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1 Linear Transformations

In this section we consider only finite dimensional vector spaces V or W over an
arbitrary field F.

Theorem 1.1 FEvery linear transformation L : F™* — F™ s determined by an m X n
matriz A:

L(X)=AX
for every X € F"

Proof:
Given A since
AX+Y)=AX+ AY and A(aX) = a(AX)

it is clear that L(X) = AX is a linear transformation.

For the converse, assume L : F" — F™ is a linear transformation. The canonical
basis for F" is the sequence of columns of the n x n identity matrix, I,x,. So let
e; = col;(I,xn). Note for any vector

T
o)
= T16] + To€o + -+ + Tply.

Tn

Let A be the matrix such that
L(e;) = col;(A)

for every ¢ = 1,...,n. Then
T
T2
L : = L(xie; + xeeq + -+ - + x06,)
T,
= x1L(ey) + xoL(eg) + -+ - + z,L(ey)
= mcoly(A) + zacoly(A) + - - - + x,c0l, (A)
X1
_oql ™
T,
:foorP



Theorem 1.2 Suppose V' and W are vector space over a field .
If dim(V') = dim(W), then V' is isomorphic to W.

Proof:

This is true in general, but we only proof it in case the spaces have finite dimension.
Let vy,...,v, be a basis for V and wy,...,w, be a basis for W. Given any v € V

there exists a unique sequence of scalars aq, ..., a, such that

vV =a1v1 + -+ a,v,
They exists because vy, ..., v, span V and they are unique because
v=aiv; + -+ a,v, and v = byvy + -+ + bV,

implies
Z = (al — bl)Ul + -+ (an — bn)vn
and so by linear independence a; = by,...,a, = b,. Now define L : V — W by

L(ayvy + -+ + apv,) = aqwy + - - - + a,wy,

Now we check that L is linear. Suppose v = ajv1+- - -+a,v, and w = byv;+- - -+b,v,
and a, b are scalars. Then
L(av +bw) = L((aay + bby)vy + - -+ + (aa, + bb,)v,)
= (aay + bby)wy + - -+ + (aa, + bb,)w,
= alawy) + - apwy) + b(bywy + - -+ + byw,,)
= aL(v)+ bL(w)

Next to see that L is one-to-one and onto, note that for any w there exists unique

ai,as, ...,a, such that w = aqw; + -+ 4+ a,w, and so v = ajv; + -+ + a,v, is the
unique element of V' such that L(v) = w.
:foorP

Definition 1.3 For L : V. — W a linear transformation, define the null space (or
kernel) of L, null(L), and the range space of L, range(L) as follows:

(a) null(L) ={v eV :L(v) =z}

(b) range(L) = {w € W : there exists v € V such that L(v) = w}

Proposition 1.4 null(L) and range(L) are subspaces of V' and W, respectively.

Proof:
null(L): Suppose u,v € null(L) and a,b scalars. Then L(u) = z and L(v) = z and

L(au+bv) = aL(u) +bL(v) =az + bz =2+ 2z = z.

Hence au + bv € null(L)
range(L): Suppose wy,wy € range(L) and aj,as are scalars. Then there exists
vy, v9 € V such that L(vy) = w; and L(vy) = we. Then

L(ajvy + agvs) = a1 L(vy) + asL(vy) = ajwy + asws

and so ajwy + asws € range(L).
:foorP



Theorem 1.5 Suppose L : V — W is a linear transformation. Then

dim(V') = dim(null(L)) + dim(range(L)).

Proof:

Let uy,...,u, be a basis for null(L) and vy,..., v, be a basis for range(L). Let
Wi, ..., Wy, bein V such that L(w;) = v;.
Claim. uq,...,u,,wy,...,w,, is a basis for V.

Proof:

First we show they are linearly independent. Suppose
ciuy + -+ cpuy, + diwy + - - + dpw,, = 2
then applying L we get
z=1L(z) = L(cyuy + - - - + cpuy) + L(dywy + -+ + dpwy,) = 2+ dyvg + -+ - + dpvny,
because cyuy + - - - + cpu, € null(L). Hence
divy + - +dpom = 2

and since the v's are linearly independent we get d; = --- = d,,, = 0. Hence cju; +
-+« + cpv, = z and since the u’s are linearly independent ¢; = --- = ¢, = 0. So, our
set is linearly independent.

Now we must see that they span V. Suppose v € V is arbitrary and let L(v) =
div1 + - -+ + dp vy, then set v = dywy + - - - + d,,w,, and notice that

It follows that L(u) = L(v) and so L(u — v) = z since L is linear and therefore
v —u € null(L). Therefore (since the u’s are basis for null(L)) there exists ¢’s such
that

V—U=CU + - F ClUy

and therefore
v=u+cuy + -+ cpuy, = diwy + -+ dpw,, + ciug + -0+ cpg,.

Thus v € span({uy, ..., up, w1, ..., wy}). This proves the Claim.

:foorPFrom the Claim it follows that the dimension of V' is n + m or in other words
dim(null(L)) 4+ dim(range(L)). This proves the Theorem.

:foorP

Theorem 1.6 Suppose A, B € F"*", then A is similar to B iff there exists a basis
V1, Vs, . .., U, for ™Y such that for every j

A(v) = Zentryij(B)vi.
i=1

Furthermore, given such a basis if P is the invertible matriz where col;(P) = v; for
each j, then P witnesses their similarity, i.e., A= PBP™1



Proof:
The equation A = PBP~! is the same as AP = PB. But col;(AP) = Acol;(P) and
colj(PB) = Pcol;(B) and Pcol;(B) = X", b;;col;(P). Hence

A(COZJ(P)) = Z?ZlbijCOli(P).

:foorP

2 Triangulizability

In this section we consider only square matrices over the field of complex numbers, C.
All vector spaces V', W, etc are assumed to be finite dimensional vector spaces over
the complex numbers.

Theorem 2.1 Suppose for every linear transformation L -V — V that V has a basis
V1, Va, ..., U, such that

L(vy,) € span({vq,...,0c})
for every k with 1 < k < n. Then every n X n matriz is similar to to an upper

triangular matrix.

Proof:
This follows from Theorem 1.6. Suppose A is an n x n matrix and Ly : C* — C" is
the linear transformation determined by A. Then

LA(Uk) = bl,kvl + bg,kvk + - F bhkvk

means that A is similar to B where

- bLk -

ba e

COlk(B> = kaf
0

Hence, B is an upper triangular matrix.
:foorP

Theorem 2.2 Suppose V' is a finite dimensional vector space over C and L -V — V
1S a linear transformation. Then there exists a nontrivial v € V and A € C such that

L(v) = Av.



Proof:
Any matrix A € C™*" has an eigenvalue because the characteristic polynomial,

p(z) = det(A — «I)

is a polynomial of degree n and so has a root in C. Hence, there exists A € C such
that Av = Av has a nontrivial solution for v.

But V is isomorphic to C"*! where n = dim(V). If ® : V — C™*! is an iso-
morphism, then A = ®L®~! is a linear transformation A : C**! — C"*!. So it
corresponds to a matrix A € C"*". If Au = Au, then

PLO 'y = uso L& tu= o hu = A0 .
So putting v = &~ gives us L(v) = v.
Alternative proof without using determinants: Consider

T ={f(x) e Clz]: f(A) =0}

this in an ideal in the ring of polynomials. The vector space of n x n matrices has
dimension n2. Hence the sequence {I, A, ..., A""} of n241 matrices is linear dependent.
It follows Z is a nontrivial ideal. The minimal polynomial ¢(z) of A is the generator of
this ideal. Let ¢(z) = (x — A)f(z). Since f(z) has degree less than ¢ it must be that
some column v of f(A) is nontrivial. But then (A — X )v = 0.

:foorP

Definition 2.3 If W, and W5 are subspaces of a vector space V' such that W1 N Wy =
{0}, then define

Wl@WQ = {U)l +wy Wy € Wl,wz S WQ}
Whenever we write Wy @ Wy we will be assuming that Wy N Wy = {0}.

Lemma 2.4 For V' a vector space and W;’s subspaces:

(a) W1 @ Wy is a subspace of V

(b) For any u € Wi @ Ws, wy,w| € Wy, and we,wh € Wa, if u = wy + wy and
u = wy + wjh then wy = w) and wy = wh.

(c) If By is a basis for Wy and By is a basis for Wy, then By U By is a basis for
W, @ Ws.

(d) Given Wy @ Wy define P : W, @ Wy — Wo by P(w;+ws) = we where wy € Wi,
and w; € Wy, then P is a linear transformation such that kernel(P) = Wi and
P(v) =wv for allv e Wy. (P is called a projection.)

(e) For any Wy a subspace of a finite dimensional V' there exists Wy a subspace of
V such V=W, @ Ws.



Proof:
(b) Wy 5 wy —w| = wy —wh € Wy so wy —w) = wy —wh — 0, since Wy N Wy = {0}.
(e) Take any basis vy, vy, ..., v, for W; extend it to a basis for V' say

V1, V2, « oy Upy U, U2y« -y U

Let Wy = span({uy, ua, ..., um}).
:foorP

Lemma 2.5 Suppose L : V. — V is a linear transformation and W # V a proper
subspace of V.. Then there exists v € V such that v ¢ W and A € C such that
L(v)— X veW.

Proof:

Let W' be a subspace such that V =W @ W' and define P : V. — W' by P(w+w') =
w'. Then P is a linear transformation. Define Ly : W' — W' by Lo(w) = P(L(w)) so
it is a linear transformation. Using Theorem 2.2 there exists A € C and a nontrivial
v € W’ such that Lo(v) = Av. Since P is the identity on W’ we have that P(Av) = Av.
Consequently

P(L(v) — M) = P(L(v)) — P(Av) = Lo(v) — Av = 0.

Since W is the kernel of P we have L(v) — Av € W.
:foorP

Theorem 2.6 Suppose L : V — V is a linear transformation. Then V has a basis
U1, V2, ..., Uy Such that for each k =1,...,n  L(vg) € span({vy, v, ..., v}).

Proof:
Inductively build this sequence. By Theorem 2.2 we can find v; an eigenvector of L
and so, L(vy) = A\jv1 € span(vy). Given vy, v, ..., v, let Wy, = span{vy, vg, ... v} If

Wi, # V apply Lemma 2.5 to get vy ¢ Wy such that for some A,y

L(vk41) — Mer1Ug1 € Wi and so L(vg41) € span{vy, va, ..., Ugy1}
:foorP
Corollary 2.7 Every matriz A € C"*" is similar to an upper triangular matrix.

Definition 2.8 A sequence uy,us,...,u, in an inner product space is orthonormal iff
foralli,j
1 afi=g
iy ) = { 0 it

Proposition 2.9 Orthonormal sequences are linearly independent.



Proof:

(Crur 4 - -+ F iy, us) = cx(uy, wg) + - - (U, W) + -+ Co(Un, W) = (Ui, w3) = ¢

Hence if ciuq + - - - 4+ ¢c,u,, = 0, then
0=(0,u;) = (cruus + - + Culln, ;) = ¢

and therefore ¢; = 0 for all i.
:foorP

Theorem 2.10 (Gram-Schmidt Orthogonalization Process). If vy, vy, ..., v, and lin-
ear independent, then there exists uq,...,u, an orthonormal sequence such that for
everyk=1,...,n

span({vy, ..., vk}) = span({u, ..., ug}).

Proof:
Set u; = mvl. Given uq, us, ..., u; we will construct ug, 1. Let ¢; = (vgy1,w;) for
eachi=1,... k and set w = v 1 — (crus + - - - + cpug,).

1. w+#0

2. (wyu;) =0alli=1,...,k

3. w € span{vy, ..., vp41}
4. vy € spanfuy, ..., ug, w}
5. span{vy,..., g1} = span{uy, ..., ug, w}
Then set 1
U1 = W
[|wl]
:foorP

Theorem 2.11 Suppose V' is a finite dimensional inner product space and L -V — V'
1s a linear transformation, then V' has an orthonormal basis uy,us, ..., u, such that
foreachk=1,...,n

L(ug) € span({uy,ug, ..., ug}).

Proof:

Use Theorem 2.6 to get vy, ..., v, and then apply the Gram-Schmidt orthogonalization
process to get uy, Ug, . .., Uy.

:foorP

Corollary 2.12 (Schur) For every matrizc A € C*™™ there ezists a unitary matriz P
(ie P~' = P* the conjugate transpose) such that P~ AP is an upper triangular matriz.



Proof:
A matrix P is unitary iff coly(P), ..., col,(P) is an orthonormal basis.
:foorP

Corollary 2.13 If A = A* then A is (unitarily) similar to a diagonal matriz all of
whose entries are real. Hence all the eigenvalues of A are real.

Proof:
Let P*AP = U where U is upper triangular. Then

U* = (P*AP)* = P*A*P* = P*AP = U.

Hence U* = U and so U is diagonal and all of its entries are real.
:foorP

3 Jordan Normal Form

In this section all vector spaces V', W, etc., are assumed to be finite dimensional vector
spaces over an algebraically closed field F, e.g., the complex numbers.

Definition 3.1 (vy,vs,...,v,) is an L-shifting sequence iff v1 # 0, L(vy) = 0 and
L(vky1) = vy for each k =1,2,...,n— 1.

Definition 3.2 For W CV L(W) ={L(v):v € W}. It is the same as the range of
L when W =V.

Theorem 3.3 An L-shifting sequence (vy,vs, ..., v,), is linearly independent. Also if
W = span({vy,ve,...,v,}), then L(W) C W.

Proof:
L(civ1 + covg + + -+ + cuvpn) = Cou1 + C3U2 + -+ - + Uy

So L(W) C W. Continuing to apply L we get
Lnil(Clvl + CoUo + -+ + CnUn) = CpVq.

So if c1vy + covg + -+ + v, = 0, then c,v; = 0 and so ¢, = 0. Similarly L"2(cyv; +
CoUg ++++ 4+ Cp_1VUp_1 = C,_1v1 and so ¢,_1; = 0. Continuing this way we see that ¢; =0
for all 7.

:foorP

Theorem 3.4 Suppose L : V — V is a linear transformation and let Wy = {v € V :
dn L™(v) = 0}. Then L(W7) C Wi and there exists Wy with L(W3) C Wy such that
V=W pWw,.



Proof:
There must be some n such that Wy = kernel(L"), because no L-shifting sequence can
be bigger than the dimension of V. Let Wy = range(L™).

L(Wy) C W, since uw € Wy implies L"(u) = 0 implies L™ '(L(u)) = 0 implies
L(u) € Wh.

L(Wy) C Wy since u € Wy implies there exists v such that L"(v) = u so L(u) =
L™(L(v)) which implies L(u) € Ws.

Since dim(V') = dim(kernel(L™)) + dim(range(L™)) it is enough to see that W3 N
Wy = {0}. So suppose v € Wy N Wy. Then for some u € V' L"(u) = v and L"(v) = 0.
Hence L™ (u) = 0, and so u € Wi so v = L™(u) = 0.

:foorP

Definition 3.5 Define a linear transformation L : V — V to be nilpotent iff for every
v €V there exists n such that L"(v) = 0.

Theorem 3.6 Suppose L : V. — V is a nilpotent linear transformation. Then there
exists Wi, Wy such that L(Wy) C Wy, L(Wy) C Wy, V.= Wi @ Wy and Wi has an

L-shifting sequence for a basis.

Proof:

Let n be the largest such that there exists an L-shifting sequence, say (vi,vq, ..., Up,).
This means that for every v € V' L"(v) = 0. Let Wy = span{vy,vs, ..., v,}. We will
first need to prove the following Claim:

Claim. Suppose L(W) C W and Wy N W = {0}, then either W, W =V or
there exists u ¢ W, @@ W such that L(u) € W.

Proof of Claim: First note that there is a vector v ¢ W; @ W such that L(v) €
Wy @ W. To see this, start with vy ¢ W1 @ W, and iteratively apply L to get vg 1 =
L(vg). Since v, = L™"(vg) = 0 € W1 @ W there must be some k such that vy ¢
Wi @ W, but Vg1 € Wy @ w.

Solet vg Wi @ W and L(v) € Wi @ W so

L) =cv+...+ o, +w

for some w € W. It must be that ¢, = 0, since applying the linear transformation
L™ ! we get

L YL(v)) = L" Yeyvr + ...+ cqvpn) + L Hw) = cuur + L H(w)

and L""Y(L(v)) = L"(v) = 0 and L" '(w) € W implies c¢,v; € W hence ¢, = 0.
Consequently
L(v) =civg + -+ cpo1Up—1 + w.
Let
u=v—(crug+ -+ Cp_1Uy).

Then u —v € W, @ W, and since v ¢ W, @ W we have u ¢ W, @ W. But L(u) =
w € Wy as was required to prove the Lemma.



This proves the Claim.

To prove theorem use the same sort of argument as Theorem 2.6 using the lemma
at each induction step.
:foorP

Definition 3.7 The shift matriz S is the square matriz such that entry; ;115 =1 for
each © and all other entries of S are 0.

Definition 3.8 Matrices of the form J = X + S are called Jordan block matrices.

Example:

A =

o O O
S O > =
O > = O
> o O
o OO >
S O > O
o > O O
> O O O
o O OO
o O O =
o O = O
O = O O

Note that A € F can be anything including 0 and J can be 1 x 1. Now suppose that
A € F¥* and vy, v9, v3, v4 is a basis for F**! such that

AUl = /\’Ul, AUQ = )\Ug + V1, A’U3 = /\1)3 + Vo, A’U4 = >\U4 + vs.

Then by Theorem 1.6 A is similar to J. Note also that vy, vs,v3,v4 is a B-shifting
sequence for B = A — A\, that is Bv; = 0,Bvy = vy, Buz = vy, and Buy = vs.

Theorem 3.9 (Jordan normal form) Every square matriz A is similar to a matriz in
the block diagonal form:

Ji 0 .0
0 Jo ... 0
o .0
o 0 0 J,

where each J; is a Jordan block matrizx.

Proof:
A basis is called a Jordan basis for L iff it can be broken up into blocks By, B, ..., B,
such that for each ¢ there exists \; such that B; is an L — \;I-shifting sequence. To
prove our result it suffices to show every L has a Jordan basis.

Say that L : V' — V is decomposable iff it is possible to find W, @ Wy = V' (each W;
nontrivial) such that L(W;) C W; and L(Ws) C Ws. Otherwise L is indecomposable.

Suppose for contradiction that L : V — V is a linear transformation which does
not have a Jordan basis, and suppose that the dimension of V' is as small as possible.
We will derive a contradiction.

Note that L must be indecomposable, since Jordan bases for the restrictions to W;
and Wy would exist and give a Jordan basis for L.
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Note also that for any A € F L has a Jordan basis iff L — A\l has a Jordan basis.
(Replace each \; by A\; — A, then Lv; = \v; + v;_q iff (L — A)v; = (N — Nv; +v;1.)
Also L is indecomposable iff L — AI is indecomposable. This means that without loss
we may assume that A = 0 is an eigenvalue of L, since if A is any eigenvalue of L then
0 is an eigenvalue of L — AI. Theorem 3.4 implies that L must be nilpotent. Finally
Theorem 3.6 implies that L has basis which corresponds to a shift matrix. This is a

contradiction which proves the theorem.
:foorP
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