,1}b_1 + a_{3,2}b_2 + a_{3,3}b_3 + \cdots + a_{3,n}b_n \\ \vdots \\ a_{m,1}b_1 + a_{m,2}b_2 + a_{m,3}b_3 + \cdots + a_{m,n}b_n \end{bmatrix}_{m \times 1}$$

$$= b_1 \begin{bmatrix} a_{1,1} \\ a_{2,1} \\ a_{3,1} \\ \vdots \\ a_{m,1} \end{bmatrix} + b_2 \begin{bmatrix} a_{1,2} \\ a_{2,2} \\ a_{3,2} \\ \vdots \\ a_{m,2} \end{bmatrix} + b_3 \begin{bmatrix} a_{1,3} \\ a_{2,3} \\ a_{3,3} \\ \vdots \\ a_{m,3} \end{bmatrix} + \cdots + b_n \begin{bmatrix} a_{1,n} \\ a_{2,n} \\ a_{3,n} \\ \vdots \\ a_{m,n} \end{bmatrix}$$

This proves the Lemma. \Box Now to prove the Theorem we first assume that A is invertible and show that the columns of A are a basis for \mathbb{R}^n . To see that they are independent, suppose that

$$b_1 \operatorname{col}_1(A) + \dots + b_n \operatorname{col}_n(A) = Z$$

where $Z_{n \times 1}$ is the zero vector. By the lemma

$$AB = Z$$

where B is the column vector made from b_1, \ldots, b_n . Since A is invertible we have that $B = A^{-1}Z = Z$ so B = Z and so $b_i = 0$ for all *i* with $1 \le i \le n$. This shows the the columns of A are linearly independent. To see that they span \mathbb{R}^n , let C be an arbitrary element of \mathbb{R}^n so that

$$C = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}.$$

Since A is invertible if we set $B = A^{-1}C$ then we know that AB = C and by the lemma we have that

$$b_1 \operatorname{col}_1(A) + \dots + b_n \operatorname{col}_n(A) = C$$

and so C is in the span of the columns of A. This shows that if A is invertible then its columns are a basis. Next we prove the converse, using the contrapositive.

The contrapositive of the implication:
P implies Q
is
(Not Q) implies (Not P)
They are logically equivalent.

Assume that A is not invertible. Then as was shown the algorithm for attempting to invert A produces a $B_{n\times 1} \neq Z$ such that AB = Z. This means by the Lemma that

$$b_1 \operatorname{col}_1(A) + \dots + b_n \operatorname{col}_n(A) = Z$$

and since $B \neq Z$ at least one $b_i \neq 0$. But this means that the columns of A are linearly dependent and hence not a basis. This finishes the proof of the Theorem. \Box

Theorem 15 v_1, v_2, \ldots, v_n are linearly dependent iff there are scalars

 a_1, a_2, \ldots, a_n

such that $a_1v_1 + a_2v_2 + \cdots + a_nv_n = \vec{0}$ and for at least one *i* we have $a_i \neq 0$.

proof:

Not For ALL x Statement(x) is logically equivalent to There exists x such that Not Statement(x)

So negating linear independence gives us: There exists scalars a_1, \ldots, a_n such that Not $[a_1v_1 + \cdots + a_n = \vec{0} \text{ implies } a_1 = a_2 = \cdots = a_n = 0].$

The negation of an implication
Not [P implies Q]
is logically equivalent to
P and Not Q.

So in this case we get

 $a_1v_1 + \dots + a_n = \vec{0}$ and Not $[a_1 = a_2 = \dots = a_n = 0].$

But Not $[a_1 = a_2 = \cdots = a_n = 0]$ is the same as saying 'at least one of the a_i is not equal to 0. \Box

Exercise 16 Prove that v_1, \ldots, v_n are linearly dependent iff $v_1 = \vec{0}$ or $v_j \in \text{span}(\{v_1, \ldots, v_{j-1}\})$ for some j with $1 < j \leq n$.

Lemma 17 (Exchange) Suppose $v_1, v_2, \ldots, v_{k+1}, w_1, \ldots, w_m$ are vectors in a vector space V and

- 1. $v_1, v_2, \ldots, v_{k+1}$ are linearly independent, and
- 2. span $(\{v_1, v_2, \dots, v_k, w_1, \dots, w_m\}) = V.$

Then for some i with $1 \leq i \leq m$

$$\operatorname{span}(\{v_1, v_2, \dots, v_{k+1}, w_1, w_2, \dots, w_{i-1}, w_{i+1}, \dots, w_m\}) = V$$

(i.e., we have added v_{k+1} and removed w_i .)

proof:

By (2) there are scalars a_i, b_j such that

$$v_{k+1} = a_1v_1 + a_2v_2 + \dots + a_kv_k + b_1w_1 + b_2w_2 + \dots + b_mw_m$$

It must be that for some i with $1 \leq i \leq m$ that $b_i \neq 0$, because otherwise we would have that

$$v_{k+1} = a_1 v_1 + a_2 v_2 + \dots + a_k v_k$$

and therefore

$$\vec{0} = a_1 v_1 + a_2 v_2 + \dots + a_k v_k + (-1) v_{k+1}$$

contradicting their independence (1).

Therefore we have that

$$-b_i w_i = a_1 v_1 + \dots + a_k v_k + (-1) v_{k+1} + b_1 w_1 + \dots + b_{i-1} w_{i-1} + b_{i+1} w_{i+1} + \dots + b_m w_m$$

and since $b_i \neq 0$

$$w_{i} = \frac{a_{1}}{-b_{i}}v_{1} + \dots + \frac{a_{k}}{-b_{i}}v_{k} + \frac{(-1)}{-b_{i}}v_{k+1} + \frac{b_{1}}{-b_{i}}w_{1} + \dots + \frac{b_{i-1}}{-b_{i}}w_{i-1} + \frac{b_{i+1}}{-b_{i}}w_{i+1} + \dots + \frac{b_{m}}{-b_{i}}w_{m}.$$

Hence

$$w_i \in \text{span}(\{v_1, \dots, v_{k+1}, w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_m\})$$

and so by Theorem 9 we have

$$span(\{v_1, v_2, \dots, v_{k+1}, w_1, w_2, \dots, w_{i-1}, w_{i+1}, \dots, w_m\})$$
$$= span(\{v_1, v_2, \dots, v_{k+1}, w_1, w_2, \dots, w_m\})$$

and by (2) we have

$$span(\{v_1, v_2, \dots, v_{k+1}, w_1, w_2, \dots, w_m\}) = V$$

and so we are done. \Box

Theorem 18 (Main Theorem) If a vector space V can be spanned by n vectors, then any set of n + 1 vectors in V is linearly dependent.

proof:

Suppose for contradiction that $\text{span}(\{u_1,\ldots,u_n\}) = V$ and v_1,\ldots,v_{n+1} are linearly independent.

Step 1. Apply the Exchange Lemma with k = 0 to obtain i so that $span(\{v_1, u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n\}) = V.$

Step 2. Rename (relabel? reorder?) the u's so that

$$(w_1, \ldots, w_{n-1}) = (u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n)$$

and apply the Exchange Lemma with k = 1 to obtain *i* so that

$$\operatorname{span}(\{v_1, v_2, w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_{n-1}\}) = V.$$

Step k. Given $\{w_1, \ldots, w_{n-k}\} \subseteq \{u_1, \ldots, u_n\}$ such that

$$\operatorname{span}(\{v_1, v_2, \dots, v_k, w_1, \dots, w_{n-k}\}) = V,$$

apply the Exchange Lemma to find i so that

 $span(\{v_1, v_2, \dots, v_k, v_{k+1}, w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_{n-k}\}) = V$

Last Step: Given that $\operatorname{span}(\{v_1, v_2, \ldots, v_{n-1}, w_1\}) = V$, apply the Exchange Lemma to get that

$$\operatorname{span}(\{v_1, v_2, \dots, v_n\}) = V.$$

But this is a contradiction, since $v_{n+1} \in \text{span}(\{v_1, v_2, \dots, v_n\})$ implies that

$$v_{n+1} = a_1 v_1 + \dots + a_n v_n$$

for some scalars a_i , but then

$$0 = (-1)v_{n+1} + a_1v_1 + \dots + a_nv_n$$

and therefore v_1, \ldots, v_{n+1} would be linearly dependent, a contradiction. \Box

Definition 19 The <u>dimension</u> of a vector space V is n, written $\dim(V) = n$ iff V has a basis of size n.

Theorem 20 Any two bases for a vector space V have the same size.

proof:

Otherwise, if u_1, \ldots, u_m is a basis for V and v_1, \ldots, v_n is another basis for V and m < n, then since the u's span V it must be that the v's are linearly dependent (by 18), contradicting that they are a basis. \Box

Theorem 21 If V is a vector space, $\dim(V) = n$, and $u_1, \ldots, u_n \in V$ are linearly independent, then u_1, \ldots, u_n are a basis for V.

proof:

It is enough to show span($\{u_1, \ldots, u_n\}$) = V. By the main theorem (18) for any $v \in V$ we know that u_1, u_2, \ldots, u_n, v are linearly dependent. Hence there are scalars a_1, a_2, \ldots, a_n, a (at least one of which is nonzero) such that

$$a_1u_1 + a_2u_2 + \dots + a_nu_n + av = 0$$

Since u_1, \ldots, u_n are linearly independent, it cannot be that a = 0 and so

$$v = -\frac{1}{a}(a_1u_1 + a_2u_2 + \dots + a_nu_n)$$

and so $v \in \text{span}(\{u_1, \ldots, u_n\})$ and since v was an arbitrary element of V we have that $\text{span}(\{u_1, \ldots, u_n\}) = V.\Box$

Theorem 22 Suppose $\dim(V) = n$ and

$$span(\{u_1, ..., u_n\}) = V.$$

Then $u_1, ..., u_n$ is a basis for V.

proof:

It is enough to prove that $u_1, ..., u_n$ are linearly independent.

In a proof by contradiction	
assume the negation of what you are trying to prove	e
and then reason to a contradiction.	
It follows logically	
that what you are trying to prove must be true	

Suppose for contradiction that they are linearly dependent. Then there are scalars a_1, \ldots, a_n such that

$$a_1u_1 + \dots + a_nu_n = 0$$

and for some *i* we have $a_i \neq 0$. But then we have that

$$u_i \in \text{span}(\{u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_n\})$$

and so by Theorem 9, we have that V is spanned by n-1 vectors. This would imply by the main theorem (18) that any set of n vectors is linearly dependent, contradicting the fact the dimension of V is $n.\square$

Theorem 23 Every vector space has a basis.

proof:

This theorem is true in general but requires a more sophisticated proof for the infinite dimensional case. Here we prove it just for the case that our vector space W is a subspace of a vector space V with finite dimension. Suppose the dimension of V is n.

If $W = \{\overline{0}\}$, then the dimension of W is 0 and the empty set is a basis for it. Otherwise let $v_1 \in W$ be an arbitrary vector in W not equal to the zero vector, $\overrightarrow{0}$. If v_1 spans W, then the dimension of W is 1 and v_1 is a basis for it. Otherwise choose any $v_2 \in W$ such that $v_2 \notin \text{span}\{v_1\}$. Continue this procedure. That is given $v_1, \ldots, v_k \in W$, if v_1, \ldots, v_k span W, then stop. Otherwise choose $v_{k+1} \in W$ arbitrary but not in the span of v_1, \ldots, v_k . By an exercise 16 v_1, \ldots, v_k are linearly independent for every k. By the main theorem $k \leq n$ so this process must stop after $\leq n$ steps and when it stops we have found a basis for W. \Box

Exercise 24 Prove:

If $\dim(V) = n$ and $u_1, \ldots, u_m \in V$ are linearly independent, then we can extend this sequence to a basis of V. That is, we can find $u_{m+1}, u_{m+2}, \ldots, u_n$ so that u_1, \ldots, u_n is a basis for V.

Exercise 25 If u_1, \ldots, u_n span a vector space V, then there exists

$$\{v_1,\ldots,v_m\}\subseteq\{u_1,\ldots,u_n\}$$

such that v_1, \ldots, v_m is a basis for V. In other words, any spanning set contains a basis.

Theorem 26 If W is a subspace of V and $\dim(V) = n$, then $\dim(W) = m$ for some $m \leq n$. If m = n then W = V.

proof:

Any basis for W is a set of m linearly independent vectors in V. But the main theorem (18) implies that $m \leq n$. Suppose m = n, then let u_1, \ldots, u_n be a basis for W. Since they are linearly independent vectors in V, by Theorem 21 they must also be a basis for V, and so

$$W = \operatorname{span}(\{u_1, \dots, u_n\}) = V.$$