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∗1. Lemma. Suppose G be a finite abelian group such that |G| = mn where m and n
are relatively prime. Let H = {x ∈ G : xn = e} and K = {x ∈ G : xm = e}.

Then H and K are subgroups of G and G = H ×K ' H ⊕K.

2. Lemma. Suppose G is an abelian group, p a prime, |G| = pn and a ∈ G has maximal
order. Then there exists a subgroup H of G such that G = 〈a〉 ×H.

3. Theorem. If G is a finite abelian group, then G is isomorphic to the finite product
of cyclic groups.

∗4. Theorem. If F is a finite, then F ∗ the nonzero elements of F are a cyclic group
under multiplication.

5. Define V is a vector space over the field F , subspace, linearly dependent, linearly
independent, span, basis, dimension.

6. (Exchange Lemma) Suppose for some vectors in a vector space V that v1, v2, . . . , vk+1

are linearly independent, and span({v1, . . . , vk, w1, . . . , wm}) = V . Then for some i
span({v1, . . . , vk+1, w1, . . . , wi−1, wi+1, . . . wm}) = V.

∗7. Theorem. If a vector space V can be spanned by n vectors, then any set of n + 1
vectors in V is linearly dependent.

8. Theorem. Any two bases of a vector space V have the same size.

∗9. Theorem. If F is a field and f(x) ∈ F [x] is a polynomial, then there exists a field
E ⊇ F and α ∈ E such that f(α) = 0.

10. Theorem. If F is a field and f(x) ∈ F [x] is a polynomial of degree n, then there
exists a field E ⊇ F and αi ∈ E such that f(x) = a(x− α1)(x− α2) · · · (x− αn).

11. For a field F and α in an extension field of F define F (α).

∗12. Theorem. If p(x) is an irreducible polynomial of degree n in F [x] and α a root
of p in some extension field, then

F (α) = {a0 + a1α + a2α
2 + · · ·+ an−1α

n−1 : a0, . . . , an−1 ∈ F}

13. Theorem. If p(x) ∈ F [x] is an irreducible polynomial and α a root of p in
some extension field, then there is an isomorphism σ : F [x]/〈p(x)〉 → F (α) such
that σ(a + 〈p(x)〉) = a for each a ∈ F and σ(x + 〈p(x)〉) = α.
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14. Theorem. If p(x) ∈ F [x] is an irreducible polynomial and α and β are two roots
of p, then F (α) ' F (β) with an isomorphism which fixes F and takes α to β.

∗15. Theorem. Minimal polynomials are irreducible: If α is in some extension field of
F and define:

I = {f(x) ∈ F [x] : f(α) = 0}
Then:

(a) I is an ideal in F [x]
(b) (assuming I is nontrivial) I = 〈p(x)〉 where p(x) is any polynomial of minimal

positive degree in I and
(c) p(x) is irreducible and so I is a maximal ideal.

16. For fields F ⊆ E define [E : F ].

∗17. Theorem. If p(x) is an irreducible polynomial of degree n in F [x] and α a root of
p in some extension field, then 1, α, α2, . . . , αn−1 is a basis for F (α) as a vector space
over F and hence [F (α) : F ] = n.

∗18. Theorem. If F1 ⊆ F2 ⊆ F3 are fields then [F3 : F1] = [F3 : F2][F2 : F1] and
furthermore the left side is infinite iff at least one of the two on the right is infinite.

19. Define α ∈ R is constructible using straight edge and compass.

20. Theorem. The set of constructible numbers is a field Fc such that for any α ∈ Fc

with α > 0 we have
√

α ∈ Fc.

∗21. Theorem. α is constructible iff there exists an n and fields Fi

Q = F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ R

such that α ∈ Fn and for each k = 0, . . . , n− 1 there exists αk such that α2
k ∈ Fk and

Fk+1 = Fk(αk).

∗22. Theorem. If α is constructible, then [Q(α) : Q] = 2n for some integer n.

∗23. Theorem. 3
√

2 is not constructible.

24. Theorem. The angle of 20 degrees is not constructible.

25. Theorem. π is not constructible.

26. Define α is algebraic over F .

∗27. Theorem. If [E : F ] < ∞, then every α ∈ E is algebraic over F .

∗28. Theorem. If F ⊆ E are fields and K = {α ∈ E : α is algebraic over F} then K
is a subfield of E.
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29. Define α is a multiple root of f(x), define f ′(x).

∗30. Theorem. Suppose f(x) ∈ F [x] and α is root of f(x) in some extension of F .
Then α is a multiple root of f iff α is a root of f ′.

∗31. Theorem. Suppose char(F )=0 and p(x) ∈ F [x] is irreducible, then p does not
have any multiple roots.

32. Lemma. Suppose char(F )=0 and [F (α, β) : F ] < ∞. Then there exist γ such that
F (α, β) = F (γ).

∗33. Theorem. Suppose char(F )=0 and [E : F ] < ∞, then there exists α ∈ E such
that E = F (α).

34. Theorem. Suppose F ⊇ Zp is a finite field and [F : Zp] = n, then
(F, +) ' Zp ⊕ · · · ⊕ Zp = Zn

p and so |F | = pn.

∗35. Theorem. Given p a prime and n a positive integer, there exists a field F with
|F | = pn.

36. Define E is a splitting field of the polynomial f(x) over F .

∗37. Theorem. If |F | = pn is a field with F ⊇ Zp, then F is a splitting field of the
polynomial f(x) = xpn − x over Zp.

38. Lemma. If σ : F → F ′ is an isomorphism, p(x) ∈ F [x] irreducible, p(α) = 0, and
σ(p)(β) = 0 in some extension fields, then there exists an isomorphism ρ ⊇ σ such
that ρ : F (α) → F ′(β) and ρ(α) = β.

39. Lemma. If σ : F → F ′ is an isomorphism, f ∈ F [x] any polynomial, E ⊇ F a
splitting field of f over F , and E ′ ⊇ F ′ a splitting field of σ(f) over F ′, then there
exists an isomorphism ρ ⊇ σ such that ρ : E → E ′.

40. Theorem. Splitting fields are unique up to isomorphism, i.e., if E1 and E2 are
splitting fields of f(x) ∈ F [x], then there exists an isomorphism φ : E1 → E2 which is
the identity on F .

∗41. Theorem. Any two finite fields of the same size are isomorphic.
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