A. Miller	M542	Final Exam	Spring 2000
-----------	------	------------	-------------

The Final Exam is in our usual classroom (B203 Van Vleck) at 7:25pm on Saturday May 13. It consists of approximately six proofs from the material below which I will write on the blackboard.

A copy of this document will be handed out to you at the Final.

1 Review

Theorem 1.1 Minimal polynomials are irreducible: If α is in some extension field of F and define:

$$I = \{ f(x) \in F[x] : f(\alpha) = 0 \}$$

Then:

(a) I is an ideal in F[x]

(b) (assuming I is nontrivial) $I = \langle p(x) \rangle$ where p(x) is any polynomial of minimal positive degree in I and

(c) p(x) is irreducible and so I is a maximal ideal.

Theorem 1.2 If p(x) is an irreducible polynomial of degree n in F[x] and α a root of p in some extension field, then $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ is a basis for $F(\alpha)$ as a vector space over F and hence $[F(\alpha) : F] = n$.

Theorem 1.3 Suppose char(F)=0 and $p(x) \in F[x]$ is irreducible, then p does not have any multiple roots in any extension of F.

Theorem 1.4 Suppose char(F)=0 and $[E:F] < \infty$, then there exists $\alpha \in E$ such that $E = F(\alpha)$.

Theorem 1.5 If $p(x) \in F[x]$ is an irreducible polynomial and α and β are two roots of p, then $F(\alpha) \simeq F(\beta)$ with an isomorphism which fixes F and takes α to β .

Theorem 1.6 If $\sigma : F \to F'$ is an isomorphism, $f \in F[x]$ any polynomial, $E \supseteq F$ a splitting field of f over F, and $E' \supseteq F'$ a splitting field of $\sigma(f)$ over F', then there exists an isomorphism $\rho \supseteq \sigma$ such that $\rho : E \to E'$.

2 Galois Theory

In this section we assume that all fields have characteristic 0.

Definition 2.1 The field $K \supseteq F$ is a Galois extension of the field F iff K is the splitting field over F of some polynomial with coefficients in F.

Proposition 2.2 Suppose $F \subseteq E \subseteq K$ are fields and K is a Galois extension of F. Then K is a Galois extension of E. **Definition 2.3** For fields $F \subseteq E$ define $\operatorname{aut}(E|F)$ to be the set of all automorphisms σ of E which fix F, i.e., $\sigma(a) = a$ for all $a \in F$.

Proposition 2.4 $\operatorname{aut}(E|F)$ is a group. Furthermore, if $F \subseteq E \subseteq K$ are fields, then $\operatorname{aut}(K|E)$ is a subgroup of $\operatorname{aut}(K|F)$.

Lemma 2.5 Suppose $\sigma, \rho \in \operatorname{aut}(F(\alpha)|F)$. Then $\sigma = \rho$ iff $\sigma(\alpha) = \rho(\alpha)$. Similarly, if $\sigma, \rho \in \operatorname{aut}(F(\alpha_1, \alpha_2, \ldots, \alpha_n)|F)$ then $\sigma = \rho$ iff $\sigma(\alpha_k) = \rho(\alpha_k)$ for all $k = 1, 2, \ldots, n$.

Theorem 2.6 Suppose that K is the splitting field of a polynomial in F[x] of degree n. Then $\operatorname{aut}(K|F)$ is isomorphic to a subgroup of S_n .

Lemma 2.7 Suppose K is a Galois extension of F, $K \subseteq L$, and $\sigma : K \to L$ an embedding which fixes F. Then and $\sigma(K) = K$.

Theorem 2.8 Suppose K is a Galois extension of F, then |aut(K|F)| = [K:F]

Lemma 2.9 Suppose $F \subseteq E, E' \subseteq K$, K is a Galois extension of F and $\sigma : E \to E'$ and isomorphism which fixes F. Then there exists $\rho \in \operatorname{aut}(K|F)$ which extends σ .

Theorem 2.10 Suppose K and E are Galois extensions of F and $F \subseteq E \subseteq K$. Then $\operatorname{aut}(K|E)$ is a normal subgroup of $\operatorname{aut}(K|F)$ and

$$\frac{\operatorname{aut}(K|F)}{\operatorname{aut}(K|E)} \simeq \operatorname{aut}(E|F)$$

3 Solvability by radicals

In this section we assume all our fields are subfields of the complex numbers \mathbb{C} .

Definition 3.1 For G a finite group define G is a solvable group by induction on |G|. G is solvable iff either G is abelian or there exists a normal subgroup $H \triangleleft G$ such that both H and G/H are solvable.

Definition 3.2 Given fields $F \subseteq E \subseteq \mathbb{C}$ we say that E is a radical Galois extension of F iff there exists $n \in \mathbb{N}$ and $a \in F$ such that E is the splitting field of the polynomial $x^n - a$ over F.

Theorem 3.3 Suppose that E is a radical Galois extension of F, then $\operatorname{aut}(E|F)$ is a solvable group.

Lemma 3.4 Suppose that G is solvable group and G' is a homomorphic image of G, then G' is solvable. Hence quotient groups of solvable groups are solvable.

Theorem 3.5 Suppose that $F_1 \subseteq F_2 \subseteq F_3 \cdots \subseteq F_m$ is a sequence of radical Galois extensions, i.e., F_{k+1} is a radical Galois extension of F_k for each $k = 1, 2, \ldots, m-1$. Suppose that K is a Galois extension of F_1 such that $K \subseteq F_m$. Then $\operatorname{aut}(K|F_1)$ is a solvable group.

Corollary 3.6 Suppose $f \in \mathbb{Q}[x]$ is a polynomial which is solvable by radicals. Then if K is the splitting field of f over \mathbb{Q} , then $\operatorname{aut}(K|\mathbb{Q})$ is a solvable group.

Theorem 3.7 The group A_5 is simple.

Corollary 3.8 The group S_5 is not solvable.

Lemma 3.9 Suppose G is a subgroup of S_5 which contains a transposition and a 5-cycle. Then $G = S_5$.

Example 3.10 There is a polynomial $f \in \mathbb{Q}[x]$ of degree 5 whose splitting field K has $\operatorname{aut}(K|\mathbb{Q})$ isomorphic to S_5 , i.e., the Galois group of f is S_5 .

Corollary 3.11 (Abel) Fifth degree polynomials are not solvable by radicals.

4 Sylow Theorems

Let p be a prime and G a finite group.

Definition 4.1 Define group action $T : G \times X \to X$, orb(x), stab(x), [G : H], Z(G), C(a), conj(a), p-group, p-Sylow subgroup, N(H).

Proposition 4.2 If G is group acting on a set X, then stab(x) is a subgroup of G for any $x \in X$ and $\{orb(x) : x \in X\}$ partitions the set X.

Theorem 4.3 (Orbit-Stabilizer) Suppose G acts on X, then for any $x \in X$

$$|orb(x)| = [G:stab(x)]$$

Theorem 4.4 (Class equation)

$$|G| = |Z(G)| + [G: C(a_1)] + [G: C(a_2)] + \dots + [G: C(a_n)]$$

where $conj(a_1), conj(a_2), \ldots, conj(a_n)$ are the nontrivial conjugacy classes of G.

Corollary 4.5 Every p-group has a nontrivial center, hence is not simple unless its isomorphic to \mathbb{Z}_p .

Corollary 4.6 Groups of order p^2 are abelian.

Theorem 4.7 (Sylow 1) If G is a finite group and p^n divides |G|, then there exists a subgroup $H \subseteq G$ with $|H| = p^n$.

Theorem 4.8 (Sylow 2) If G is a finite group, H a p-subgroup of G, and P a p-Sylow subgroup of G, then there exists $a \in G$ such that $H \subseteq aPa^{-1}$.

Corollary 4.9 Let G be a finite group such that p divides |G|.

- (a) Any p-subgroup of G is contained in a p-Sylow subgroup of G.
- (b) Any two p-Sylow subgroups of G are conjugates.
- (c) Any two p-Sylow subgroups of G are isomorphic.
- (d) A p-Sylow subgroup is of G normal iff it is the only p-Sylow subgroup of G.

Theorem 4.10 (Sylow 3) If $|G| = p^n m$ where p does not divide m and n(p) is the number of p-Sylow subgroups of G, then:

- (a) n(p) = [G : N(P)] for any P a p-Sylow subgroup of G,
- (b) n(p) divides m, and
- $(c) n(p) = 1 \mod p$

5 Linear Transformations

In this section we consider only finite dimensional vector spaces V or W over an arbitrary field \mathbb{F} .

Theorem 5.1 Every linear transformation $L : \mathbb{F}^n \to \mathbb{F}^m$ is determined by an $m \times n$ matrix A:

$$L(X) = AX$$

for every $X \in \mathbb{F}^n$

Theorem 5.2 Suppose V and W are vector space over a field \mathbb{F} . If dim $(V) = \dim(W)$, then V is isomorphic to W.

Definition 5.3 For $L: V \to W$ a linear transformation, define the <u>null space</u> (or kernel) of L, null(L), and the <u>range space</u> of L, range(L) as follows: (a) null(L) = $\{v \in V : L(v) = z\}$

a)
$$\operatorname{null}(L) = \{v \in V : L(v) = z\}$$

(b) range(L) = { $w \in W$: there exists $v \in V$ such that L(v) = w}

Proposition 5.4 $\operatorname{null}(L)$ and $\operatorname{range}(L)$ are subspaces of V and W, respectively.

Theorem 5.5 Suppose $L: V \to W$ is a linear transformation. Then

$$\dim(V) = \dim(\operatorname{null}(L)) + \dim(\operatorname{range}(L))$$

Theorem 5.6 Suppose $A, B \in \mathbb{F}^{n \times n}$, then A is similar to B iff there exists a basis v_1, v_2, \ldots, v_n for $\mathbb{F}^{n \times 1}$ such that for every j

$$\mathbf{A}(v_j) = \sum_{i=1}^n entry_{ij}(B)v_i.$$

Furthermore, given such a basis if P is the invertible matrix where $col_j(P) = v_j$ for each j, then P witnesses their similarity, i.e., $A = PBP^{-1}$.

6 Triangulizability

In this section we consider only square matrices over the field of complex numbers, \mathbb{C} . All vector spaces V, W, etc are assumed to be finite dimensional vector spaces over the complex numbers.

Theorem 6.1 Suppose for every linear transformation $L: V \to V$ that V has a basis v_1, v_2, \ldots, v_n such that

$$L(v_k) \in \operatorname{span}(\{v_1, \ldots, v_k\})$$

for every k with $1 < k \leq n$. Then every $n \times n$ matrix is similar to to an upper triangular matrix.

Theorem 6.2 Suppose V is a finite dimensional vector space over \mathbb{C} and $L: V \to V$ is a linear transformation. Then there exists a nontrivial $v \in V$ and $\lambda \in \mathbb{C}$ such that $L(v) = \lambda v$.

Definition 6.3 If W_1 and W_2 are subspaces of a vector space V such that $W_1 \cap W_2 = \{0\}$, then define

$$W_1 \bigoplus W_2 = \{ w_1 + w_2 : w_1 \in W_1, w_2 \in W_2 \}.$$

Whenever we write $W_1 \bigoplus W_2$ we will be assuming that $W_1 \cap W_2 = \{\mathbf{0}\}$.

Lemma 6.4 For V a vector space and W_i 's subspaces:

(a) $W_1 \bigoplus W_2$ is a subspace of V

(b) For any $u \in W_1 \bigoplus W_2$, $w_1, w'_1 \in W_1$, and $w_2, w'_2 \in W_2$, if $u = w_1 + w_2$ and $u = w'_1 + w'_2$ then $w_1 = w'_1$ and $w_2 = w'_2$.

(c) If B_1 is a basis for W_1 and B_2 is a basis for W_2 , then $B_1 \cup B_2$ is a basis for $W_1 \bigoplus W_2$.

(d) Given $W_1 \bigoplus W_2$ define $P : W_1 \bigoplus W_2 \to W_2$ by $P(w_1+w_2) = w_2$ where $w_2 \in W_2$, and $w_1 \in W_1$, then P is a linear transformation such that $kernel(P) = W_1$ and P(v) = v for all $v \in W_2$. (P is called a projection.)

(e) For any W_1 a subspace of a finite dimensional V there exists W_2 a subspace of V such $V = W_1 \bigoplus W_2$.

Lemma 6.5 Suppose $L: V \to V$ is a linear transformation and $W \neq V$ a proper subspace of V. Then there exists $v \in V$ such that $v \notin W$ and $\lambda \in \mathbb{C}$ such that $L(v) - \lambda v \in W$.

Theorem 6.6 Suppose $L: V \to V$ is a linear transformation. Then V has a basis v_1, v_2, \ldots, v_n such that for each $k = 1, \ldots, n$ $L(v_k) \in span(\{v_1, v_2, \ldots, v_k\}).$

Corollary 6.7 Every matrix $A \in \mathbb{C}^{n \times n}$ is similar to an upper triangular matrix.

Definition 6.8 A sequence u_1, u_2, \ldots, u_n in an inner product space is orthonormal iff for all i, j

$$\langle u_i, u_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Proposition 6.9 Orthonormal sequences are linearly independent.

Theorem 6.10 (Gram-Schmidt Orthogonalization Process). If v_1, v_2, \ldots, v_n and linear independent, then there exists u_1, \ldots, u_n an orthonormal sequence such that for every $k = 1, \ldots, n$

$$span(\{v_1,\ldots,v_k\}) = span(\{u_1,\ldots,u_k\}).$$

Theorem 6.11 Suppose V is a finite dimensional inner product space and $L: V \to V$ is a linear transformation, then V has an orthonormal basis u_1, u_2, \ldots, u_n such that for each $k = 1, \ldots, n$

$$L(u_k) \in span(\{u_1, u_2, \dots, u_k\}).$$

Corollary 6.12 (Schur) For every matrix $A \in \mathbb{C}^{n \times n}$ there exists a unitary matrix P (ie $P^{-1} = P^*$ the conjugate transpose) such that $P^{-1}AP$ is an upper triangular matrix.

Corollary 6.13 If $A = A^*$ then A is (unitarily) similar to a diagonal matrix all of whose entries are real. Hence all the eigenvalues of A are real.

7 Jordan Normal Form

In this section all vector spaces V, W, etc., are assumed to be finite dimensional vector spaces over an algebraically closed field \mathbb{F} , e.g., the complex numbers.

Definition 7.1 $\langle v_1, v_2, \ldots, v_n \rangle$ is an *L*-shifting sequence iff $v_1 \neq \mathbf{0}, L(v_1) = \mathbf{0}$ and $L(v_{k+1}) = v_k$ for each $k = 1, 2, \ldots, n-1$.

Definition 7.2 For $W \subseteq V$ $L(W) = \{L(v) : v \in W\}$. It is the same as the range of L when W = V.

Theorem 7.3 An L-shifting sequence $\langle v_1, v_2, \ldots, v_n \rangle$, is linearly independent. Also if $W = span(\{v_1, v_2, \ldots, v_n\})$, then $L(W) \subseteq W$.

Theorem 7.4 Suppose $L: V \to V$ is a linear transformation and let $W_1 = \{v \in V : \exists n \ L^n(v) = \mathbf{0}\}$. Then $L(W_1) \subseteq W_1$ and there exists W_2 with $L(W_2) \subseteq W_2$ such that $V = W_1 \bigoplus W_2$.

Definition 7.5 Define a linear transformation $L: V \to V$ to be nilpotent iff for every $v \in V$ there exists n such that $L^n(v) = \mathbf{0}$.

Theorem 7.6 Suppose $L: V \to V$ is a nilpotent linear transformation. Then there exists W_1, W_2 such that $L(W_1) \subseteq W_1, L(W_2) \subseteq W_2, V = W_1 \bigoplus W_2$ and W_1 has an L-shifting sequence for a basis.

Definition 7.7 The shift matrix S is the square matrix such that $entry_{i,i+1}S = 1$ for each i and all other entries of S are 0.

Definition 7.8 Matrices of the form $J = \lambda I + S$ are called Jordan block matrices.

Theorem 7.9 (Jordan normal form) Every square matrix A is similar to a matrix in the block diagonal form:

$$\begin{bmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & J_n \end{bmatrix}$$

where each J_i is a Jordan block matrix.