A. Miller M542 Final Exam Spring 2000

The Final Exam is in our usual classroom (B203 Van Vleck) at 7:25pm on Saturday
May 13. It consists of approximately six proofs from the material below which I will
write on the blackboard.

A copy of this document will be handed out to you at the Final.

1 Review

Theorem 1.1 Minimal polynomials are irreducible: If av is in some extension field of
F and define:
I={f(x) € Flz]: f(a) = 0}

Then:

(a) I is an ideal in Fx]

(b) (assuming I is nontrivial) I = (p(x)) where p(x) is any polynomial of minimal
positive degree in I and

(c¢) p(x) is irreducible and so I is a mazximal ideal.

Theorem 1.2 [f p(x) is an irreducible polynomial of degree n in Flx| and « a root of
p in some extension field, then 1,a,a?,...,a" ! is a basis for F(a) as a vector space
over F' and hence [F(«) : F] =n.

Theorem 1.3 Suppose char(F)=0 and p(x) € F|x] is irreducible, then p does not
have any multiple roots in any extension of F.

Theorem 1.4 Suppose char(F)=0 and [E : F] < oo, then there ezists « € E such
that E = F(«).

Theorem 1.5 If p(z) € Flx| is an irreducible polynomial and o and (5 are two roots
of p, then F(a) ~ F(B) with an isomorphism which fizes F and takes o to 3.

Theorem 1.6 If o : F — F' is an isomorphism, f € F[z| any polynomial, E O F
a splitting field of f over F', and E' O F' a splitting field of o(f) over F', then there
exists an isomorphism p O o such that p: E — E'.

2 Galois Theory

In this section we assume that all fields have characteristic 0.

Definition 2.1 The field K O F is a Galois extension of the field F' iff K is the
splitting field over F' of some polynomial with coefficients in F.

Proposition 2.2 Suppose FF C E C K are fields and K is a Galois extension of F.
Then K is a Galois extension of E.



Definition 2.3 For fields F C E define aut(E|F) to be the set of all automorphisms
o of E which fix F, i.e., o(a) = a for alla € F.

Proposition 2.4 aut(FE|F) is a group. Furthermore, if FF C E C K are fields, then
aut(K|E) is a subgroup of aut(K|F).

Lemma 2.5 Suppose o,p € aut(F(«)|F). Then o = p iff o(a) = p(a).
Similarly, if o,p € aut(F (a1, ag,...,a,)|F) then o = p iff o(ay) = p(ag) for all
k=1,2,...,n.

Theorem 2.6 Suppose that K is the splitting field of a polynomial in F[x] of degree
n. Then aut(K|F) is isomorphic to a subgroup of S,,.

Lemma 2.7 Suppose K is a Galois extension of F, K C L, and 0 : K — L an
embedding which fives F. Then and o(K) = K.

Theorem 2.8 Suppose K is a Galois extension of F, then |aut(K|F)| = [K : F]

Lemma 2.9 Suppose F C E,E' C K, K is a Galois extension of F and 0 : E — FE’
and isomorphism which fizes F'. Then there ezists p € aut(K|F) which extends o.

Theorem 2.10 Suppose K and E are Galois extensions of F and F C E C K. Then
aut(K|E) is a normal subgroup of aut(K|F) and

aut(K|F)

ant(K|E) ~ aut(E|F)

3 Solvability by radicals
In this section we assume all our fields are subfields of the complex numbers C.

Definition 3.1 For G a finite group define G is a solvable group by induction on |G|.
G 1s solvable iff either G is abelian or there exists a normal subgroup H <G such that
both H and G/H are solvable.

Definition 3.2 Given fields FF C E C C we say that E is a radical Galois extension
of F' iff there existsn € N and a € F' such that E 1s the splitting field of the polynomial
x" —a over F.

Theorem 3.3 Suppose that E is a radical Galois extension of F, then aut(E|F) is a
solvable group.

Lemma 3.4 Suppose that G is solvable group and G’ is a homomorphic image of G,
then G’ is solvable. Hence quotient groups of solvable groups are solvable.



Theorem 3.5 Suppose that F; C Fy C Fy--- C F,, is a sequence of radical Galois
extensions, i.e., Fyy1 is a radical Galois extension of Fy, for each k =1,2,... . m — 1.
Suppose that K is a Galois extension of Fy such that K C F,,. Then aut(K|Fy) is a
solvable group.

Corollary 3.6 Suppose f € Q[z] is a polynomial which is solvable by radicals. Then
if K is the splitting field of f over Q, then aut(K|Q) is a solvable group.

Theorem 3.7 The group As is simple.
Corollary 3.8 The group Ss is not solvable.

Lemma 3.9 Suppose G is a subgroup of Ss which contains a transposition and a 5-
cycle. Then G = Ss.

Example 3.10 There is a polynomial f € Qx| of degree 5 whose splitting field K has
aut(K|Q) isomorphic to Ss, i.e., the Galois group of f is Ss.

Corollary 3.11 (Abel) Fifth degree polynomials are not solvable by radicals.

4 Sylow Theorems
Let p be a prime and G a finite group.

Definition 4.1 Define group action T : G x X — X, orb(x), stab(z), [G : H], Z(G),
C(a), conj(a), p-group, p-Sylow subgroup, N(H).

Proposition 4.2 If G is group acting on a set X, then stab(x) is a subgroup of G for
any x € X and {orb(z) : x € X} partitions the set X.

Theorem 4.3 (Orbit-Stabilizer) Suppose G acts on X, then for any x € X
lorb(z)| = [G : stab(z)]
Theorem 4.4 (Class equation)
Gl = 12(G)[ +[G - Clay)] + [G = Clag)] + -+ + [G = Clan)]
where conj(ay),conj(as),. .., conj(ay,) are the nontrivial conjugacy classes of G.

Corollary 4.5 FEvery p-group has a nontrivial center, hence is not simple unless its
isomorphic to Z,.

Corollary 4.6 Groups of order p? are abelian.

Theorem 4.7 (Sylow 1) If G is a finite group and p™ divides |G|, then there ezists a
subgroup H C G with |H| = p™.



Theorem 4.8 (Sylow 2) If G is a finite group, H a p-subgroup of G, and P a p-Sylow
subgroup of G, then there exists a € G such that H C aPa™1.

Corollary 4.9 Let G be a finite group such that p divides |G|.
(a) Any p-subgroup of G is contained in a p-Sylow subgroup of G.
(b) Any two p-Sylow subgroups of G are conjugates.
(c) Any two p-Sylow subgroups of G are isomorphic.
(d) A p-Sylow subgroup is of G normal iff it is the only p-Sylow subgroup of G.

Theorem 4.10 (Sylow 3) If |G| = p"m where p does not divide m and n(p) is the
number of p-Sylow subgroups of G, then:

(a) n(p) =[G : N(P)] for any P a p-Sylow subgroup of G,

(b) n(p) divides m, and

(¢) n(p) =1 mod p

5 Linear Transformations

In this section we consider only finite dimensional vector spaces V or W over an
arbitrary field F.

Theorem 5.1 FEvery linear transformation L : F* — F™ is determined by an m X n
matriz A:

L(X)=AX
for every X € F”

Theorem 5.2 Suppose V' and W are vector space over a field .
If dim(V') = dim(W), then V' is isomorphic to W.

Definition 5.3 For L : V. — W a linear transformation, define the null space (or
kernel) of L, null(L), and the range space of L, range(L) as follows:

(a) null(L) ={v eV :L(v) =z}

(b) range(L) = {w € W : there exists v € V such that L(v) = w}

Proposition 5.4 null(L) and range(L) are subspaces of V' and W, respectively.
Theorem 5.5 Suppose L :V — W is a linear transformation. Then
dim(V) = dim(null(L)) + dim(range(L)).

Theorem 5.6 Suppose A, B € F"*", then A is similar to B iff there exists a basis
V1, Vo, . . ., Uy for T such that for every j

A(v;) = Zentryij(B)vi.
i=1

Furthermore, given such a basis if P is the invertible matriz where col;(P) = v; for
each j, then P witnesses their similarity, i.e., A = PBP~.



6 Triangulizability

In this section we consider only square matrices over the field of complex numbers, C.
All vector spaces V', W, etc are assumed to be finite dimensional vector spaces over
the complex numbers.

Theorem 6.1 Suppose for every linear transformation L :'V — V that V' has a basis
V1, Vg, ..., U, Ssuch that

L(vg) € span({vy, ..., v })

for every k with 1 < k < n. Then every n X n matriz is similar to to an upper
triangular matriz.

Theorem 6.2 Suppose V' is a finite dimensional vector space over C and L :V — V
1S a linear transformation. Then there exists a nontrivial v € V and A € C such that

L(v) = M.

Definition 6.3 If W, and Wy are subspaces of a vector space V' such that W1 N Wy =
{0}, then define

Wl@WQ = {w1 +wy :wy € Wl,wg S WQ}
Whenever we write Wy @@ Wy we will be assuming that Wy N Wy = {0}.

Lemma 6.4 For V' a vector space and W;’s subspaces:

(a) Wy @ Wy is a subspace of V

(b) For any u € Wy @ Ws, wy,w| € Wy, and we,wh € Wa, if u = wy + wy and
u = wy + wy then wy = w) and wy = wh.

(c¢) If By is a basis for Wy and By is a basis for Wy, then By U By is a basis for
Wiy 6 Ws.

(d) Given W, @ Wy define P : W1 @ Wy — Wy by P(wi+wsy) = we where wy € W,
and wy € Wy, then P is a linear transformation such that kernel(P) = W; and
P(v) =wv for allv e Wy. (P is called a projection.)

(e) For any Wi a subspace of a finite dimensional V' there exists Wy a subspace of

V such V. =W, @ Ws.

Lemma 6.5 Suppose L : V. — V is a linear transformation and W # V a proper
subspace of V.. Then there exists v € V such that v ¢ W and X\ € C such that
L(v) — X veW.

Theorem 6.6 Suppose L : V — V is a linear transformation. Then V has a basis
V1, V2, ..., Uy Such that for each k =1,...,n  L(vg) € span({vy, v, ..., v}).

Corollary 6.7 Every matriz A € C™" is similar to an upper triangular matriz.



Definition 6.8 A sequence uy,us,...,u, in an inner product space is orthonormal iff
for all i,
1 =
e ) = { 0 it
Proposition 6.9 Orthonormal sequences are linearly independent.

Theorem 6.10 (Gram-Schmidt Orthogonalization Process). If vi,ve, ..., v, and lin-
ear independent, then there exists uq,...,u, an orthonormal sequence such that for
everyk=1,....,n

span({vy, ..., vk }) = span({uy, ..., ug}).

Theorem 6.11 Suppose V' is a finite dimensional inner product space and L : V — V
is a linear transformation, then V has an orthonormal basis uy,us, ..., u, such that
foreach k=1,...,n

L(uy) € span({uy, ug, ..., ug}).

Corollary 6.12 (Schur) For every matric A € C*™™™ there exists a unitary matriz P
(ie P~' = P* the conjugate transpose) such that P~ AP is an upper triangular matriz.

Corollary 6.13 If A = A* then A is (unitarily) similar to a diagonal matriz all of
whose entries are real. Hence all the eigenvalues of A are real.

7 Jordan Normal Form

In this section all vector spaces V', W, etc., are assumed to be finite dimensional vector
spaces over an algebraically closed field F, e.g., the complex numbers.

Definition 7.1 (vy,vs,...,v,) is an L-shifting sequence iff v; # 0,L(v1) = 0 and
L(vky1) = vy for each k=1,2,...,n — 1.

Definition 7.2 For W CV L(W) ={L(v):v € W}. It is the same as the range of
L when W =V.

Theorem 7.3 An L-shifting sequence (vy,vs, ..., v,), is linearly independent. Also if
W = span({vi,vq,...,v,}), then L(W) C W.

Theorem 7.4 Suppose L :'V — V is a linear transformation and let W, = {v € V :
dn L™(v) = 0}. Then L(Wy) C Wy and there exists Wy with L(W3) C Wy such that
V=W Ww,.

Definition 7.5 Define a linear transformation L : V' — V to be nilpotent iff for every
v €V there exists n such that L"(v) = 0.



Theorem 7.6 Suppose L : V — V is a nilpotent linear transformation. Then there
exists Wi, Wy such that L(Wy) C Wy, L(Wy) C Wy, V.= W1 @ Wy and Wi has an

L-shifting sequence for a basis.

Definition 7.7 The shift matriz S is the square matriz such that entry; ;1.5 =1 for
each © and all other entries of S are 0.

Definition 7.8 Matrices of the form J = X + S are called Jordan block matrices.

Theorem 7.9 (Jordan normal form) Every square matriz A is similar to a matriz in
the block diagonal form.:

Ji 0 .0
0 J ... 0
o .0
0o 0 0 J,

where each J; is a Jordan block matriz.



