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M542

Spring 2000
http://www.math.wisc.edu/∼miller/m542/hmwk.html

Homework is due one week from the date it is assigned.

1. (1-27) Suppose h : G1 → G2 is a homomorphism and H2 is a subgroup of G2. Prove
that

H1 = {x ∈ G1 : h(x) ∈ H2}

is a subgroup of G1.

2. (1-27) 11-34

3,4. (2-1) 11-20, 11-32

5,6. (2-3) 11-10, 11-21 Prove that the answer in the back of the book is correct.

7. (2-3) Prove: Suppose n/m1m2 · · ·mk where n, m1, m2, . . . ,mk ∈ N. Then there
exists ni ∈ N such that n = n1n2 · · ·nk and ni/mi for each i = 1, 2, . . . , k.

Hint: Prove for k = 2 and then use induction.

8. (2-3) Prove: If H is a subgroup of G of index 2, then H is a normal subgroup of G.

9. (2-3) Prove: If X ⊆ V where V is a vector space over F , then span(span(X)) =
span(X).

Extra Credit (no time limit) Prove or disprove: If G is a finite group and 6/|G| then
G has a subgroup of order 6.

10,11,12. (2-8) exercises 16,24,25 from handout “Vector Spaces”.

13. (2-10) Let F ⊆ E be fields and α ∈ E.
Define

F (α) =
⋂
{K : (F ∪ {α}) ⊆ Kfield ⊆ E}

F̃ (α) = {f(α)

g(α)
: f(x), g(x) ∈ F [x], g(α) 6= 0}

Prove that F (α) = F̃ (α) and that it is a field.

14. (2-10) Suppose that σ : F → F is an automorphism of the field F and F contains
the rationals Q. Prove that for every r ∈ Q that σ(r) = r.
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15. (2-15) Suppose n, m ∈ N and n,m ≥ 2. Prove that

n
√

m ∈ Q implies n
√

m ∈ N

16. (2-15) Prove or disprove:
F = {a + b

√
2 + c

√
3 : a, b, c ∈ Q} is a field.

17. (2-17) Prove that the regular pentagon can be constructed using straight edge and
compass.

18. (2-17) Suppose Q ⊆ E is a field and [E : Q] = 2. Prove that there exists a square
free integer n such that E = Q(

√
n).

Extra Credit: Prove or disprove: if α is real and [Q(α) : Q] is a power of 2 then α
is constructible.

19. (2-24) Suppose α, β are in a extension field of F and α + β is algebraic over F .
Prove that α is algebraic over F (β).

20. (2-24) Suppose F ⊆ E ⊆ K and α ∈ K and [K : F ] < ∞. Prove:
(a) [E(α) : F (α)] ≤ [E : F ]
(b) [E(α) : E] ≤ [F (α) : F ]

21. (2-24) Suppose α, β are in an extension field of F ,
[F (α) : F ] = n and [F (β) : F ] = m and n and m are relatively prime. Prove that

[F (α, β) : F ] = nm.

22. (2-24) Prove or Disprove: Suppose α, β are in an extension field of F . Then
α algebraic over F (β) implies β algebraic over F (α).

23. (2-24) Suppose α, β are in an extension field of F . Prove the exchange lemma:
α algebraic over F (β) and α transcendental over F
implies
β algebraic over F (α) and β transcendental over F

24. (2-29) Suppose F is a field, Q ⊆ F ⊆ Q(π), and [F : Q] < ∞. Prove that F = Q.

25. (2-29) Suppose f and g are irreducible polynomials in F [x] whose degrees are
relatively prime. Suppose also that in some extension field of F there is an α such that
f(α) = 0. Prove that g(x) is still irreducible over F (α).
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From now on assume all fields have characteristic zero.

26. (3-23) Solve the equation

x3 + 3x2 + 15x + 6 = 0

using the method of Tartaglia (not some general equations). Find all “six” roots and
show which ones are equal.

27. (3-28) Suppose [K : F ] < ∞ Prove the following are equivalent:
(a) K is a Galois extension of F
(b) for every L ⊇ K and every embedding σ : K → L which fixes F we have that

σ(K) = K.

28. (3-28) Let p be a prime and let K be a splitting field of xp − 1 over Q. Prove that
aut(K|Q) is isomorphic to Zp−1.

29. (3-28) Let p(x) = x4 + 1. Prove that p is irreducible over Q but there exists a
Galois extension K ⊇ Q in which p is reducible but does not split.

30. (3-30) Compute the Galois group of x3 − 3x + 1.

31. (3-30) Suppose [E : F ] < ∞. Prove that the following are equivalent:
(a) E is a Galois extension of F
(b) For every K a Galois extension of F with F ⊆ E ⊆ K aut(K|E) / aut(K|F ).
(c) There exists K a Galois extension of F with F ⊆ E ⊆ K aut(K|E)/aut(K|F ).

32. (4-4) Suppose F ⊆ K1, K2 ⊆ L and both K1 and K2 are Galois extensions of F .
Prove K1 ∩K2 is a Galois extension of F .

33. (4-4) Prove that the inductive definition of solvable group is equivalent to the
standard definition.

34. (4-4) Prove that a subgroup of a solvable group is solvable.

35. (4-6) Find a polynomial p(x) ∈ Q[x] of degree 7 whose Galois group is S7 (and
prove it is).

36. (4-11) Find groups H1, H2, H3 such that H1 / H2 and H2 / H3 but H1 is not a
normal subgroup of H3.

Hint: Use Galois groups.

37. (4-11) Let f(x) ∈ Q[x] be an irreducible cubic with one real and two nonreal roots,
say α, β + γi, and β − γi. Let S ⊆ R be the smallest subfield S of the reals closed
under taking real roots. Prove that α ∈ S iff β ∈ S iff γ ∈ S.
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Extra Credit: Does there exists a cubic irreducible polynomial in Q[x] as in problem
37 with α /∈ S?

38. (4-13) Let f(x) ∈ Q[x] be an irreducible polynomial of odd prime degree p all of
whose roots are real. Prove that f is not solvable by real radicals.

39. (4-18) Find the conjugacy classes of A5.
Hint: They are the same as S5 except that the five cycles are two conjugacy classes

each of size 12.

ρ(a1a2a3 · · · an)ρ−1 = (ρ(a1)ρ(a2)ρ(a3) · · · ρ(an))

Note that if ρ ∈ Sn and τ is a transposition, then one of ρ and ρ ◦ τ is in An.

Extra Credit. Prove that if H is a subgroup of G and |H| = pn and |G| = pn+1, then
H must be a normal subgroup of G.

40. (4-25) Prove there is no simple group of order 132.

41. (4-25) Suppose H / G and H contains a p-Sylow subgroup of G. Prove that H
contains all p-subgroups of G.

42. (4-25) Suppose x = zyz−1 in some group. Prove that C(x) = zC(y)z−1.

43. (4-25) Suppose P is a p-Sylow subgroup of G and P / H / G. Prove that P / G.

44. (4-25) Let H = P1 ∩P2 ∩ · · ·Pn where P1, P2, . . . , Pn are all the p-Sylow subgroups
of G. Prove H / G.

45. (4-25) Suppose P is a p-Sylow subgroup of G. Prove that N(N(P )) = N(P ).
Hint: If a ∈ N(N(P )) then P and Q = aPa−1 are both subgroups of N(P ). Show

P = Q (and hence a ∈ N(P )).

46. (4-25) Give an example of subgroup H of a group G where N(N(H)) 6= N(H).
Hint G = D8.

47. (4-25) Suppose H / G and P is a p-Sylow subgroup of G. Prove H ∩ P = Q is a
p-Sylow subgroup of H.

Hint: P ∩ H is a p-subgroup of H and hence is contained in some Q a p-Sylow
subgroup of H, P ∩H ⊆ Q ⊆ H. Q is a p-subgroup of G, hence Q ⊆ aPa−1 for some
a ∈ G. Show Q = P ∩H.

48. (5-2) Suppose A and B are matrices with real entries and there exists a matrix P
with complex entries such that A = PBP−1. Prove there exists a matrix P with real
entries such that A = PBP−1.
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Hint: Show {Q : AQ = QB} is a subspace.

49. (5-2) Show that a square complex matrix A is unitarily similar to a diagonal matrix
iff A∗A = AA∗.

Hint: Show that if U is an upper triangular matrix, then U∗U = UU∗ iff U is
diagonal.

50. (5-2) Show
(a) Similar matrices have the same minimal polynomial.
(b) If A is a matrix in Jordan normal form, then the minimal polynomial of A is

q(x) = (x− λ1)
k1(x− λ2)

k2 · · · (x− λn)kn

where λ1, λ2, . . . , λn are the distinct eigenvalues of A (the diagonal elements of A) and
for each l, kl is the size of the largest Jordan Block with λl on its diagonal.
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