Answer A-Z.

3.7		
Name		
name		

Circle your TA section:

DIS 321	T 8:50	Milind Shah
DIS 322	R 8:50	Milind Shah
DIS 323	T 9:55	Milind Shah
DIS 324	R 9:55	Milind Shah
DIS 325	T 11:00	Duygu Unlu
DIS 326	R 11:00	Duygu Unlu
DIS 327	T 12:05p	Duygu Unlu
DIS 328	R 12:05p	Duygu Unlu
DIS 329	T 1:20p	Kiran Manchikanti
DIS 330	R 1:20p	Kiran Manchikanti
DIS 331	T 2:25p	Lipika Deka
DIS 332	R 2:25p	Lipika Deka
DIS 333	T 3:30p	Lipika Deka
DIS 334	R 3:30p	Lipika Deka
		•

Problem	Points	Score
1-35	35	
36	5	
37	5	
38	5	
Total	50	
× 4	200	

1. _____

- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6. _____
- 7. _____
- 8. _____
- 9. _____
- 10. _____
- 11. _____
- 12. _____
- 13. _____
- 14. _____
- 15. _____
- 16. _____
- 17. _____
- 18. _____
- 19. _____
- 20. _____
- 21. _____
- 22. _____
- 23. _____
- 24. _____
- 25. _____
- 26. _____
- 27. _____
- 28. _____
- 29. _____
- 30. _____
- 31. _____
- 32. _____
- 33. _____
- 34. _____
- 35. _____

36. Find

$$\iint_S y \ dS$$

where S is the surface of the helicoid (or spiral ramp). It is parameterized by the equations:

$$x = r\cos(\theta)$$

$$y = r \sin(\theta)$$

$$z = \theta$$

$$0 \le r \le 1, \quad 0 \le \theta \le \pi$$

Show all work below and put your answer in this box:

37. Find the point on the surface $z^2 = 2y - 2x + 4$ that is closest to the origin.

Show all work below and put your answer in this box:

38. A particle starts at the point (-1,0), moves along the x-axis to (1,0), and then along the semicircle $y = \sqrt{1-x^2}$ back to the starting point. Call this curve C. Find

$$\oint_C (x^2 e^x - y + xy^2) dx + (x + e^y \cos(y) + x^2 y) dy$$

Hint: What does Green's Theorem say?

Show all work below and put your answer in this box: