No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any kind. $\,$

Name			
name			

Circle your Discussion Section:

DIS 301	9:55	T	B305 VAN VLECK
DIS 302	9:55	R	115 INGRAHAM
DIS 305	1:20p	T	B105 VAN VLECK
DIS 306	1:20p	R	B333 VAN VLECK

Problem	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	12	
9	4	
Total	100	

Solutions will be posted shortly after the exam: www.math.wisc.edu/ \sim miller/m240

1. (12 pts) Give the best Big-Oh estimate for each of these functions. Enter one of the letters in the blank provided. (Answers may be reused.)

- 1. ___ $(2\log(n) + 1)(3n + 1)$
- 2. $2n \log(n) + n^2$
- 4. ___ $3\log(n) + 5n + 7$
- (A) $\mathcal{O}(n)$
- (B) $\mathcal{O}(n\log(n))$
- (C) $\mathcal{O}(n\log^2(n))$
- (D) $\mathcal{O}(n^2)$
- (E) $\mathcal{O}(n^2 \log(n))$.
- (F) none of these

2. (12 pts)

(a) Determine which amounts of postage can be formed using just 3-cent and 10-cent stamps. (b) Prove your answer is correct using either simple induction or strong induction. Be sure to explicitly state your inductive hypothesis in the inductive step.

3. (12 pts) A parking lot has 30 spaces numbered $1, 2, \ldots, 30$ which are assigned by the hashing function

$$h(k) = (k \mod 30) + 1$$

where k is the integer corresponding to the first 3 digits on the car's licence plate. Enter the correct parking space number $1, 2, \ldots, 30$ in each blank:

- (a) Car with license plate starting 123 would park in space _____ .
- (b) Car with license plate starting 234 would park in space $___$.
- (c) Car with license plate starting 432 would park in space _____ .

4. (12 pts) Show that for positive integers a and b that

$$ab = gcd(a, b) \cdot lcm(a, b)$$

Hint: Use the prime factorization of a and b and the formulas for $\gcd(a,b)$ and $\operatorname{lcm}(a,b)$ in terms of these factorizations.

5. (12 pts) Perform the indicated base conversions:

- (a) $(\underline{})_8 = (1010111)_2$
- (b) $(\underline{})_8 = (E2F)_{16}$
- (c) $(\underline{})_2 = (53)_{10}$
- (d) $(\underline{})_{10} = (37)_8$

6. (12 pts) Using the Euclidean algorithm to express the greatest common divisor d of n = 123 and m = 1280 as a linear combination of n and m:

$$d = \alpha(123) + \beta(1280)$$
 where $\alpha = \underline{\hspace{1cm}}$ and $\beta = \underline{\hspace{1cm}}$.

7. (12 pts) Find a matrix A such that

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right] A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right].$$

Hint: Finding A requires that you solve systems of linear equations.

8. (12 pts) Prove that for every positive integer n:

$$1 \cdot 2 + 2 \cdot 3 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

- 9. (4 pts) True or False.
 - (a) Matrix multiplication satisfies the commutative law.
 - (b) Matrix multiplication satisfies the associative law.
 - (c) If A and B are 2×2 matrices and

$$AB = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

then

$$A = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \text{ or } B = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right].$$

(d) For any n there is an $n\times n$ matrix I such that for every $n\times n$ matrix A

$$AI = IA = A$$
.

Answers

1. BDEA

- 2. (a) 3,6,9,10,12,13,15,16, and all $n \ge 18$.
- (b) Verify directly that it is true for n=18,19,20. Prove by strong induction that it is true for every n>20. Since if n>20 then $n-3\geq 18$. Hence by inductive hypothesis $n-3=\alpha 3+\beta 10$ for some nonnegative integers α and β . But then $n=(\alpha+1)3+\beta 10$.
 - 3. (a) 4 (b) 25 (c) 13
 - 4. see p.S-21 3.5-27.

For another proof: Let d = gcd(a, b) and a = a' d and b = b' d where a' and b' are relatively prime. Put m = a' d b'. Then clearly ab = dm and m is a common multiple of a and b. So it is enough to see that m is the least common multiple. Suppose n is any common multiple of a and b and let $n = \alpha a = \beta b$. Then since $\alpha a'$ $d = \beta b'$ d we have that $\alpha a' = \beta b'$. Since a' and b' are relatively prime we have that a' divides β . So let $\beta = \gamma a'$. But then $n = \beta b = (\gamma a')(db')$ and so m = a' d b' divides n.

- 5. (a) 127 (b) 7057 (c) 110101 (d) 31
- 6. (32)(1280) + (-333)(123) = 1

7.

$$A = \left[\begin{array}{cc} 3 & 2 \\ -1 & 0 \end{array} \right].$$

- 8. see 4.1-15.
- 9. FTFT