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Vector Spaces

A vector space, V , is a set with two operations, vector addition (written
u + v) and scalar multiplication (written av). The elements of V will be
denoted using u, v, w, etc. The formula ‘u ∈ V ’ is short hand for ‘u is an
element of V’ or ‘u in V’ or just ‘u is a vector’. Vector spaces will be written
using capital letters V,W , etc. Scalars are elements of some field F , for
example, the real numbers, R, or the complex numbers, C. Scalars will be
written using the letters a, b, c, etc.

Closure axioms:

1. If u ∈ V and v ∈ V , then u + v ∈ V .

2. If u ∈ V and a a scalar, then au ∈ V .

Associative, commutative, distributive axioms:

1. For all u, v, w ∈ V (u + v) + w = u + (v + w).

2. For all u, v ∈ V u + v = v + u.

3. For all scalars a and b and vectors u ∈ V (ab)u = a(bu).

4. For all scalars a and b and vectors u ∈ V (a + b)u = au + bu.

5. For all scalars a and vectors u, v ∈ V a(u + v) = au + av.

Zero vector, additive inverse, identity axioms:

1. There exists a vector ~0 ∈ V such that for all u ∈ V ~0+u = u+~0 = u.

2. For every u ∈ V there exists a vector v ∈ V (for which we write v = −u)
such that u + v = v + u = ~0.

3. For every u ∈ V , 1u = u.
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Any abstract set V with two operations, vector addition and scalar mul-
tiplication which satisfy all the above axioms is a vector space.

Most author’s use either 0 or ~0 to denote the zero vector. Note that it is
not the same as the zero element 0 of the field.

Exercise 1 Prove that 0u = ~0 for any u ∈ V a vector space.

Exercise 2 Prove that (−1)u = −u for any u ∈ V a vector space.

Definition 3 For W a subset of a vector space V (written W ⊆ V )
we say that W is a subspace of V iff

1. for every u, v ∈ V if u ∈ W and v ∈ W , then u + v ∈ W , and

2. for every u ∈ V and scalar a if u ∈ W , then au ∈ W .

Theorem 4 If W is a subspace of V , then W is itself a vector space under
the operations defined in V .

proof:
The closure axioms are easy since they are practically the same as the

definition of subspace. The associative, commutative, distributive axioms
are true in W because they are true in V and W is a subset of V . The zero
vector ~0 is in W because 0u = ~0 (exercise 1) so (assuming W is nonempty)
if anything is in W , then ~0 is in W . Similarly (−1)u = −u (exercise 2), so if
u ∈ W , then also −u ∈ W . 2

Theorem 5 Suppose W is a subset of V (i.e., W ⊆ V ). Then

1. W is a subspace of V

iff

2. for every u, v ∈ W and scalars a, b we have au + bv ∈ W .

proof:
(1) implies (2):
Assume W is a subspace of V . Suppose u, v ∈ W and a, b are scalars. By

the second axiom of subspaces we have that au ∈ W and bv ∈ W . Letting
w1 = au and w2 = bv we have that w1 ∈ W and w2 ∈ W , therefore by the
first axiom of subspaces we have that w1 + w2 ∈ W and so au + bv ∈ W .
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(2) implies (1):
Assume (2): for every u, v ∈ W and scalars a, b we have au + bv ∈ W .

We must show the two axioms of a subspace hold for W . Suppose u, v ∈ W .
Then letting a = b = 1 we have that 1u + 1v ∈ W , so 1u + 1v = u + v ∈ W .
For the second axiom, suppose u ∈ W and a any scalar, then we have that
au + 0u ∈ W by (2), but au = au +~0 = au + 0u so au ∈ W . 2

Definition 6 For u1, . . . , un elements of a vector space V , define their
span:

span({u1, u2, . . . , un}) = {a1u1 + a2u2 + · · ·+ anun : a1, a2, ..., an scalars}

Each of the vectors a1u1+a2u2+· · ·+anun is called a linear combination of
the u’s so we could also say that the span is the set of all linear combinations.
If W = span({u1, u2, . . . , un}), we say that ‘W is spanned by u1, u2, . . . , un’
or ‘u1, u2, . . . , un span W ’. The closure axioms of a vector space V guarantee
that if u1, u2, . . . , un ∈ V , then span({u1, u2, . . . , un}) ⊆ V . This is true
because the second closure axiom says each aiui is in V , while the first axiom
guarantees that their sum is in V , e.g., if we write vi = aiui, v1, v2 ∈ V implies
v1 + v2 ∈ V and so v1 + v2, v3 ∈ V implies v1 + v2 + v3 = (v1 + v2) + v3 ∈ V ,
and so on.

Theorem 7 Suppose u1, u2, . . . , un are elements of W which is a subspace
of V . Then span({u1, u2, . . . , un}) ⊆ W .

proof:
Suppose v ∈ span({u1, u2, . . . , un}). Then for some scalars, a1, . . . , an we

have that
v = a1u1 + · · ·+ anun.

Since W is a subspace of V we have that aiui ∈ W for each i. Now let
vi = aiui to simplify our writing. Since v1 ∈ W and v2 ∈ W we have by the
first axiom of subspaces that v1+v2 ∈ W . Thus we have that the two vectors
v1 + v2 and v3 are elements of W . This means their sum (v1 + v2) + v3 is in
W . Continuing on like this we see that v1 + v2 + · · ·+ vk ∈ W for each k and
so

v = a1u1 + · · ·+ anun = v1 + v2 + · · ·+ vn ∈ W

as we needed to show.2
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Theorem 8 Suppose u1, u2, . . . , un are elements of a vector space V . Then
span({u1, u2, . . . , un}) is a subspace of V .

proof:
We verify each of the axioms of a subspace. Let

W = span({u1, u2, . . . , un}).

Suppose v, w are elements of W . Then since W is the span of the u′s
there exists scalars c1, . . . , cn and d1, . . . , dn such that

v = c1u1 + · · ·+ cnun and w = d1u1 + · · ·+ dnun.

But then

v + w = (c1 + d1)u1 + (c2 + d2)u2 + · · ·+ (cn + dn)un

and so v + u ∈ span({u1, u2, . . . , un}) = W
For the second axiom, suppose v ∈ W and a a scalar. Then for some

scalars c1, . . . , cn

v = c1u1 + · · ·+ cnun

but then

av = a(c1u1 + · · ·+ cnun) = (ac1)u1 + · · ·+ (acn)un

and so av ∈ span({u1, u2, . . . , un}) = W .
2

It follows from these last two theorems that span({u1, u2, . . . , un}) is the
smallest subspace of V which contains the vectors u1, u2, . . . , un.

Theorem 9 Suppose u ∈ span({u1, . . . , un}) then

span({u, u1, . . . , un}) = span({u1, . . . , un})

proof:

To show two sets A and B are equal, A = B,
show that

A ⊆ B and B ⊆ A.
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To show that A ⊆ B
suppose that x ∈ A and then show x ∈ B.

First we show span({u, u1, . . . , un}) ⊆ span({u1, . . . , un}). Since u ∈
span({u1, . . . , un}) there exists scalars b1, . . . , bn so that u = b1u1+· · ·+bnun.
Now let w be any element of span({u, u1, . . . , un}). This means there are
scalars a, a1, . . . , an such that

w = au + a1u1 + · · ·+ anun.

But then substituting for u:

w = a(b1u1 + · · ·+ bnun) + a1u1 + · · ·+ anun

= (ab1 + a1)u1 + · · ·+ (abn + an)un

and so w ∈ span({u1, . . . , un}) as was to be shown.
Second we show span({u1, . . . , un}) ⊆ span({u, u1, . . . , un}). This is eas-

ier. Suppose w ∈ span({u1, . . . , un}). Then there are scalars c1, . . . , cn so
that

w = c1u1 + · · ·+ cnun

but then
w = 0u + c1u1 + · · ·+ cnun

so w ∈ span({u, u1, . . . , un}) as was to be shown. 2

Definition 10 For v1, v2, . . . , vn vectors in a vector space V we say
that they are linearly independent iff for any scalars a1, a2, . . . , an

a1v1 + a2v2 + · · ·+ anvn = ~0→ a1 = a2 = · · · = an = 0

Definition 11 We say v1, v2, . . . , vn are linearly dependent iff v1, . . . , vn
are not linearly independent.

Definition 12 v1, v2, . . . , vn is a basis for the vector space V iff

1. v1, v2, . . . , vn are linearly independent and

2. V = span({v1, v2, . . . , vn}).

5



Theorem 13 Let A be any n× n matrix. Then A is invertible iff the set of
columns of A is a basis for Rn, i.e., col1(A), col2(A), . . . , coln(A) is a basis
for Rn.

proof:
Before proving this result we first prove the following Lemma.

Lemma 14 Suppose A is an m× n matrix and

B =


b1
b2
...
bn


is n× 1. Then

AB = A


b1
b2
...
bn

 = b1col1(A) + b2col2(A) + · · ·+ bncoln(A) =
n∑

k=1

bkcolk(A)

proof:
Write the matrix A as follows:

A =


a1,1 a1,2 a1,3 · · · a1,n
a2,1 a2,2 a2,3 · · · a2,n
a3,1 a3,2 a3,3 · · · a3,n

...
...

...
am,1 am,2 am,3 · · · am,n


i.e., ai,j = entryi,j(A). Then

6



AB =


a1,1 a1,2 a1,3 · · · a1,n
a2,1 a2,2 a2,3 · · · a2,n
a3,1 a3,2 a3,3 · · · a3,n

...
...

...
am,1 am,2 am,3 · · · am,n




b1
b2
...
bn



=


a1,1b1 + a1,2b2 + a1,3b3 + · · ·+ a1,nbn
a2,1b1 + a2,2b2 + a2,3b3 + · · ·+ a2,nbn
a3,1b1 + a3,2b2 + a3,3b3 + · · ·+ a3,nbn

...
am,1b1 + am,2b2 + am,3b3 + · · ·+ am,nbn


m×1

= b1


a1,1
a2,1
a3,1

...
am,1

 + b2


a1,2
a2,2
a3,2

...
am,2

 + b3


a1,3
a2,3
a3,3

...
am,3

 + · · ·+ bn


a1,n
a2,n
a3,n

...
am,n


This proves the Lemma. 2Now to prove the Theorem we first assume that
A is invertible and show that the columns of A are a basis for Rn. To see
that they are independent, suppose that

b1col1(A) + · · ·+ bncoln(A) = Z

where Zn×1 is the zero vector. By the lemma

AB = Z

where B is the column vector made from b1, . . . , bn. Since A is invertible we
have that B = A−1Z = Z so B = Z and so bi = 0 for all i with 1 ≤ i ≤ n.
This shows the the columns of A are linearly independent. To see that they
span Rn, let C be an arbitrary element of Rn so that

C =


c1
c2
...
cn

 .

7



Since A is invertible if we set B = A−1C then we know that AB = C and by
the lemma we have that

b1col1(A) + · · ·+ bncoln(A) = C

and so C is in the span of the columns of A. This shows that if A is in-
vertible then its columns are a basis. Next we prove the converse, using the
contrapositive.

The contrapositive of the implication:
P implies Q

is
(Not Q) implies (Not P)

They are logically equivalent.

Assume that A is not invertible. Then as was shown the algorithm for
attempting to invert A produces a Bn×1 6= Z such that AB = Z. This means
by the Lemma that

b1col1(A) + · · ·+ bncoln(A) = Z

and since B 6= Z at least one bi 6= 0. But this means that the columns of A
are linearly dependent and hence not a basis. This finishes the proof of the
Theorem. 2

Theorem 15 v1, v2, . . . , vn are linearly dependent iff there are scalars

a1, a2, . . . , an

such that a1v1 + a2v2 + · · ·+ anvn = ~0 and for at least one i we have ai 6= 0.

proof:

Not For ALL x Statement(x)
is logically equivalent to

There exists x such that Not Statement(x)

So negating linear independence gives us:
There exists scalars a1, . . . , an such that
Not [ a1v1 + · · ·+ an = ~0 implies a1 = a2 = · · · = an = 0 ].
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The negation of an implication
Not [P implies Q]

is logically equivalent to
P and Not Q.

So in this case we get
a1v1 + · · ·+ an = ~0 and Not [a1 = a2 = · · · = an = 0].
But Not [a1 = a2 = · · · = an = 0] is the same as saying ‘at least one of

the ai is not equal to 0. 2

Exercise 16 Prove that v1, . . . , vn are linearly dependent iff v1 = ~0 or vj ∈
span({v1, . . . , vj−1) for some j with 1 < j ≤ n.

Lemma 17 (Exchange) Suppose v1, v2, . . . , vk+1, w1, . . . , wm are vectors in a
vector space V and

1. v1, v2, . . . , vk+1 are linearly independent, and

2. span({v1, v2, . . . , vk, w1, . . . , wm}) = V .

Then for some i with 1 ≤ i ≤ m

span({v1, v2, . . . , vk+1, w1, w2 . . . , wi−1, wi+1, . . . wm}) = V

(i.e., we have added vk+1 and removed wi.)

proof:
By (2) there are scalars ai, bj such that

vk+1 = a1v1 + a2v2 + · · ·+ akvk + b1w1 + b2w2 + · · ·+ bmwm.

It must be that for some i with 1 ≤ i ≤ m that bi 6= 0, because otherwise we
would have that

vk+1 = a1v1 + a2v2 + · · ·+ akvk

and therefore
~0 = a1v1 + a2v2 + · · ·+ akvk + (−1)vk+1

contradicting their independence (1).
Therefore we have that

−biwi = a1v1 + · · ·+ akvk + (−1)vk+1+
+ b1w1 + · · ·+ bi−1wi−1 + bi+1wi+1 + · · ·+ bmwm
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and since bi 6= 0

wi = a1
−biv1 + · · ·+ ak

−bivk + (−1)
−bi vk+1+

+ b1
−biw1 + · · ·+ bi−1

−bi wi−1 + bi+1

−bi wi+1 + · · ·+ bm
−biwm.

Hence

wi ∈ span({v1, . . . , vk+1, w1, . . . , wi−1, wi+1, . . . , wm})

and so by Theorem 9 we have

span({v1, v2, . . . , vk+1, w1, w2 . . . , wi−1, wi+1, . . . wm})

= span({v1, v2, . . . , vk+1, w1, w2 . . . , wm})

and by (2) we have

span({v1, v2, . . . , vk+1, w1, w2 . . . , wm}) = V

and so we are done. 2

Theorem 18 (Main Theorem) If a vector space V can be spanned by n vec-
tors, then any set of n + 1 vectors in V is linearly dependent.

proof:
Suppose for contradiction that span({u1, . . . , un}) = V and v1, . . . , vn+1

are linearly independent.

Step 1. Apply the Exchange Lemma with k = 0 to obtain i so that
span({v1, u1, . . . , ui−1, ui+1, . . . un}) = V .

Step 2. Rename (relabel? reorder?) the u’s so that

(w1, . . . , wn−1) = (u1, . . . , ui−1, ui+1, . . . un)

and apply the Exchange Lemma with k = 1 to obtain i so that

span({v1, v2, w1, . . . , wi−1, wi+1, . . . wn−1}) = V.

Step k. Given {w1, . . . , wn−k} ⊆ {u1, . . . , un} such that

span({v1, v2, . . . , vk, w1, . . . , wn−k}) = V,
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apply the Exchange Lemma to find i so that

span({v1, v2, . . . , vk, vk+1, w1, . . . , wi−1, wi+1, . . . wn−k}) = V

Last Step: Given that span({v1, v2, . . . , vn−1, w1}) = V , apply the Ex-
change Lemma to get that

span({v1, v2, . . . , vn}) = V.

But this is a contradiction, since vn+1 ∈ span({v1, v2, . . . , vn}) implies
that

vn+1 = a1v1 + · · ·+ anvn

for some scalars ai, but then

~0 = (−1)vn+1 + a1v1 + · · ·+ anvn

and therefore v1, . . . , vn+1 would be linearly dependent, a contradiction. 2

Definition 19 The dimension of a vector space V is n, written
dim(V ) = n iff V has a basis of size n.

Theorem 20 Any two bases for a vector space V have the same size.

proof:
Otherwise, if u1, . . . , um is a basis for V and v1, . . . , vn is another basis for

V and m < n, then since the u’s span V it must be that the v’s are linearly
dependent (by 18), contradicting that they are a basis. 2

Theorem 21 If V is a vector space, dim(V ) = n, and u1, . . . , un ∈ V are
linearly independent, then u1, . . . , un are a basis for V .

proof:
It is enough to show span({u1, . . . , un}) = V . By the main theorem (18)

for any v ∈ V we know that u1, u2, . . . , un, v are linearly dependent. Hence
there are scalars a1, a2, . . . , an, a (at least one of which is nonzero) such that

a1u1 + a2u2 + · · ·+ anun + av = ~0.

Since u1, . . . , un are linearly independent, it cannot be that a = 0 and so

v = −1

a
(a1u1 + a2u2 + · · ·+ anun)

and so v ∈ span({u1, . . . , un}) and since v was an arbitrary element of V we
have that span({u1, . . . , un}) = V .2
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Theorem 22 Suppose dim(V ) = n and

span({u1, ..., un}) = V.

Then u1, ..., un is a basis for V .

proof:
It is enough to prove that u1, ..., un are linearly independent.

In a proof by contradiction
assume the negation of what you are trying to prove

and then reason to a contradiction.
It follows logically

that what you are trying to prove must be true

Suppose for contradiction that they are linearly dependent. Then there
are scalars a1, . . . , an such that

a1u1 + · · ·+ anun = ~0

and for some i we have ai 6= 0. But then we have that

ui ∈ span({u1, . . . , ui−1, ui+1, . . . , un})

and so by Theorem 9, we have that V is spanned by n − 1 vectors. This
would imply by the main theorem (18) that any set of n vectors is linearly
dependent, contradicting the fact the dimension of V is n.2

Theorem 23 Every vector space has a basis.

proof:
This theorem is true in general but requires a more sophisticated proof

for the infinite dimensional case. Here we prove it just for the case that
our vector space W is a subspace of a vector space V with finite dimension.
Suppose the dimension of V is n.

If W = {~0}, then the dimension of W is 0 and the empty set is a basis
for it. Otherwise let v1 ∈ W be an arbitrary vector in W not equal to the
zero vector, ~0. If v1 spans W , then the dimension of W is 1 and v1 is a basis
for it. Otherwise choose any v2 ∈ W such that v2 /∈ span{v1}. Continue this
procedure. That is given v1, . . . , vk ∈ W , if v1, . . . , vk span W , then stop.
Otherwise choose vk+1 ∈ W arbitrary but not in the span of v1, . . . , vk. By
an exercise 16 v1, . . . , vk are linearly independent for every k. By the main
theorem k ≤ n so this process must stop after ≤ n steps and when it stops
we have found a basis for W . 2
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Exercise 24 Prove:
If dim(V ) = n and u1, . . . , um ∈ V are linearly independent, then we can

extend this sequence to a basis of V . That is, we can find um+1, um+2, . . . , un

so that u1, . . . , un is a basis for V .

Exercise 25 If u1, . . . , un span a vector space V , then there exists

{v1, . . . , vm} ⊆ {u1, . . . , un}

such that v1, . . . , vm is a basis for V . In other words, any spanning set con-
tains a basis.

Theorem 26 If W is a subspace of V and dim(V ) = n, then dim(W ) = m
for some m ≤ n. If m = n then W = V .

proof:
Any basis for W is a set of m linearly independent vectors in V . But the

main theorem (18) implies that m ≤ n. Suppose m = n, then let u1, . . . , un

be a basis for W . Since they are linearly independent vectors in V , by
Theorem 21 they must also be a basis for V , and so

W = span({u1, . . . , un}) = V.

2
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