Instructions

0

No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any kind.

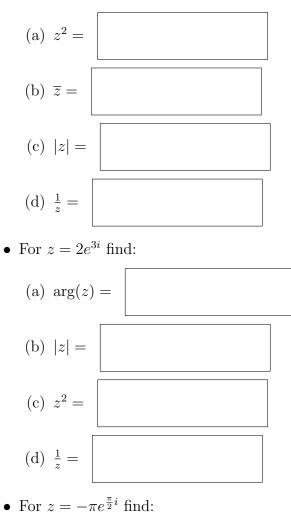
Show all of your work. Circle your answer.

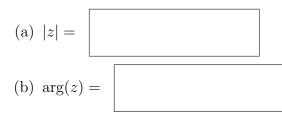
Name_

	Problem	Points	Score
	1	10	
Circle your section number.	2	8	
Hand in to your TA.	3	8	
Section	4	8	
Number 321 7:45 Zhao, Jie	5	8	
332 9:55 McMahon, Kayla	6	8	
322 8:50 Zhao, Jie 328 1:20 Emrah, Elnur	7	8	
331 9:55 Kim, Yoosik 324 11:00 McMahon, Kayla	8	8	
324 11:00 McMahon, Kayla 325 12:05 Wang, Kejia	9	8	
326 12:05 Emrah, Elnur 327 1:20 Wang, Kejia	10	8	
330 2:25 Kim, Yoosik	11	10	
	12	8	
	Total	100	

Solutions will be posted shortly after the exam: www.math.wisc.edu/ \sim miller

- 1. (10 pts) Put your simplified answer in the box.
 - For z = 2 + 3i find:





Exam 2 A. Miller Fall 2010 Math 222	-2
-------------------------------------	----

2. (8 pts) Plot the following four points in the complex plane. Be sure and label them.

$$P = \sqrt{2} e^{\frac{5\pi}{4}i}$$
 $Q = 1 + 2i$ $R = \overline{1 + 2i}$ $Z = \frac{1}{1+2i}$

The dotted lines are one unit apart.

- -	- -	-	_	- -	- -	
I				I	I	
- -	- -	_	_	- -	- -	
				1		_
				·	' I	
- -	- -	_	_	- -	- -	
Ι	I			I	I	
- I -	- -	_	_	- -	- I -	

3. (8 pts) Find all real or complex roots of the equation:

$$z^4 + z^2 - 12 = 0$$

Exam 2	A. Miller	Fall 2010	$Math \ 222$	4

4. (8 pts) Find the function y of x which satisfies the **initial** value problem:

$$\frac{dy}{dx} + \frac{x^2 - 1}{y} = 0$$
 $y(0) = 1$

5. (8 pts) Find the **general** solution of

$$\frac{dy}{dx} + 2y + e^x \equiv 0$$

6. (8 pts) Solve the **initial** value problem:

$$y'' - 5y' + 4y \equiv 0$$
$$y(0) = 2$$
$$y'(0) = -1$$

Exam 2 A. Miller Fall 2010 Math	222 7
---------------------------------	-------

7. (8 pts) For y as a function of x, find the **general** solution of the equation:

$$y'' - 2y' + 10y \equiv 0$$

8

8. (8 pts) Find a **particular** solution of the equation:

$$y'' + y' + 2y = e^x + x + 1$$

Exam 2	A. Miller	Fall 2010	Math 222

9

9. (8 pts) Given the equation $\mathcal{L}(z) = z'' + a_0 z' + a_1 z \equiv b$ where a_0, a_1, b are given functions of t. Then $\mathcal{L}(fz_1 + gz_2) = b$ where $z_H = C_1 z_1 + C_2 z_2$ is the general solution of the associated homogenous equation $\mathcal{L}(z) \equiv 0$ and the derivatives of f and g satisfy:

$$f' = \frac{\det \begin{pmatrix} 0 & z_2 \\ b & z'_2 \end{pmatrix}}{\det \begin{pmatrix} z_1 & z_2 \\ z'_1 & z'_2 \end{pmatrix}} \quad g' = \frac{\det \begin{pmatrix} z_1 & 0 \\ z'_1 & b \end{pmatrix}}{\det \begin{pmatrix} z_1 & z_2 \\ z'_1 & z'_2 \end{pmatrix}}$$

Use these formulas to find the general solution of

$$z'' + z \equiv \frac{1}{\sin t}$$

Exam 2 A	A. Miller	Fall 2010	Math 222	10
----------	-----------	-----------	----------	----

10. (8 pts) According to Newton's law of cooling the rate $\frac{dT}{dt}$ at which an object cools is proportional to the difference T - A between its temperature T and the ambient temperature A. The differential equation which expresses this is $\frac{dT}{dt} = k(T - A)$ where k < 0 and A are constants. Solve this equation and show that every solution satisfies $\lim_{t\to\infty} T = A$.

11. (10 pts)

$$\vec{a} = \begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}$$

Compute, simplify, and then circle each answer:

(a) $||\vec{a}||$

- (b) $2\vec{a}$
- (c) $||2\vec{a}||^2$
- (d) $\vec{a} + \vec{b}$
- (e) $3\vec{a} \vec{b}$

	Exam 2	A. Miller	Fall 2010	$Math \ 222$	12
--	--------	-----------	-----------	--------------	----

 $12.\ (8\ {\rm pts})\$ Compute, simplify, and then circle each answer:

(a) Find a parametric equation for the line which contains the two vectors

$$\vec{a} = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 3\\2\\3 \end{pmatrix}$.

(b) The vector
$$\vec{c} = \begin{pmatrix} c_1 \\ 1 \\ c_3 \end{pmatrix}$$
 is on this line. What is \vec{c} ?

13

Answers

1. (a) -5 + 12i (b) 2 - 3i (c) $\sqrt{13}$ (d) $\frac{2}{13} - \frac{3}{13}i$ (a) 3 (b) 2 (c) $4e^{6i}$ (d) $\frac{1}{2}e^{-3i}$ (a) π (b) $\frac{3}{2}\pi$ | - - | -1 1 | -- | -L I Ζ I. Τ I I — - P -I I 1 I - I - - I -- R - - - -- | 2. 3. $\sqrt{3}, 2i, -\sqrt{3}, -2i$ 4. $y = \sqrt{2(x - \frac{x^3}{3}) + 1}$ 5. $y = Ce^{-2x} - \frac{1}{3}e^x$

6. $y = 3e^{x} - e^{4x}$ 7. $y = Ae^{x} \sin(3x + B)$

8.
$$y_P = \frac{1}{4}e^x + \frac{1}{2}x + \frac{1}{4}$$

Exam 2 A. Miller Fall 2010 Math 222 14
9.
$$z = (-t + C_1) \cos t + (\ln |\sin t| + C_2) \sin t$$

10. $T = A + Ce^{kt}$
 $\lim_{t \to \infty} e^{kt} = 0$
11.
(a) 3
(b) $\begin{pmatrix} 2\\-4\\4 \end{pmatrix}$
(c) 36
(d) $\begin{pmatrix} -3\\-3\\3 \end{pmatrix}$
(e) $\begin{pmatrix} 1\\-5\\5 \end{pmatrix}$
12. (a) $\vec{L}[t] = \begin{pmatrix} 2\\3\\1 \end{pmatrix} + t \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$
(b) $\begin{pmatrix} 4\\1\\5 \end{pmatrix}$