
A. Miller M542 Galois Theory Spring 2000

For the material on Galois theory we will be assuming that the fields all have
characteristic zero. When we get to solvability by radicals we will assume that all
fields are subfields of the complex numbers C.

1 Review

The following results are from the review sheet for the midterm.

Theorem 1.1 Minimal polynomials are irreducible: If α is in some extension field of
F and define:

I = {f(x) ∈ F [x] : f(α) = 0}

Then:
(a) I is an ideal in F [x]
(b) (assuming I is nontrivial) I = 〈p(x)〉 where p(x) is any polynomial of minimal

positive degree in I and
(c) p(x) is irreducible and so I is a maximal ideal.

Theorem 1.2 If p(x) is an irreducible polynomial of degree n in F [x] and α a root of
p in some extension field, then 1, α, α2, . . . , αn−1 is a basis for F (α) as a vector space
over F and hence [F (α) : F ] = n.

Theorem 1.3 Suppose char(F )=0 and p(x) ∈ F [x] is irreducible, then p does not
have any multiple roots in any extension of F .

Theorem 1.4 Suppose char(F )=0 and [E : F ] < ∞, then there exists α ∈ E such
that E = F (α).

Theorem 1.5 If p(x) ∈ F [x] is an irreducible polynomial and α and β are two roots
of p, then F (α) ' F (β) with an isomorphism which fixes F and takes α to β.

Theorem 1.6 If σ : F → F ′ is an isomorphism, f ∈ F [x] any polynomial, E ⊇ F
a splitting field of f over F , and E ′ ⊇ F ′ a splitting field of σ(f) over F ′, then there
exists an isomorphism ρ ⊇ σ such that ρ : E → E ′.

2 Galois Theory

In this section we assume that all fields have characteristic 0.

Definition 2.1 The field K ⊇ F is a Galois extension of the field F iff K is the
splitting field over F of some polynomial with coefficients in F .

Proposition 2.2 Suppose F ⊆ E ⊆ K are fields and K is a Galois extension of F .
Then K is a Galois extension of E.
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Proof:
Suppose F3 is the splitting field of f ∈ F1[x]. This means that F3 is the smallest field
containing F1 and all the roots of f . Then f ∈ F2[x] since F1 ⊆ F2 and therefore F3 is
the smallest field containing F2 and all the roots of f .
:foorP

Definition 2.3 For fields F ⊆ E define aut(E|F ) to be the set of all automorphisms
σ of E which fix F , i.e., σ(a) = a for all a ∈ F .

Proposition 2.4 aut(E|F ) is a group. Furthermore, if F ⊆ E ⊆ K are fields, then
aut(K|E) is a subgroup of aut(K|F ).

Proof:
If σ, τ ∈ aut(E|F ), then clearly σ ◦ τ is an automorphism of E. Given a ∈ F we have
that σ ◦τ(a) = σ(τ(a)) = σ(a) = a and so σ ◦τ fixes F and therefore σ ◦τ ∈ aut(E|F ).
Similarly, σ(a) = a implies σ−1(a) = a and so aut(E|F ) is a group under composition.

aut(K|E) is a subgroup of aut(K|F ) since the operation (composition) is the same
and any automorphism which fixes E must also fix the smaller field F .
:foorP

Lemma 2.5 Suppose σ, ρ ∈ aut(F (α)|F ). Then σ = ρ iff σ(α) = ρ(α).
Similarly, if σ, ρ ∈ aut(F (α1, α2, . . . , αn)|F ) then σ = ρ iff σ(αk) = ρ(αk) for all

k = 1, 2, . . . , n.

Proof:
The elements of F (α) have the form f(α)

g(α)
where f(x), g(x) ∈ F [x] are polynomials with

g(α) 6= 0. But then

σ(
f(α)

g(α)
) =

σ(f(α))

σ(g(α))
=
f(σ(α))

g(σ(α))

this last is true because elements of F are fixed by σ. Since the same is true for τ , if
σ(α) = τ(α), then

σ(
f(α)

g(α)
) =

f(σ(α))

g(σ(α))
=
f(τ(α))

g(τ(α))
= τ(

f(α)

g(α)
)

The similar result holds for F (α1, α2, . . . , αn) since its elements have the form

f(α1, α2, . . . , αn)

g(α1, α2, . . . , αn)

where f, g are polynomials in F [x1, x2, . . . , xn].
:foorP

Theorem 2.6 Suppose that K is the splitting field of a polynomial in F [x] of degree
n. Then aut(K|F ) is isomorphic to a subgroup of Sn.
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Proof:
Let K = F (α1, α2, . . . , αn) where the αi are all the roots of f ∈ F [x] and K is the
splitting field of f . If σ ∈ aut(K|F ), then σ(f) = f and so if α is a root of f then so
is σ(α), i.e., f(α) = 0 implies f(σ(α)) = σ(f(α)) = σ(0) = 0. Hence σ must permute
the roots αi of f . By Lemma 2.5 we see that elements of aut(K|F ) are determined by
this permutation. Hence the mapping:

h : aut(K|F )→ Sn

given by h(σ) = δ where σ(αi) = αδ(i) is a one-to-one homomorphism and therefore
aut(K|F ) is isomorphic to its image which is a subgroup of Sn.
:foorP

Lemma 2.7 Suppose K is a Galois extension of F , K ⊆ L, and σ : K → L an
embedding which fixes F . Then and σ(K) = K.

Proof:
Note that an embedding is a one-to-one homomorphism and σ(K) = {σ(a) : a ∈ K}.
Since K = F [α1, α2, . . . , αn] where the αi are the roots of some polynomial f ∈ F [x]
and since σ fixes the coefficients of f it must be that for every i there is j such that
σ(αi) = αj. Hence σ(K) = K.
:foorP

Theorem 2.8 Suppose K is a Galois extension of F , then |aut(K|F )| = [K : F ]

Proof:
By Theorem 1.4 there exists α ∈ K such that K = F [α]. By Theorem 1.1 there

exists an irreducible polynomial p(x) ∈ F [x] such that p(α) = 0.

Claim. K is the splitting field of p.
Proof of Claim: Let L be any extension field in which p splits and suppose β is

any root of p in L. Then there exists an isomorphism σ : F (α) → F (β) which fixes
F and sends α to β (Theorem 1.5). But then by Theorem 1.6 the map σ extends to
an automorphism ρ : L → L. Since ρ fixes F and by Lemma 2.7 ρ(K) = K. Since
ρ(α) = β this means β is in K. Since β was an arbitrary root of p this means that p
splits in K.

End proof of Claim.

We have that by Theorem 1.2 that [K : F ] = n where n is the degree of p and
since irreducible polynomial have distinct roots (Theorem 1.3), the roots of p are
{α1, α2, . . . , αn}. By Theorem 1.5 for every i there exists σi : F (α) → F (αi). But
automorphisms of F (α) which fix F are determined by the values on α (Lemma 2.5)
we have that

aut(K|F ) = {σ1, σ2, . . . , σn}
Hence the theorem is proved.
:foorP
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Lemma 2.9 Suppose F ⊆ E,E ′ ⊆ K, K is a Galois extension of F and σ : E → E ′

and isomorphism which fixes F . Then there exists ρ ∈ aut(K|F ) which extends σ.

Proof:
This is just a special case of Theorem 1.6. If K is the splitting field of f ∈ F [x] over
F , then σ(f) = f since σ fixes F and K = K ′ is the splitting field of f over both E
and E ′.
:foorP

Theorem 2.10 Suppose K and E are Galois extensions of F and F ⊆ E ⊆ K. Then
aut(K|E) is a normal subgroup of aut(K|F ) and

aut(K|F )

aut(K|E)
' aut(E|F )

Proof:
Define the map

h : aut(K|F )→ aut(E|F ) by h(ρ) = ρ�E

i.e., we restrict ρ to E. By Lemma 2.7 we have that ρ(E) = E and so this restriction
is in aut(E|F ). It is easy to check that h is a group homomorphism.

Claim. The kernel of h is aut(K|E). This is clear because
h(ρ) =identity iff ρ�E fixes E iff ρ ∈ aut(K|E).

Claim. h is onto. This follows from Lemma 2.9, since if we take E = E ′ in that
Lemma then for every σ ∈ aut(E|F ) there exists ρ ∈ aut(K) such that ρ ⊇ σ. But
this means h(ρ) = ρ�E = σ. Hence h is onto.

The homomorphism theorem of group theory says the range of h is isomorphic to
the quotient group of its domain by its kernel (which is a normal subgroup) and so the
Theorem is proved.
:foorP

3 More Galois Theory

In this section we develop some more of the basics of Galois Theory. It will not be
needed for the section on solvability by radicals.

Theorem 3.1 Suppose K is a Galois extension of F and p(x) ∈ F [x] is an irreducible
polynomial. Then either all the roots of p are in K or none of them are.

Proof:
Suppose K is the splitting field of f(x) over F . Let L be the splitting field of p(x)

over K. It follows that L is the splitting field of f(x)p(x) over F and so it is a Galois
extension of F .
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Suppose α ∈ K and p(α) = 0. We need to show all the roots of p are in K. Let
β ∈ L be any root of p. We have that there exists σ : F (α)→ F (β) which fixes F and
maps α to β. By Lemma 2.9 that there exists ρ : L → L which extends σ. But by
Lemma 2.7 we have that ρ(K) = K. But this implies that ρ(α) = β ∈ K. Hence K
contains all the roots of p.
:foorP

Example 3.2 (a) There exists fields F1 ⊆ F2 ⊆ F3 such that F3 is a Galois extension
of F1 but F2 is not a Galois extension of F1.

(b) There exists fields F1 ⊆ F2 ⊆ F3 such that F3 is a Galois extension of F2 and
F2 is a Galois extension of F1, but F3 is not a Galois extension of F1.

Proof:
Hint:

(a) Q ⊆ Q(β) ⊆ Q(β, αβ, α2β) where α = e
2π
3
i and β =3

√
2

(b) Q ⊆ Q(
√

2) ⊆ Q(
√

1 +
√

2)
:foorP

Definition 3.3 For H ⊆ aut(K|F ) define fix(H) = {a ∈ K : ∀σ ∈ H σ(a) = a}

Proposition 3.4 Suppose F ⊆ K are fields and H ⊆ aut(K|F ), then E = fix(H) is
a field such that F ⊆ E ⊆ K.

Proof:
Since σ ∈ aut(K|F ) implies it fixes each element of F , this implies that F ⊆ E. E ⊆ K
by definition. To see that E is a subfield of K. Suppose x, y ∈ E. Then for every
σ ∈ H we know that σ(x) = x and σ(y) = y. Since σ is a field automorphism we have
that

σ(x+ y) = σ(x) + σ(y) = x+ y and σ(xy) = σ(x)σ(y) = xy

and so x+ y ∈ E and xy ∈ E. Similarly x− y and x/y are in E, so its a subfield.
:foorP

Lemma 3.5 Suppose K is a Galois extension of F , then F = fix(aut(K|F )).

Proof:
F ⊆ fix(aut(K|F )) is trivial, since by definition every σ ∈ aut(K|F ) fixes F .

To see the other way that fix(aut(K|F ) ⊆ F , what we need to show is that for every
α ∈ K with α /∈ F there exists ρ ∈ aut(K|F ) such that ρ(α) 6= α.

So fix such an α and let p(x) ∈ F [x] be the minimal (irreducible) polynomial
such that p(α) = 0. We know that since irreducible polynomials have distinct roots
(Theorem 1.3) that p has a root β 6= α. Since p splits in K (Lemma 3.1) there is
such a β ∈ K. Let σ : F (α) → F (β) be an isomorphism fixing F and taking α to β
(Theorem 1.5). Using Lemma 2.9 with E = F (α) and E ′ = F (β) we get that there
exists ρ ∈ aut(K|F ) extending σ. Since ρ(α) = β 6= α we are done.
:foorP
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Lemma 3.6 Suppose K is a Galois extension of F and G a subgroup of aut(K|F )
and fix(G) = F , then G = aut(K|F ).

Proof:
As in the proof of Theorem 2.8 let K = F [α], p(x) ∈ F [x] the minimal polynomial of
α, and p(x) = (x − α1)(x − α2) · · · (x − αn) where αi ∈ K are the roots of p. In that
proof we showed that |aut(K|F )| = n.

Suppose for contradiction that |G| = m < n. By reordering the αi let

{α1, α2, . . . , αm} = {σ(α) : σ ∈ G}

Consider the polynomial

q(x) = (x− α1)(x− α2) · · · (x− αm)

Note that each σ ∈ G permutes the set {α1, α2, . . . , αm} and hence

σ(q(x)) = (x−σ(α1))(x−σ(α2)) · · · (x−σ(αm)) = (x−α1)(x−α2) · · · (x−αm) = q(x)

It follows if we write
q(x) = xm + bm−1x

m−1 + · · ·+ b0

that for each σ ∈ G that σ(bk) = bk for each k. But this implies (since fix(G) = F )
that q(x) ∈ F [x]. This is a contradiction since q divides p but p is supposed to be
irreducible in F [x].
:foorP

Theorem 3.7 Suppose K is a Galois extension of F , then there is a one-to-one cor-
respondence between the subgroups of aut(K|F ),

G = {H : H ⊆ aut(K|F ) is a subgroup}

and the set of intermediate fields between F and K,

F = {E : F ⊆ E ⊆ K and E is a field}

This correspondence is given by the two maps

φ : G → F defined by φ(H) = fix(H)

and
ψ : F → G defined by φ(E) = aut(K|E)

which are inverses of each other.

Proof:
Suppose E ∈ F . Then K is a Galois extension of E and so by Lemma 3.5 we have

that E = fix(aut(K|E)). But this means E = φ(ψ(E).
Suppose G ∈ G. Let E = fix(G). By Lemma 3.6 we have that G = aut(K|E). But

this just means that G = ψ(φ(G).
Hence the two maps are inverses of each other and the Theorem is proved.

:foorP
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4 Tartaglia’s method for solving cubics

Step 1. Given x3 +ax2 + bx+ c = 0 substitute x+α for x and pick α so as to eliminate
the coefficient of x2.

Step 2. Given x3 + px + q = 0 substitute x + β
x

for x and choose β so as to eliminate
the two most complicated coefficients.

The resulting equation will be:

x3 +
β3

x3
+ q = 0

which is quadractic in x3. If u is a solution of it, then u + β
u

+ α is a solution of the
original equation.

Definition 4.1 A polynomial f(x) ∈ Q[x] is solvable by radicals iff its roots are in the
smallest subfield S ⊆ C which is closed under taking all complex roots, i.e., if a ∈ S
and n ∈ N then all n complex roots of a are in S, i.e., xn − a splits in S.

It is also true that every f(x) ∈ Q[x] of degree 4 is solvable by radicals.
Hint: To solve the quartic below factor it into quadratics:

x4 + px2 + qx+ r = (x2 + ax+ b)(x2 − ax+ c)

and then show that a2 is the solution of a cubic:

c+ b− a2 = p

(c− b)a = q

bc = r

(c+ b)2 − (c− b)2 = 4bc = 4r

(p+ a2)2 − q2/a2 = 4r

5 Solvability by radicals

In this section we assume all our fields are subfields of the complex numbers C.

Definition 5.1 For G a finite group define G is a solvable group by induction on |G|.
G is solvable iff either G is abelian or there exists a normal subgroup H / G such that
both H and G/H are solvable.

Definition 5.2 Given fields F ⊆ E ⊆ C we say that E is a radical Galois extension
of F iff there exists n ∈ N and a ∈ F such that E is the splitting field of the polynomial
xn − a over F .
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Theorem 5.3 Suppose that E is a radical Galois extension of F , then aut(E|F ) is a
solvable group.

Proof:
Suppose E is the splitting field of xn − a over F . Let β ∈ C be any complex number
such that βn = a. Let α = e

2πi
n . Then we have that

E = F (β, βα, βα2, . . . , βαn−1) = F (α, β)

(Note that αβ
β

= α so α ∈ E.)

F ⊆ F (α) ⊆ F (α, β) = E the field F (α) is a Galois extension of F since it is the
splitting field of xn − 1, so we have (by Theorem 2.8) that H = aut(F (α, β)|F (α))
is a normal subgroup of G = aut(F (α, β)|F ) and aut(F (α)|F ) is isomorphic to their
quotient G/H.

Claim. G/H ' aut(F (α)|F ) is abelian.
Suppose σ, τ ∈ aut(F (α)|F ), then for some i we have σ(α) = αi and for some j

τ(α) = αj. But then

σ(τ(α)) = σ(αj) = (αj)i = αji = αij = τ(σ(α))

Hence (by Lemma 2.5) we have that στ = τσ.

Claim. H = aut(F (α, β)|F (α)) is abelian.
Suppose σ, τ ∈ aut(F (α, β)|F (α)), then for some then for some i we have σ(β) =

αiβ and for some j we have τ(β) = βαj. By definition both fix α. But then

σ(τ(β)) = σ(αjβ) = (αj)σ(β) = αj+iβ = αi+jβ = τ(σ(β))

Hence we have that στ = τσ.

Since H and G/H are abelian they are solvable and so by definition G is solvable.
:foorP

Lemma 5.4 Suppose that G is solvable group and G′ is a homomorphic image of G,
then G′ is solvable. Hence quotient groups of solvable groups are solvable.

Proof:
Let h : G→ G′ be an onto homomorphism. We prove the lemma by induction on |G|.

Suppose G is abelian. Then G′ is abelian since

h(x)h(y) = h(xy) = h(yx) = h(y)h(x)

Suppose there exists H / G such that H and G/H are solvable. Let H ′ = h(H).
Then H ′ is a normal subgroup of G′ because given y ∈ H and x ∈ G we have

h(x)h(y)h(x)−1 = h(xyx−1) ∈ H ′
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By induction H ′ is solvable. It is also true that G′/H ′ is the homomorphic image of
G/H since we can define

k : G/H → G′/H ′ by k(aH) = h(a)H ′

This is well-defined because aH = bH implies b−1a ∈ H implies h(b−1a) ∈ h(H) = H ′

which implies h(a)H ′ = h(b)H ′. It is easy to check that k is an onto homomorphism.
Hence by induction G′/H ′ is solvable. By definition G′ is solvable.
:foorP

Theorem 5.5 Suppose that F1 ⊆ F2 ⊆ F3 · · · ⊆ Fm is a sequence of radical Galois
extensions, i.e., Fk+1 is a radical Galois extension of Fk for each k = 1, 2, . . . ,m− 1.
Suppose that K is a Galois extension of F1 such that K ⊆ Fm. Then aut(K|F1) is a
solvable group.

Proof:
This is proved by induction on m

m = 2: In this case we have that F1 ⊆ K ⊆ F2. We have that aut(K|F1) is
isomorphic to a quotient of aut(F2|F1) (by Theorem 2.8) and we have that aut(F2|F1)
is a solvable group by Theorem 5.3. Hence by Lemma 5.4 we have that aut(K|F1) is
solvable.

m > 2: In this case suppose that F2 is splitting field of xn − a ∈ F1[x] over F1 and
K is the splitting field of f(x) ∈ F1[x]. Let L be the splitting field of (xn−a)f(x) over
F1. Then we have

F1 ⊆ F2 ⊆ L ⊆ Fm and F1 ⊆ K ⊆ L

By induction on m we have that aut(L|F2) is a solvable group. We also know that L
is a Galois extension of F1 and by Theorem 2.8 we that H = aut(L|F2) is a normal
subgroup of G = aut(L|F1) with quotient group isomorphic to G/H ' aut(F2|F1).
Since both H and G/H are solvable, we have that G is solvable.

Finally since F1 ⊆ K ⊆ L we know (by Theorem 2.8) that aut(K|F1) is isomorphic
to a quotient of aut(L|F1) and hence by Lemma 5.4 is solvable.
:foorP

Corollary 5.6 Suppose f ∈ Q[x] is a polynomial which is solvable by radicals. Then
if K is the splitting field of f over Q, then aut(K|Q) is a solvable group.

Theorem 5.7 The group A5 is simple.

Proof:
Recall: A5 is the subgroup of S5 consisting of those permutations which can be written
as the product of an even number of transpositions. A group is simple if has no
nontrivial normal subgroups. Let H / A5.

Case 1. H contains a 3-cycle. First note that the 3-cycles generate An. This is
because: (12)(23) = (123) and (123)(234) = (12)(34). These equations show that for
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any pair of transpositions if they overlap their product is a 3-cycle and if they don’t
overlap, then they can written as a product of 3-cycles. Hence the 3-cycles generate
An. Next note that since H is a normal subgroup, if it contains one 3-cycle then it
contains them all:

Suppose not. If a ∈ H and b /∈ H are 3-cycles (and n-cycles have order n),
then we see that 3 divides |H| and since bH has order 3 in A5

H
we see that 3 divides

|A5

H
|. But by Lagrange’ Theorem |A5| = |A5

H
| |H| we would then have that 9 divides

|A5| = 5 · 4 · 3 = 60.
Hence H contains all 3-cycles and so H = A5.

Case 2. H contains a 5-cycle. By a similar argument to Case 1, we have that H
contains all 5-cycles. But (12345)(54312) = (132) is a 3-cycle in H and so we are done
by Case 1.

Case 3. H contains a product of two disjoint transposition. For example, suppose
(12)(34) = α ∈ H. Let β = (345) ∈ A5. Then by normality of H, βαβ−1 ∈ H and
(using that disjoint cycles commute):

βαβ−1 = (345)(12)(34)(543) = (12)(345)(34)(543) = (12)(35)

But the product of α and βαβ−1 is in H and

α(βαβ−1) = (12)(34)(12)(35) = (34)(35) = (543)

and so we are done by Case 1.

Every permutation in S5 can be written as a product of disjoint cycles, e.g.,

(12) (123) (1234) (12345) (12)(34) (123)(45)

The cycle structures of the elements of A5 are exactly covered by the 3 cases.
:foorP

Corollary 5.8 The group S5 is not solvable.

Proof:
A5 is not solvable since it is not abelian and has no nontrivial normal subgroups. A
subgroup of solvable group is solvable (exercise) and hence S5 is not solvable.
:foorP

Lemma 5.9 Suppose G is a subgroup of S5 which contains a transposition and a 5-
cycle. Then G = S5.

Proof:
By automorphing G around we can assume without loss of generality that (12345)
and (1i) are elements of G. Again by symmetry it really reduces to cases (1i) = (12)
or (1i) = (13). In the first case by using the 5-cycle it is clear that any adjacent
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transposition (i i + 1) can be obtained, i.e., rotate around until i on top, switch the
top two, then rotate back. But it is easy to see that adjacent transposition generate
Sn: visual a stack of plates numbered 1 thru n. Any plate can be brought to the top
by adjacent switches of plates. Then any plate below the top can then be brought
to the second position, etc. Hence any permutation of the plates can be obtained by
repeatedly switching adjacent plates.

In the other case, (1i) = (13), by using the 5-cycle we can obtain (35). But
(13)(35)(13) = (15) and (15) is an adjacent transposition.
:foorP

Example 5.10 There is a polynomial f ∈ Q[x] of degree 5 whose splitting field K has
aut(K|Q) isomorphic to S5, i.e., the Galois group of f is S5.

Proof:
Suppose f(x) is irreducible and has exactly three real roots. Then we claim that
its Galois group G is S5. Since the nonreal roots of a real polynomial must occur
in complex conjugate pairs, the roots of f must be α1, α2, α3, β, β. Conjugation is
an automorphism of C which fixes the αi and swaps β and β. Hence G contains a
transposition. Also since [Q(α1) : Q] = 5 we know that 5 divides [K : Q] where K is
the splitting field of f . But since |G| = [K : Q] (Theorem 2.8) we have that 5 divides
the order of G. By Cauchy’s Theorem G has an element of order 5. The only elements
of S5 of order 5 are 5-cycles, hence by Lemma 5.9 it must be that G ' S5.

There are many examples of such polynomials. Let

f(x) = x5 − 80x+ 5

Then f is irreducible by Eisenstein’s criterion with prime 5.

f ′(x) = 5x4 − 80

has zeros at 2 and −2, f(−2) > 0 and f(2) < 0. But since f ′ is positive in the
interval (−∞,−2), its increasing there and so has exactly one real root in this interval.
Similarly f ′ is negative in (−2, 2) so f is decreasing and so has exactly one real root
in this interval. Finally f has exactly one real root in the interval (2,∞).
:foorP

Corollary 5.11 (Abel) Fifth degree polynomials are not solvable by radicals.

6 Solvable by real radicals, constructible polygons

Definition 6.1 A polynomial f(x) ∈ Q[x] is solvable by real radicals iff its roots are
in the smallest subfield S ⊆ R which is closed under taking real roots, i.e., if a ∈ S,
a > 0 and n ∈ N then n

√
a ∈ S.

Lemma 6.2 Suppose F ⊆ C is a subfield, p a prime, and a ∈ F . Then f(x) = xp− a
is reducible in F iff it has a root in F .
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Proof:
Suppose f(x) = xp − a = g(x)h(x) is reducible in F . We must find a root of it in F .

So let β ∈ C be any root of f(x) and let α = e
2πi
p be the usual primitive pth root of

unity. Then we know that the zeros of f are: β, αβ, α2β, . . . , αp−1β and f factors in C
by

f(x) = xp − a =

p−1∏
i=0

(x− αiβ)

Now suppose that the degree of g(x) is k with 1 ≤ k < p. If we factored g in C we would
see that it contains k of the factors of f , i.e., there exists a set A ⊆ {0, 1, . . . , p− 1} of
size k such that

g(x) =
∏
i∈A

(x− αiβ)

Suppose b ∈ F is the constant term of g. We will show how to use b and a to construct
a root of f . First note that b = (−1)kαlβk for some l. Let c = αlβk and notice that
cp = (βp)k = ak since αp = 1. Now since p is prime and 1 ≤ k < p we have that there
exists s, t ∈ Z with sk + tp = 1. It follows that

a1 = ask+tp = ((ak)s)((at)p) = ((cp)s)((at)p) = (csat)p

Hence (csat) ∈ F is a root of f .
:foorP

Theorem 6.3 Suppose f(x) ∈ Q[x] is an irreducible cubic with three real roots. Then
f(x) is not solvable by real radicals.

Proof:
For contradiction suppose K ⊆ S is the splitting field of f(x).

Claim. There exists a subfield F0 such that Q ⊆ F0 ⊆ K and [K : F0] = 3.
Note that the Galois group of f is a subgroup of the group S3 of permutations of

its three roots. Since f is irreducible we have that [Q(α) : Q] = 3 where α is any of
the three roots of f . So if K = Q(α) we can take F0 = Q. Otherwise the Galois group
of f is S3. Let H ⊆ S3 be any (the) subgroup of S3 with |H| = 3. Then the fixed field:

F0 = fix(H) = {x ∈ K : ∀σ ∈ H σ(x) = x}

has the property desired, i.e., [K : F0] = |aut(K|F0)| = |H| = 3 by Theorems 2.8 and
3.7. This proves the Claim.

Note: f is irreducible over F0. This is because [F0 : Q] is either 1 or 2 but f is an
irreducible cubic, so if α any root of f we have [Q(α) : Q] = 3.

Note: If F0 ⊆ F then either f is irreducible over F or f splits in F . This is because
[K : F0] = 3 and hence for any root α of f we have that F0[α] = K. Hence if one root
exists in F then all roots are in F .
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Note: S is the smallest subfield of R closed under taking real roots of prime degree.
This is because, for example, the sixth root is the square root of the cube root, etc.

Therefore, it follows that if K ⊆ S there must be some subfield F ⊆ S with
F0 ⊆ F ⊆ S, a ∈ F and p prime such that f is irreducible over F but f is reducible
over F (p

√
a). By the Lemma we have that xp−a is irreducible over F and so [F (p

√
a) :

F ] = p. We also know that for any root α of f that [F (α) : F ] = 3 and since
F ⊆ F (α) ⊆ [F [p

√
a] we have that 3 divides p. Since p was prime we must have that

p = 3 and therefore F (α) = F (3
√
a). Since adding one root of f adds all roots of f

we know that F (3
√
a) is the splitting field of f over F . But this contradicts Theorem

3.1 which says that for a Galois extension an irreducible which has a root splits. But
the irreducible polynomial x3−a has only one root in F (3

√
a), the other two roots are

not real.
:foorP

Theorem 6.4 (Gauss) Let p be a prime. Then the regular p-gon is constructible with
straight edge and compass iff p is a Fermat prime, i.e., p = 22n + 1 for some n.

Proof:
See Chapter 33.
:foorP
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