Answer A-Z. | 3.7 | | | |------|--|--| | Name | | | | name | | | ## Circle your TA section: | DIS 321 | T 8:50 | Milind Shah | |---------|----------|-------------------| | DIS 322 | R 8:50 | Milind Shah | | DIS 323 | T 9:55 | Milind Shah | | DIS 324 | R 9:55 | Milind Shah | | DIS 325 | T 11:00 | Duygu Unlu | | DIS 326 | R 11:00 | Duygu Unlu | | DIS 327 | T 12:05p | Duygu Unlu | | DIS 328 | R 12:05p | Duygu Unlu | | DIS 329 | T 1:20p | Kiran Manchikanti | | DIS 330 | R 1:20p | Kiran Manchikanti | | DIS 331 | T 2:25p | Lipika Deka | | DIS 332 | R 2:25p | Lipika Deka | | DIS 333 | T 3:30p | Lipika Deka | | DIS 334 | R 3:30p | Lipika Deka | | | | • | | Problem | Points | Score | |---------|--------|-------| | 1-35 | 35 | | | 36 | 5 | | | 37 | 5 | | | 38 | 5 | | | Total | 50 | | | × 4 | 200 | | ## 1. _____ - 2. _____ - 3. _____ - 4. _____ - 5. _____ - 6. _____ - 7. _____ - 8. _____ - 9. _____ - 10. _____ - 11. _____ - 12. _____ - 13. _____ - 14. _____ - 15. _____ - 16. _____ - 17. _____ - 18. _____ - 19. _____ - 20. _____ - 21. _____ - 22. _____ - 23. _____ - 24. _____ - 25. _____ - 26. _____ - 27. _____ - 28. _____ - 29. _____ - 30. _____ - 31. _____ - 32. _____ - 33. _____ - 34. _____ - 35. _____ 36. Find $$\iint_S y \ dS$$ where S is the surface of the helicoid (or spiral ramp). It is parameterized by the equations: $$x = r\cos(\theta)$$ $$y = r \sin(\theta)$$ $$z = \theta$$ $$0 \le r \le 1, \quad 0 \le \theta \le \pi$$ Show all work below and put your answer in this box: 37. Find the point on the surface $z^2 = 2y - 2x + 4$ that is closest to the origin. Show all work below and put your answer in this box: 38. A particle starts at the point (-1,0), moves along the x-axis to (1,0), and then along the semicircle $y = \sqrt{1-x^2}$ back to the starting point. Call this curve C. Find $$\oint_C (x^2 e^x - y + xy^2) dx + (x + e^y \cos(y) + x^2 y) dy$$ Hint: What does Green's Theorem say? Show all work below and put your answer in this box: