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Show all work.

No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any
kind.

Name

Circle your Discussion Section:

DIS 303 12:05p T B235 VAN VLECK

DIS 304 12:05p R B235 VAN VLECK

DIS 307 2:25p T B139 VAN VLECK

DIS 308 2:25p R B309 VAN VLECK

Problem Points Score

1 4

2 4

3 6

4 6

5 8

6 7

7 7

8 6

9 7

10 8

11 8

12 7

13 7

14 8

15 7

Total 100

Solutions will be posted shortly after the exam: www.math.wisc.edu/∼miller/m240
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1. (4 pts) Construct a truth table for the compound proposition:

(p → q) ∨ (¬p → q)

2. (4 pts) Use a truth table to verify:

(p → q) ≡ (¬q → ¬p)
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3. (6 pts) Let P (x) be the statement x + 1 > x2 and suppose that the universe of discourse
consists of the integers. What are the truth values of the following?

1. P (0)

2. P (1)

3. P (−1)

4. ∃x P (x)

5. ∀x P (x)

6. ∀x∃y ((y > x) ∧ P (y))

4. (6 pts) Determine the truth value of each of the following if the universe of discourse for all
variables consists of the positive integers N = {1, 2, 3, . . .}.

1. ∀n ∃m n2 < m

2. ∃m ∀n n2 < m

3. ∃n ∃m n2 + m2 = 52

4. ∃n ∃m n2 + m2 = 62

5. ∀n ∀m (n ≤ m ∨ m ≤ n)

6. ∀n ∀m (n < m ∨ m < n)
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5. (8 pts) Determine if the following arguments are correct. If it is correct, what rule of
inference is being used. If it is not, what logical error occurs?

(a) If n is an integer with n ≥ 2, then n3 ≥ 8. Suppose n < 2. Then n3 < 8.

(b) If n is an integer with n > 2, then n3 > 8. Suppose n3 ≤ 8. Then n ≤ 2.
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6. (7 pts) How many different elements does A× A× A have if A has n elements?

7. (7 pts) What can we say about the sets A and B if A⊕ B = ∅. The symbol ⊕ denotes the
symmetric difference.
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8. (6 pts) Let h(x) = dxe. Find

1. h−1({2})

2. h−1({x : −1 ≤ x ≤ 1})

3. h({x : −1 ≤ x ≤ 1})
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9. (7 pts) Use the bubble sort to sort the list 3, 2, 4, 5, 1 showing the lists obtained at each step,
i.e., after each time you do a comparison.
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10. (8 pts) Find the least integer n such that f(x) is O(xn) where

f(x) =
2x5 + x2 + 1

3x2 + 4x ln(x)
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11. (8 pts) Show that if 2n − 1 is prime, then n is prime.

Hint: (xm − 1) = (x− 1)(xm−1 + xm−2 + · · ·+ x + 1)
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12. (7 pts) Convert the integer 11001111 from binary notation to decimal notation.

13. (7 pts) How much time does an algorithm using 240 bit operations take if each bit operation
takes 10−9 seconds?
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14. (8 pts) Suppose that an integer a is not divisible by the prime p. Show that no two of the
integers:

a, 2a, 3a, . . . , (p− 1)a

are congruent modulo p.
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15. (7 pts) Find AB if

A =

[
1 −1 −2

−1 2 0

]
and B =

 1 −1
−1 2

2 0


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Answers

1. 1.1-27
This is a tautology.

2. 1.2-3
This is the contrapositive.

3. 1.3-11
TTFTFF

4. 1.4-27
TFTFTF

5. 1.5-13
(a) The logical form of this argument is:
P → Q
¬P
—————
¬Q.

This is an incorrect inference even though it reaches a correct conclusion.

(b) The logical form of this argument is:
P → Q
¬Q
—————
¬P .

This is a correct logical inference.

6. 1.6-25
n3.

7. 1.7-31
A = B

8. 1.8-35
1. (1, 2]
2. (−2, 1]
3. {−1, 0, 1}

9. 2.1-35
32451
23451
23451
23451
23415
23415
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23415
23145
23145
23145
21345
21345
21345
12345
followed by the end of this pass and one more pass to check that nothing changes.

10. 2.2-7
O(x3)

11. 2.4-23
Suppose that n is not prime and let n = km for integers k, m with 1 < k,m < n. Put

x = 2k and using the hint note that

2n − 1 = (2k)m − 1 = (xm − 1) = (x− 1)(xm−1 + xm−2 + · · ·+ x + 1)

and so 2n − 1 is not prime.

12. 2.5-3
207

13. 2.3-11
24010−9 seconds. A good estimate is to use 210 = 1024 ≈ 1000 so

24010−9 =
240

109
=

(210)4

109
≈ (1000)4

109
=

(103)4

109
=

1012

109
= 103

14. 2.6-17
Suppose for contradiction that there are i, j integers with 1 ≤ i < j ≤ p− 1 such that

ia ≡p ja

Then
0 ≡p (j − i)a

and so p divides (j − i)a. Since p is prime and does not divide a it must divide j − i. But this
is impossible because 1 ≤ j − i < p.

15. 2.7-3 [
−2 −3
−3 5

]
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The following program was used to pick the problems on this test. In some cases the problem
is identical and in others it is just similar.

#! /usr/ucb/python

import string

import sys

import random

f=open("hmwk1",’r’) # input file

lines=f.readlines()

random.seed("the three stooges")

for line in lines:

s=string.split(line)

if len(s)> 4:

section=s.pop(0)

print random.choice(s).rjust(2) + " "+string.lstrip(line)


