A. Miller

Let p be a prime and G a finite group.

M542

Definition 1 Define group action $T : G \times X \to X$, orb(x), stab(x), [G : H], Z(G), C(a), conj(a), p-group, p-Sylow subgroup, N(H).

Proposition 2 If G is group acting on a set X, then stab(x) is a subgroup of G for any $x \in X$ and $\{orb(x) : x \in X\}$ partitions the set X.

Theorem 3 (Orbit-Stabilizer) Suppose G acts on X, then for any $x \in X$

|orb(x)| = [G:stab(x)]

Theorem 4 (Class equation)

 $|G| = |Z(G)| + [G: C(a_1)] + [G: C(a_2)] + \dots + [G: C(a_n)]$

where $conj(a_1), conj(a_2), \ldots, conj(a_n)$ are the nontrivial conjugacy classes of G.

Corollary 5 Every p-group has a nontrivial center, hence is not simple unless its isomorphic to \mathbb{Z}_p .

Corollary 6 Groups of order p^2 are abelian.

Theorem 7 (Sylow 1) If G is a finite group and p^n divides |G|, then there exists a subgroup $H \subseteq G$ with $|H| = p^n$.

Theorem 8 (Sylow 2) If G is a finite group, H a p-subgroup of G, and P a p-Sylow subgroup of G, then there exists $a \in G$ such that $H \subseteq aPa^{-1}$.

Corollary 9 Let G be a finite group such that p divides |G|.

(a) Any p-subgroup of G is contained in a p-Sylow subgroup of G.

(b) Any two p-Sylow subgroups of G are conjugates.

(c) Any two p-Sylow subgroups of G are isomorphic.

(d) A p-Sylow subgroup is of G normal iff it is the only p-Sylow subgroup of G.

Theorem 10 (Sylow 3) If $|G| = p^n m$ where p does not divide m and n(p) is the number of p-Sylow subgroups of G, then:

(a) n(p) = [G : N(P)] for any P a p-Sylow subgroup of G,

(b) n(p) divides m, and

 $(c) n(p) = 1 \mod p$